12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784 |
- #| -*-Scheme-*-
- Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
- 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Massachusetts
- Institute of Technology
- This file is part of MIT/GNU Scheme.
- MIT/GNU Scheme is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or (at
- your option) any later version.
- MIT/GNU Scheme is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with MIT/GNU Scheme; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
- USA.
- |#
- ;;; -*- Scheme -*-
- (declare (usual-integrations))
- ;; $Header: expr.scm,v 1.13 90/09/22 16:37:09 GMT jinx Exp $
- #|
- *** To do: ***
- - Cselim is done on expressions and an optional list of special
- operators with reordering properties be provided. The notion
- of a variable being an operator is not inherent in the expression,
- but only part of constant-folding and cse-ing.
- - Improve cselim to handle some (or all) of the cases that are
- specified there.
- - Improve the reordering capabilities of cse so that if the operators
- are not associative, it won't do the wrong thing, but will still
- assume commutativity, for example.
- - Implement constant folder.
- Takes a list of bindings of free variables and procedures to use.
- - Use tables in bind to merge global variables, etc.
- Perhaps even collect the global environment in expressions rather
- than a list of global variables. Or collect with names.
- We seem to be continually recomputing assq lists only to throw them
- out again at the end.
- - Expression equality should treat operators differently, since abelian
- ones allow other orderings. This is painful, but should be done.
- - To fix in expression/bind:
- Binding a free variable to a lambda expression should beta-reduce
- any combinations where the free variable is the operator.
- - To fix in expression/combine:
- If operator is lambda expression, it should beta-reduce.
- |#
- ;;;; Common text utility.
- (define* (text/cselim text #:optional operators)
- ;; (expression->text (expression/cselim (text->expression text)))
- ;; Like ^ but avoids copying.
- (let ((lam (lam/make false)))
- (fluid-let ((*warn-body?* *allow-warnings?*)
- (*global-lam* lam)
- (*global-env* (table+/make))
- (*global-vars* '())
- (*constants* '()))
- (expression->graph text)
- (collect-input-set! (lam/node *global-lam*))
- (fluid-let ((*operators*
- (process-operators
- (if (default-object? operators)
- *standard-operators*
- operators))))
- (grow-subexpressions! (lam/node *global-lam*)))
- (if *recompute-input-sets?*
- (collect-input-set! (lam/node *global-lam*)))
- (sort-subexpressions! (lam/node *global-lam*))
- (if *alpha-rename-lazily?*
- (alpha-rename! (lam/node *global-lam*)))
- (graph->expression (lam/node *global-lam*)))))
- ;;;; Top level
- ;;; Coercions and other operations.
- (define (text->expression text)
- (let ((lam (lam/make false)))
- (fluid-let ((*warn-body?* *allow-warnings?*)
- (*global-lam* lam)
- (*global-env* (table+/make))
- (*global-vars* '())
- (*constants* '()))
- (expression->graph text)
- (collect-input-set! (lam/node *global-lam*))
- (collect-expression))))
- (define (expression->text expression)
- (with-copied-expression expression
- (lambda ()
- (if *recompute-input-sets?*
- (collect-input-set! (lam/node *global-lam*)))
- (sort-subexpressions! (lam/node *global-lam*))
- (if *alpha-rename-lazily?*
- (alpha-rename! (lam/node *global-lam*)))
- (graph->expression (lam/node *global-lam*)))))
- (define (expression/pp expression)
- (pp (expression->text expression)
- (current-output-port)
- true))
- (define (expression/copy expression)
- (fluid-let ((*associations* (table+/make)))
- (%expression/copy expression)))
- (define (expression/equal? expression1 expression2)
- (fluid-let ((*associations* (table+/make))
- (*reverse-associations* (table+/make)))
- (%expression/equal? expression1 expression2)))
- ;;; Higher level operations
- (define* (expression/cselim expression #:optional operators)
- (with-copied-expression expression
- (lambda ()
- (fluid-let ((*operators*
- (process-operators
- (if (default-object? operators)
- *standard-operators*
- operators))))
- (grow-subexpressions! (lam/node *global-lam*))
- (collect-expression)))))
- ;; These just need to check the global variables.
- (define (expression/free? expression name)
- (there-exists? (expression/variables expression)
- (lambda (node)
- (eq? name (var-node/name node)))))
- (define (expression/free-variables expression)
- (%map-1 var-node/name
- (expression/variables expression)))
- ;;;; Top level operations (continued)
- (define* (lambda-expression->procedure expression #:optional environment)
- (eval (expression->text expression)
- (if (default-object? environment)
- (nearest-repl/environment)
- environment)))
- (define (expression/rename expression renames)
- ;; Renames is a list of lists each containing an old name and a new name.
- ;; This is like expression/bind where the values are simple variable
- ;; nodes, but cheaper.
- (with-no-conflicting-variables
- expression
- (lambda ()
- (for-each
- (lambda (global-var)
- (let ((place (assq (var-node/name node) renames)))
- (if place
- (set-var-node/name! global-var (cadr place)))))
- *global-vars*))))
- (define (expression/bind expression bindings)
- #| ;
- ;; bindings is a list of lists each containing a name and a
- ;; value (another expression). Essentially equivalent to
- (text->expression
- `(LET (,@(%map-1 (lambda (binding)
- (list (car binding)
- (expression->text (cadr binding))))
- bindings))
- ,(expression->text expression)))
- |#
- #| ;
- ;; Eliminate useless bindings.
- (let ((bindings
- (let ((free-vars (expression/free-variables expression)))
- (list-transform-positive
- bindings
- (lambda (binding)
- (memq (car binding) free-vars))))))
- (if (null? bindings)
- expression
- (fluid-let ((*associations* (table+/make)))
- (let ((expr* (%expression/bind expression bindings)))
- (collect-input-set! (expression/node expr*))
- expr*))))
- |#
- ;; For now, until lambda expressions are processed correctly.
- ;; The second text->expression, etc. is to handle the case
- ;; where the LET binds lambdas.
- ;; *** This is a kludge! ***
- (text->expression
- (expression->text
- (text->expression
- `(LET (,@(%map-1 (lambda (binding)
- (list (car binding)
- (expression->text (cadr binding))))
- bindings))
- ,(expression->text expression))))))
- ;;;; Top level operations (continued)
- (define (expression/capture expression parameter-names)
- #|
- ;; This binds parameter-names. If any are free in expression,
- ;; they are removed from the free list. Essentially equivalent to
- (text->expression
- `(LAMBDA ,parameter-names
- ,(expression->text expression)))
- |#
- (with-copied-expression
- expression
- (lambda ()
- (let* ((global-lam* (lam/make false))
- (params
- (let ((names&nodes
- (%map-1 (lambda (node)
- (set-var-node/lam! node global-lam*)
- (cons (var-node/name node)
- node))
- *global-vars*)))
- (%map-1
- (lambda (name)
- (or (assq name names&nodes)
- (cons name
- (let ((node
- (node/make 'INPUT 'VARIABLE
- (var/make name global-lam*))))
- (set-node/input-set! node (list node))
- node))))
- parameter-names))))
- (let ((lam *global-lam*)
- (node (lam/node *global-lam*))
- (params (%map-1 cdr params)))
- (let ((node* (node/make 'REDUCIBLE 'LAMBDA global-lam*
- (list node)))
- (global-vars*
- (eq-set/difference *global-vars* params)))
- (set-node/parents! node (list node*))
- (set-node/input-set! node global-vars*)
- (set-lam/params! lam params)
- (set-lam/body! global-lam* node)
- (set-lam/node! global-lam* node*)
- (for-each (lambda (param)
- (set-var-node/lam! param lam))
- params)
- (expression/make true *constants*
- global-vars* global-lam*)))))))
- (define (expression/combine oprtrexp operandexps)
- ;; *** Handle combining a lambda expression! ***
- #|
- ;; Essentially
- (text->expression
- (cons (expression->text oprtrexp)
- (%map-1 expression->text operandexps)))
- |#
- #|
- (fluid-let ((*associations* (table+/make)))
- (let ((expr* (%unify-1 (cons oprtrexp operandexps))))
- (%unify-2 expr*
- (node/make 'REDUCIBLE 'COMBINATION
- false
- (cons (expression/body oprtrexp)
- (%map-1 expression/body operandexps))))
- expr*))
- |#
- ;; For now, until lambda expressions are handled
- (text->expression
- (cons (expression->text oprtrexp)
- (%map-1 expression->text operandexps)))
- )
- ;;;; Top level operations (continued)
- ;; This assumes that no node is a child^n of itself.
- ;; letrec will make this fail!
- ;; *** If we write something like Y, will it fail? ***
- (define (expression/walk expression recvr)
- (let ((context (context/make))
- (expr (expression/copy expression)))
- (if (not (expression/lazy-rename? expr))
- (alpha-rename! (expression/node expr)))
- (recvr
- context
- (expression/body expr)
- (lambda (node node-processor)
- (let walk-node ((node node))
- (let* ((table (context/result-cache context))
- (result (table+/association table node)))
- (cond ((not result)
- (table+/associate! table node 'WALKING)
- (let ((result* (node-processor node walk-node)))
- (if (not (eq? (table+/association table node) 'WALKING))
- (error "expression/process: Multiple results" node)
- (begin
- (table+/associate! table node (list result*))
- result*))))
- ((eq? result 'WALKING)
- (error "expression/process: Circularity found" node))
- (else
- (car result)))))))))
- ;;;; Top level: utilities and state variables.
- (define *allow-warnings?* true)
- ;; If the following two are set to true, the program will rename the
- ;; least number of variables to avoid conflicts. Any other
- ;; combination will be faster, but will rename more variables.
- (define *recompute-input-sets?* true)
- (define *alpha-rename-lazily?* true)
- (define *standard-operators*
- `((+ ABELIAN-GROUP 0 -)
- (* ABELIAN-GROUP 1 /)
- (- ABELIAN-GROUP-INVERSE 0 +)
- (/ ABELIAN-GROUP-INVERSE 1 *)))
- (define *warn-body?*)
- (define *operators*)
- (define *global-lam*)
- (define *global-env*)
- (define *global-vars*)
- (define *constants*)
- (define *associations*)
- (define *reverse-associations*)
- (define-integrable (collect-expression)
- (expression/make *alpha-rename-lazily?*
- *constants*
- *global-vars*
- *global-lam*))
- (define (with-expression expression thunk)
- (fluid-let ((*alpha-rename-lazily?* (expression/lazy-rename? expression))
- (*constants* (expression/constants expression))
- (*global-vars* (expression/variables expression))
- (*global-lam* (expression/graph expression)))
- (thunk)))
- (define (with-copied-expression expression thunk)
- (with-expression (expression/copy expression)
- thunk))
- ;; This forces to lazy-rename? since otherwise
- ;; things would have to be renamed now.
- (define (with-no-conflicting-variables expression recvr)
- (with-copied-expression
- (if (expression/lazy-rename? expression)
- expression
- (expression/make true
- (expression/constants expression)
- (expression/variables expression)
- (expression/graph expression)))
- recvr))
- ;;;; Data structures
- (define-structure (j-expression
- (conc-name expression/)
- (print-procedure
- (lambda (state node)
- (structure/unparse
- state node
- expression-unparse-fields
- false)))
- (constructor expression/make))
- (lazy-rename? false read-only true)
- (constants '() read-only true)
- (variables '() read-only true)
- (graph false read-only true))
- (define expression-unparse-fields
- `("expression" ("lazy-rename?" ,expression/lazy-rename?)
- ("graph" ,expression/graph)))
- (define-integrable (expression/body expr)
- (lam/body (expression/graph expr)))
- (define-integrable (expression/node expr)
- (lam/node (expression/graph expr)))
- (define-structure (context
- (conc-name context/)
- (print-procedure
- (lambda (state node)
- (structure/unparse
- state node
- context-unparser-fields
- false)))
- (constructor context/make ()))
- (constants (table+/make) read-only true)
- (free-vars (table+/make) read-only true)
- (bound-vars (table+/make) read-only true)
- (result-cache (table+/make) read-only true))
- (define context-unparser-fields
- `("context"
- #|
- ("constants" ,context/constants)
- ("free-vars" ,context/free-vars)
- ("bound-vars" ,context/bound-vars)
- ("result-cache" ,context/result-cache)
- |#
- ))
- ;;;; Data structures (continued)
- (define-structure (node (conc-name node/)
- (print-procedure
- (lambda (state node)
- (structure/unparse
- state node
- node-unparse-fields
- false)))
- (constructor
- node/make
- (type1 type2 extra #:optional children)))
- (type1 false read-only true)
- (type2 false read-only true)
- ;; This field is conceptually never changed, but copy-node needs it to
- ;; be mutable to avoid infinite recursion.
- (extra false read-only false)
- (children '() read-only false)
- (parents '() read-only false)
- (input-set '() read-only false)
- (generation 0 read-only false)
- (name false read-only false)
- ;; Used locally to avoid processing twice.
- (mark false read-only false))
- (define node-unparse-fields
- `("node" ("type1" ,node/type1)
- ("type2" ,node/type2)
- ("extra" ,node/extra)
- #|
- ("children" ,node/children)
- ("parents" ,node/parents)
- ("input-set" ,node/input-set)
- |#
- ))
- (define-integrable (node/type node)
- (node/type2 node))
- (define-structure (var (conc-name var/)
- (print-procedure
- (lambda (state var)
- (structure/unparse
- state var
- var-unparse-fields
- false)))
- (constructor var/make (name lam)))
- (name false read-only false)
- (lam false read-only false))
- (define var-unparse-fields
- `("var" ("name" ,var/name)
- ("lam" ,var/lam)))
- (define-integrable (var-node/name var)
- (var/name (node/extra var)))
- (define-integrable (set-var-node/name! var name)
- (set-var/name! (node/extra var) name))
- (define-integrable (var-node/lam var)
- (var/lam (node/extra var)))
- (define-integrable (set-var-node/lam! var lam)
- (set-var/lam! (node/extra var) lam))
- ;;;; Data structures (continued)
- (define-structure (lam (conc-name lam/)
- (print-procedure
- (lambda (state lam)
- (structure/unparse
- state lam
- lam-unparse-fields
- false)))
- (constructor lam/make (parent)))
- (parent false read-only false)
- (params '() read-only false)
- (body false read-only false)
- (node false read-only false)
- (aux false read-only false)
- (text false read-only false))
- (define lam-unparse-fields
- `("lam" ("parent" ,lam/parent)
- ("params" ,lam/params)
- ("body" ,lam/body)
- ("node" ,lam/node)
- ("aux" ,lam/aux)))
- (define-integrable (lam-node/params lam)
- (lam/params (node/extra lam)))
- (define-integrable (lam-node/body lam)
- (lam/body (node/extra lam)))
- (define-integrable (set-lam-node/body! lam body)
- (set-lam/body! (node/extra lam) body))
- (define-integrable (lam-node/aux lam)
- (lam/aux (node/extra lam)))
- (define-integrable (global-lam/make)
- (lam/make false))
- (define-integrable (global-lam? lam)
- (false? (lam/parent lam)))
- (define-integrable (constant-node/value lit)
- (node/extra lit))
- ;;;; Input processor
- (define (expression->graph expression)
- (lambda-body->graph *global-lam* '() '() '() expression))
- (define (->graph expression environment olam)
- (cond ((pair? expression)
- (case (car expression)
- ((LET*)
- (->graph (canonicalize-let* expression)
- environment
- olam))
- ((LET)
- (let->graph expression environment olam))
- ((LAMBDA)
- (lambda->graph expression environment olam))
- (else
- (if (lambda-combination? expression)
- (->graph (canonicalize-lambda-combination expression)
- environment
- olam)
- (combination->graph expression environment olam)))))
- ((variable? expression)
- (var->graph expression environment olam))
- (else
- (constant->graph expression environment olam))))
- ;;; Special handlers
- (define (constant->graph expression environment olam)
- environment olam ; ignored
- (let ((place (assv expression *constants*)))
- (if place
- (cdr place)
- (let ((new (node/make 'INPUT 'CONSTANT expression)))
- (set! *constants*
- (cons (cons expression new)
- *constants*))
- new))))
- ;;;; Input processor: special handlers (continued)
- (define (var->graph name environment olam)
- olam ; ignored
- (cond ((j-lookup environment name))
- ((table+/association *global-env* name))
- (else
- (add-global-variable! name
- (node/make 'INPUT 'VARIABLE
- (var/make name *global-lam*))))))
- (define (add-global-variable! name node)
- (table+/associate! *global-env* name node)
- (set! *global-vars* (cons node *global-vars*))
- node)
- (define (let->graph expression environment olam)
- (destructure-let
- expression
- (lambda (names values body)
- (->graph body
- (grow-environment
- environment
- names
- (%map-2 (lambda (name value)
- (let ((node (->graph value environment olam)))
- ;; Note that this may be clobbering a previous name,
- ;; since the node may come from another let, etc.
- ;; The outermost let wins!
- (if (not (eq? (node/type1 node) 'INPUT))
- (set-node/name! node name))
- node))
- names values))
- olam))))
- (define (lambda-body->graph lam env names nodes body)
- (let* ((body (->graph body
- (grow-environment env names nodes)
- lam))
- (node (node/make 'REDUCIBLE 'LAMBDA lam (list body))))
- (set-node/parents! body (cons node (node/parents node)))
- (set-lam/params! lam nodes)
- (set-lam/body! lam body)
- (set-lam/node! lam node)
- node))
- (define (lambda->graph expression environment olam)
- (destructure-lambda
- expression
- (lambda (names body)
- (let* ((lam (lam/make olam))
- (nodes
- (%map-1
- (lambda (name)
- ;; If *alpha-rename-lazily?* is false, this
- ;; alpha-renames eagerly.
- ;; Important kludge: Free variables not yet seen can't
- ;; present a conflict, thus it is fine to examine the
- ;; current snapshot of the global environment.
- (let ((new-name
- (if (and (not *alpha-rename-lazily?*)
- (or (j-lookup environment name)
- (table+/association *global-env* name)))
- (generate-new-name)
- name)))
- (node/make 'INPUT 'VARIABLE (var/make new-name lam))))
- names)))
- (lambda-body->graph lam environment names nodes body)))))
- ;;;; Input processor: utilities (continued)
- (define (combination->graph elements environment olam)
- (let ((operator (->graph (car elements) environment olam))
- (operands (%map-1 (lambda (child)
- (->graph child environment olam))
- (cdr elements))))
- ;; *** Handle this case specially ***
- ;; (eq? (node/type operator) 'LAMBDA)
- ;; For the time being it does nothing.
- (let* ((children (cons operator operands))
- (new-node (node/make 'REDUCIBLE 'COMBINATION false children)))
- (for-each (lambda (child)
- (set-node/parents!
- child
- (cons new-node (node/parents child))))
- children)
- (set-node/extra! new-node false)
- new-node)))
- ;;; Environment utilities
- (define-integrable (j-lookup environment var)
- (let ((place (assq var environment)))
- (and place
- (cdr place))))
- (define-integrable (grow-environment environment names values)
- (map* environment
- (lambda (name value)
- (cons name value))
- names
- values))
- ;;; operators
- (define-integrable (j-operator? node)
- (assq node *operators*))
- (define-integrable (can-reorder? node)
- (let ((place (assq node *operators*)))
- (and place
- (eq? 'ABELIAN-GROUP (cadr (cdr place))))))
- (define (process-operators operators)
- (let ((associations
- (%map-1 (lambda (var)
- (cons (var-node/name var)
- var))
- *global-vars*)))
- (delq false
- (%map-1 (lambda (operator)
- (let ((place (assq (car operator) associations)))
- (if place
- (cons (cdr place) operator)
- false)))
- operators))))
- ;;;; Input processor: syntactic utilities (continued)
- (define-integrable variable? symbol?)
- (define-integrable constant? number?)
- (define-integrable (generate-new-name)
- (new-uninterned-symbol "V-"))
- (define-integrable (generate-rename old)
- (new-uninterned-symbol
- (string-append (symbol->string old)
- "-")))
- (define (lambda-combination? expression)
- (and (pair? (car expression))
- (eq? (caar expression) 'LAMBDA)))
- (define (canonicalize-lambda-combination expression)
- (destructure-lambda
- (car expression)
- (lambda (params body)
- (let ((arguments (cdr expression)))
- (if (not (= (length arguments) (length params)))
- (error "canonicalize-lambda-combination: Wrong number of arguments"
- expression)
- `(LET (,@(%map-2 list params arguments))
- ,body))))))
- (define (canonicalize-let* expression)
- (let ((body (cddr expression))
- (bindings (cadr expression)))
- (define (process next rest)
- `(LET (,next)
- ,@(if (null? rest)
- body
- `(,(process (car rest) (cdr rest))))))
-
- (if (not (null? bindings))
- (process (car bindings) (cdr bindings))
- (prepare-body body expression "canonicalize-let*"))))
- (define (destructure-lambda expression recvr)
- (recvr (cadr expression)
- (prepare-body (cddr expression) expression "destructure-lambda")))
- (define (destructure-let expression recvr)
- (let ((bindings (cadr expression)))
- (recvr (%map-1 car bindings)
- (%map-1 cadr bindings)
- (prepare-body (cddr expression) expression "destructure-let"))))
- (define (prepare-body body expression name)
- (if (and (not (null? body))
- (null? (cdr body)))
- (car body)
- (begin
- (if *warn-body?*
- (warn (string-append name ": Body is a sequence") expression))
- `(BEGIN ,@body))))
- ;;;; Output processor: pass one, insert LETs to bind subexpressions.
- (define (sort-subexpressions! graph)
- (walk-graph!
- graph
- (lambda (node)
- (if (and (subexpression? node)
- (not (eq? (node/type1 node) 'INPUT)))
- (begin
- ;; (bkpt "sort-subexpressions!")
- (add-aux! node (find-target-lam node)))))))
- ;; A node is a subexpression if more than one node points at it.
- (define-integrable (subexpression? node)
- (let ((parents (node/parents node)))
- (and (pair? parents)
- (pair? (cdr parents)))))
- ;; This prevents migration past the binding point of variables, and
- ;; causes the proper nesting of lets in the output.
- (define (find-target-lam node)
- (map&reduce var-node/lam
- choose-descendant
- *global-lam*
- (node/input-set node)))
- ;; This does not remove the old node elements.
- ;; If we kept a "reference" count, we could do it,
- ;; but it does not hurt, since we are converting a copy
- ;; of the expression to an s-expression.
- ;; The only way it hurts is that we may get unnecessary
- ;; renamings since the conflict may have disappeared when
- ;; the subexpression was bound above the binding point
- ;; for the conflict.
- (define (propagate-input! var)
- (let ((target (lam/node (var-node/lam var))))
- (define (propagate! node)
- (if (and (not (eq? node target))
- (not (memq var (node/input-set node))))
- (begin
- (set-node/input-set!
- node
- (cons var (node/input-set node)))
- (for-each propagate! (node/parents node)))))
- (for-each propagate! (node/parents var))))
- ;;;; Output processor: pass one, LET-bind one subexpression
- (define (add-aux! node lam)
- (with-aux
- lam
- (lambda (lam aux)
- (let ((name (or (and *alpha-rename-lazily?*
- (node/name node))
- (generate-new-name))))
- (let ((var (node/make 'INPUT 'VARIABLE (var/make name aux)))
- (combination (lam/body lam)))
- (for-each
- (lambda (parent)
- (update-children!
- parent
- (subst var node (node/children parent))))
- (node/parents node))
- (set-lam/params! aux (cons var (lam/params aux)))
- (set-node/children!
- combination
- (let ((old-children (node/children combination)))
- (cons* (car old-children)
- node
- (cdr old-children))))
- (set-node/parents! var (node/parents node))
- (set-node/parents! node (list combination))
- (set-node/input-set! var (list var))
- (propagate-input! var))))))
- ;;; Main dispatch for graph->expression
- (define (->expression node)
- (case (node/type node)
- ((VARIABLE)
- ;; This can't be shadowed because of the preemptive renaming done
- ;; in lambda->graph.
- ;; If lambda->graph renames too many things, the capture avoidance
- ;; can be done at the output by doing another pass before the final
- ;; translation. This pass can detect conflicts and alpha rename.
- (var-node/name node))
- ((CONSTANT)
- (constant-node/value node))
- ((LAMBDA)
- `(lambda ,(%map-1 var-node/name (lam-node/params node))
- ,(lambda-body->expression node)))
- ((COMBINATION)
- (%map-1 ->expression (node/children node)))
- (else
- (error "->expression: Unknown node type" node))))
- ;;;; Output processor: pass one (continued)
- (define (with-aux lam recvr)
- (if (lam/aux lam)
- (recvr lam (lam/aux lam))
- (let ((old-node (lam/node lam))
- (old-body (lam/body lam))
- (new-lam (lam/make (lam/parent lam))))
- (let* ((new-body (node/make 'REDUCIBLE 'COMBINATION false
- (list old-node)))
- (new-node (node/make 'REDUCIBLE 'LAMBDA new-lam
- (list new-body))))
- (set-lam/aux! new-lam lam)
- (set-lam/parent! lam new-lam)
- (set-lam/params! new-lam (lam/params lam))
- (set-lam/params! lam '())
- (set-lam/body! new-lam new-body)
- (set-lam/node! new-lam new-node)
- (for-each
- (lambda (parent)
- (update-children!
- parent
- (subst new-node old-node (node/children parent))))
- (node/parents old-node))
- (set-node/parents! new-node (node/parents old-node))
- (set-node/parents! old-node (list new-body))
- (set-node/parents! new-body (list new-node))
- (set-node/input-set! new-node (node/input-set old-node))
- (set-node/input-set! old-node (node/input-set old-body))
- (set-node/input-set! new-body (node/input-set old-body))
- (let ((to-modify
- ;; This cannot use global-lam? since we are
- ;; editing the structure, and the parent
- ;; is in fact changing.
- (if (eq? lam *global-lam*)
- (begin
- (set! *global-lam* new-lam)
- *global-vars*)
- (lam/params new-lam))))
- (for-each (lambda (var-node)
- (set-var-node/lam! var-node new-lam))
- to-modify))
- (if (and (lam/parent new-lam)
- (eq? lam (lam/aux (lam/parent new-lam))))
- (set-lam/aux! (lam/parent new-lam) new-lam))
- (recvr new-lam lam)))))
- ;;;; Output processor: pass two, create the output
- (define (graph->expression graph)
- (if (not (eq? (node/type graph) 'LAMBDA))
- (error "graph->expression: Not a lambda" graph))
- (lambda-body->expression graph))
- (define (lambda-body->expression node)
- (define (collect node recvr)
- (let* ((lam (node/extra node))
- (body (lam/body lam)))
- (if (not (lam/aux lam))
- (recvr (->expression body)
- '())
- (collect
- (lam/node (lam/aux lam))
- (lambda (expr bindings)
- (recvr expr
- (cons
- (%map-2 (lambda (node value)
- (list (var-node/name node)
- (->expression value)))
- (lam/params (lam/aux lam))
- (cdr (node/children body)))
- bindings)))))))
- (collect node
- (lambda (body bindings)
- (define (finish bindings body)
- (cond ((null? bindings)
- body)
- ((null? (cdr bindings))
- `(LET ,bindings ,body))
- (else
- `(LET* ,bindings ,body))))
- (define (collect-lets bindings collected)
- (cond ((null? bindings)
- (finish (reverse collected) body))
- ((null? (cdar bindings))
- (collect-lets (cdr bindings)
- (cons (caar bindings)
- collected)))
- (else
- (finish (reverse collected)
- `(LET ,(car bindings)
- ,(collect-lets (cdr bindings) '()))))))
- (collect-lets bindings '()))))
- ;;;; Common utilities
- ;;; Free variable collection
- (define (collect-input-set! graph)
- (walk-graph!
- graph
- (lambda (node)
- (set-node/input-set!
- node
- (case (node/type node)
- ((VARIABLE)
- (list node))
- ((LAMBDA)
- (let ((lam (node/extra node)))
- (list-transform-negative
- (node/input-set (lam/body lam))
- (lambda (var-node)
- (eq? (var-node/lam var-node) lam)))))
- (else
- (map&reduce node/input-set
- eq-set/union '()
- (node/children node))))))))
- (define (alpha-rename! graph)
- (walk-graph!
- graph
- (lambda (node)
- (if (eq? (node/type node) 'LAMBDA)
- (let* ((lam (node/extra node))
- (free-vars (node/input-set node)))
- (if (not (null? free-vars))
- (for-each
- (lambda (param)
- (let* ((var (node/extra param))
- (name (var/name var)))
- (if (there-exists? free-vars
- (lambda (free-var)
- (eq? name (var-node/name free-var))))
- (begin
- ;; (bkpt "alpha-rename!")
- (set-var/name! var (generate-rename name))))))
- (lam/params lam))))))))
- ;;;; Common subexpression manipulation
- (define (grow-subexpressions! graph)
- (define (try-all subexps next-pass)
- (cond ((not (null? subexps))
- (try-all (cdr subexps)
- (possibly-grow-subexpression! (car subexps)
- next-pass)))
- ((not (null? next-pass))
- (try-all next-pass '()))
- (else
- unspecific)))
- (try-all (graph-accumulate
- graph
- (lambda (node rest)
- (if (subexpression? node)
- (cons node rest)
- rest))
- '())
- '()))
- (define (possibly-grow-subexpression! node acc)
- (let ((all (node/parents node)))
- (if (null? all)
- acc
- (let loop ((next (car all))
- (left (cdr all))
- (acc acc))
- (if (null? left)
- acc
- (loop (car left)
- (cdr left)
- (if (or (null? (node/children next)) ; deleted node
- (operator¬-only-operand? node next))
- acc
- (try-pairwise next left acc))))))))
- (define-integrable (operator¬-only-operand? node parent)
- (and (eq? node (combination-operator parent))
- #|
- ;; The code below is an open coding of this, for speed.
- (there-exists? (combination-operands parent)
- (lambda (node*)
- (not (eq? node node*))))
- |#
- (let loop ((rands (combination-operands parent)))
- (and (not (null? rands))
- (or (not (eq? node (car rands)))
- (loop (cdr rands)))))))
- (define (same-operands? l1 l2)
- (if (null? l1)
- (null? l2)
- (and (not (null? l2))
- (eq? (car l1) (car l2))
- (same-operands? (cdr l1) (cdr l2)))))
- ;;;; Common subexpression detector
- ;;; *** Improvements: lambda expressions currently not considered. ***
- ;;; It can be done by using the isomorphism tester that appears elsewhere,
- ;;; triggered if the list of free variables (input set) is the same,
- ;;; and the number of parameters is the same.
- (define (try-pairwise one others acc)
- (let loop ((others others)
- (acc acc))
- (if (or (null? others) (null? (node/parents one)))
- acc
- (loop (cdr others)
- (let ((result (try-pair one (car others))))
- (if result
- (multi-set/union result acc)
- acc))))))
- (define (try-pair one two)
- ;; *** Is the control structure correct? ***
- ;; It seems that multiple nodes should be returned for the next pass!
- (if (eq? one two)
- ;; Repeated children
- (and (can-reorder? (combination-operator one))
- (extract-repetitions! one))
- (and (not (null? (node/parents two)))
- (eq? (node/type one) (node/type two))
- (if (and (eq? 'COMBINATION (node/type one))
- (eq? (combination-operator one)
- (combination-operator two))
- (can-reorder? (combination-operator one)))
- (let ((set1 (combination-operands one))
- (set2 (combination-operands two)))
- (let ((common (multi-set/intersection set1 set2)))
- (cond ((null? common)
- (and (null? set1) (null? set2)
- (replace! two one)))
- ((null? (cdr common))
- (and (null? (cdr set1)) (null? (cdr set2))
- (replace! two one)))
- (else
- (let ((rem1 (multi-set/difference set1 common))
- (rem2 (multi-set/difference set2 common)))
- (cond ((null? rem1)
- (if (null? rem2)
- (replace! two one)
- (make-child! one two)))
- ((null? rem2)
- (make-child! two one))
- (else
- (let ((node
- (node/make
- 'REDUCIBLE
- 'COMBINATION
- false
- (cons (combination-operator one)
- common))))
- (set-node/input-set!
- node
- (map&reduce node/input-set
- eq-set/union
- '()
- common))
- (make-child! node one)
- (make-child! node two)))))))))
- (and (same-operands? (node/children one)
- (node/children two))
- (or (not (eq? (node/type one) 'LAMBDA))
- (= (length (lam-node/params one))
- (length (lam-node/params two))))
- (replace! two one))))))
- ;;;; Common subexpression eliminator
- (define (extract-repetitions! node)
- (let loop ((operands (reverse (combination-operands node)))
- (reptd '())
- (left '()))
- (cond ((null? operands)
- (and reptd
- (not (null? (cdr reptd)))
- (let ((new-node (node/make 'REDUCIBLE
- 'COMBINATION
- false
- (cons (combination-operator node)
- reptd))))
- (for-each
- (lambda (reptd)
- (set-node/parents!
- reptd
- (cons new-node
- (delq-once node
- (delq-once node
- (node/parents reptd))))))
- reptd)
- (set-node/parents! new-node (list node node))
- (update-children!
- node
- `(,(combination-operator node)
- ,new-node
- ,new-node
- ,@left))
- reptd)))
- ((memq (car operands) left)
- (loop (cdr operands)
- (cons (car operands) reptd)
- (delq (car operands) left)))
- (else
- (loop (cdr operands)
- reptd
- (cons (car operands) left))))))
- ;;;; Common subexpression eliminator (continued)
- (define (make-child! child parent)
- (for-each
- (lambda (child^2)
- (update-parents!
- child^2
- (cons child (delq-once parent (node/parents child^2)))))
- (node/children child))
- (update-children!
- parent
- (cons (combination-operator parent)
- (cons child
- (multi-set/difference (combination-operands parent)
- (combination-operands child)))))
- (update-parents! child (cons parent (node/parents child)))
- (list child))
- (define (replace! two one)
- ;; Replace two with one
- (for-each (lambda (parent)
- (update-children!
- parent
- (subst one two (node/children parent))))
- (node/parents two))
- (for-each (lambda (child)
- (update-parents!
- child
- (subst one two (node/parents child))))
- (node/children two))
- (update-parents! one
- ;; This could be eq-set/union,
- ;; but update-parents! takes care
- ;; to check each parent only once.
- ;; eq-set/union would still not
- ;; guarantee uniqueness since a node
- ;; can have a parent more than once.
- (multi-set/union (node/parents two)
- (node/parents one)))
- ;; This makes it no longer be a subexpression so that
- ;; the top-level subexpression loop will ignore it
- ;; if already cached.
- (set-node/parents! two '())
- (set-node/children! two '())
- (list one))
- (define (update-parents! node possible-parents)
- (set-node/parents! node '())
- (for-each (lambda (parent)
- (set-node/mark! parent false))
- possible-parents)
- ;; This is done this way because there are multiple
- ;; links that need to be maintained.
- (let loop ((to-test possible-parents))
- (and (not (null? to-test))
- (let ((this (car to-test)))
- (if (node/mark this)
- (loop (cdr to-test))
- (begin
- (set-node/mark! this true)
- (for-each
- (lambda (child)
- (if (eq? child node)
- (set-node/parents!
- node
- (cons this
- (node/parents node)))))
- (node/children this))
- (loop (cdr to-test))))))))
- (define (update-children! parent new-children)
- (set-node/children! parent new-children)
- (if (eq? (node/type parent) 'LAMBDA)
- (begin
- (if (or (null? new-children)
- (not (null? (cdr new-children))))
- (error "IMPLEMENTATION-ERROR: update-children!: Clobbering lambda"
- parent new-children))
- (set-lam-node/body! parent (car new-children)))))
- ;;;; Structure copier
- (define (%expression/copy expression)
- (let ((constants*
- (%map-1 (lambda (constant)
- (cons (car constant)
- (copy-node (cdr constant))))
- (expression/constants expression)))
- (vars* (%map-1 copy-node (expression/variables expression)))
- (global-lam* (copy-lam (expression/graph expression))))
- (for-each (lambda (var*)
- (set-var-node/lam! var* global-lam*))
- vars*)
- (expression/make (expression/lazy-rename? expression)
- constants* vars* global-lam*)))
-
- (define-integrable (object-copier %copy copy-fields!)
- (lambda (object)
- (or (table+/association *associations* object)
- (let ((new-object (%copy object)))
- (table+/associate! *associations* object new-object)
- (copy-fields! new-object)
- new-object))))
- (define (%copy-lam-1 lam)
- (let ((lam* (lam/make (lam/parent lam))))
- (set-lam/params! lam* (lam/params lam))
- (set-lam/body! lam* (lam/body lam))
- (set-lam/node! lam* (lam/node lam))
- (set-lam/aux! lam* (lam/aux lam))
- lam*))
- (define (%copy-lam-2 lam)
- (if (lam/parent lam)
- (set-lam/parent! lam (copy-lam (lam/parent lam))))
- (if (lam/aux lam)
- (set-lam/aux! lam (copy-lam (lam/aux lam))))
- (set-lam/body! lam (copy-node (lam/body lam)))
- (set-lam/node! lam (copy-node (lam/node lam)))
- (set-lam/params! lam
- (%map-1 (lambda (node)
- (let ((node* (copy-node node)))
- (set-var-node/lam! node* lam) ; fix-var
- node*))
- (lam/params lam))))
- (define copy-lam
- (object-copier %copy-lam-1 %copy-lam-2))
- (define copy-var
- ;; The lam field is set by the binding lam, in the line marked fix-var above.
- (object-copier
- (lambda (var)
- (var/make (var/name var) false))
- (lambda (new-var)
- new-var)))
- ;;;; Structure copier (continued)
- (define (%copy-node-1 node)
- (let ((new-node (node/make (node/type1 node)
- (node/type2 node)
- (node/extra node)
- (node/children node))))
- ;; parents set below when relinked by container.
- (set-node/input-set! new-node (node/input-set node))
- (set-node/name! new-node (node/name node))
- new-node))
- (define (%copy-node-2 node)
- (set-node/input-set! node (%map-1 copy-node (node/input-set node)))
- (set-node/children!
- node
- (%map-1 (lambda (node*)
- (let ((node** (copy-node node*)))
- (set-node/parents! node**
- (cons node (node/parents node**)))
- node**))
- (node/children node)))
- (set-node/extra!
- node
- (let ((current (node/extra node)))
- (case (node/type node)
- ((VARIABLE)
- (copy-var current))
- ((LAMBDA)
- (copy-lam current))
- ((CONSTANT COMBINATION)
- current)
- (else
- (error "copy-node: Unknown type" node))))))
- (define copy-node
- (object-copier %copy-node-1 %copy-node-2))
- ;;;; Binding
- (define (%unify-1 expressions)
- (let ((global-lam* (lam/make false))
- (constants*
- (initialize-constants! (%map-1 expression/constants expressions)))
- (vars*
- (initialize-variables! (%map-1 expression/variables expressions))))
- (for-each (lambda (expr)
- (copy-unify! (expression/graph expr) global-lam*))
- expressions)
- (expression/make true constants* vars* global-lam*)))
- (define (%unify-2 expr* body)
- (let* ((global-lam* (expression/graph expr*))
- (node* (node/make 'REDUCIBLE 'LAMBDA global-lam*)))
- (set-lam/node! global-lam* node*)
- (for-each (lambda (const)
- (%copy-node-2 (cdr const)))
- (expression/constants expr*))
- (for-each (lambda (var)
- (%copy-node-2 var)
- (set-var-node/lam! var global-lam*))
- (expression/variables expr*))
- (let ((body* (copy-node body)))
- (set-lam/body! global-lam* body*)
- (set-node/children! node* (list body*))
- (set-node/parents! body* (cons node* (node/parents body*))))))
-
- ;; *** Worry about binding operators ***
- ;; binding to lambdas should become subexpressions where procedure, etc.
- (define (%expression/bind expression bindings)
- (split-list
- (expression/variables expression)
- (let ((to-be-bound (%map-1 car bindings)))
- (lambda (var)
- (memq (var-node/name var) to-be-bound)))
- (lambda (bound unaffected)
- (let* ((expr*
- (%unify-1 (cons (expression/make true
- (expression/constants expression)
- unaffected
- (expression/graph expression))
- (%map-1 cadr bindings))))
- (global-lam* (expression/graph expr*))
- (bindings* (initialize-bindings! bindings global-lam*)))
- ;; Bind!
- (for-each
- (lambda (bound)
- (let* ((name (var-node/name bound))
- (node (cdr (assq name bindings*))))
- (set-node/name! node name)
- (copy-unify! bound node)))
- bound)
- (%unify-2 expr* (lam/body (expression/graph expression)))
- (for-each (lambda (binding)
- (%copy-node-2 (cdr binding)))
- bindings*)
- expr*))))
- ;;;; Binding (continued)
- (define (initialize-constants! consts)
- (reduce copy-unify-associations!
- (%map-1 initialize-association! (car consts))
- (cdr consts)))
- (define (initialize-variables! vars)
- (%map-1 cdr
- (map&reduce (lambda (vars)
- (%map-1 (lambda (var)
- (cons (var-node/name var)
- var))
- vars))
- copy-unify-associations!
- (%map-1 (lambda (var)
- (initialize-association!
- (cons (var-node/name var)
- var)))
- (car vars))
- (cdr vars))))
- (define (initialize-bindings! bindings global-lam*)
- (%map-1 (lambda (binding)
- (let ((lam (expression/graph (cadr binding))))
- (copy-unify! lam global-lam*)
- (initialize-association!
- (cons (car binding)
- (lam/body lam)))))
- bindings))
- (define (copy-unify! object object*)
- (let ((object** (table+/association *associations* object)))
- (cond ((not object**)
- (table+/associate! *associations* object object*))
- ((not (eq? object* object**))
- (error "copy-unify!: Already copy-unified"
- object object* object**)))))
- (define (initialize-association! asspair)
- (cons (car asspair)
- (let ((node (cdr asspair)))
- (or (table+/association *associations* node)
- (let ((node* (%copy-node-1 node)))
- (table+/associate! *associations* node node*)
- node*)))))
- (define (copy-unify-associations! asspairs asspairs*)
- (cond ((null? asspairs)
- asspairs*)
- ((assv (caar asspairs) asspairs*)
- =>
- (lambda (asspair*)
- (copy-unify! (cdar asspairs) (cdr asspair*))
- (copy-unify-associations! (cdr asspairs) asspairs*)))
- (else
- (copy-unify-associations!
- (cdr asspairs)
- (cons (initialize-association! (car asspairs))
- asspairs*)))))
- ;;;; Isomorphism tester
- ;; This does not check the variables or constants lists.
- ;; If they are equal, all of them will be met eventually.
- ;; - Free variables should be OK as long as expression/bind fixes them.
- ;; - Constants should be OK as long as they are removed if unneeded
- ;; after constant folding. This can be done by checking the parents
- ;; list. Currently there is no constant folding.
- (define (%expression/equal? expression1 expression2)
- (lam/equal? (expression/graph expression1)
- (expression/graph expression2)))
- (define-integrable (object-comparator %comparator)
- (lambda (obj1 obj2)
- (or (eq? obj1 obj2) ; when the objects share structure
- (let ((assoc1 (table+/association *associations* obj1)))
- (if assoc1
- (eq? assoc1 obj2)
- (and (not (table+/association *reverse-associations* obj2))
- (begin
- (table+/associate! *associations* obj1 obj2)
- (table+/associate! *reverse-associations* obj2 obj1)
- (%comparator obj1 obj2))))))))
- (define node/equal?
- (object-comparator
- (lambda (node1 node2)
- (and (eq? (node/type node1) (node/type node2))
- (let ((extra1 (node/extra node1))
- (extra2 (node/extra node2)))
- (case (node/type node1)
- ((VARIABLE)
- (var/equal? extra1 extra2))
- ((CONSTANT)
- (eqv? extra1 extra2))
- ((LAMBDA)
- (lam/equal? extra1 extra2))
- ((COMBINATION)
- true)
- (else
- (error "node/equal?: Unknown type" node1))))
- #|
- ;; These two are not needed since if the rest of the structure
- ;; is the same, these should be the same as well, unless the
- ;; program is broken, and that does not happen (-: :-).
- ;; The parents are impossible to do, since there is no a-priori
- ;; way to match them, and the ordering need not be the same.
- (node-set/equal? (node/parents node1)
- (node/parents node2))
- (node-set/equal? (node/input-set node1)
- (node/input-set node2))
- |#
- (node-list/equal? (node/children node1)
- (node/children node2))))))
- ;;;; Isomorphism tester (continued)
- (define (node-list/equal? list1 list2)
- (let loop ((list1 list1)
- (list2 list2))
- (if (null? list1)
- (null? list2)
- (and (not (null? list2))
- (node/equal? (car list1) (car list2))
- (loop (cdr list1) (cdr list2))))))
- (define lam/equal?
- (object-comparator
- (lambda (lam1 lam2)
- (and (lam?/equal? (lam/parent lam1) (lam/parent lam2))
- (lam?/equal? (lam/aux lam1) (lam/aux lam2))
- (node/equal? (lam/node lam1) (lam/node lam2))
- (node-list/equal? (lam/params lam1) (lam/params lam2))
- (node/equal? (lam/body lam1) (lam/body lam2))))))
- (define (lam?/equal? lam1 lam2)
- (if (and lam1 lam2)
- (lam/equal? lam1 lam2)
- (and (not lam1) (not lam2))))
- (define var/equal?
- (object-comparator
- (lambda (var1 var2)
- ;; The names of globals must match. The names of others
- ;; do not. The only thing that matters is position and nesting.
- ;; Since position and nesting is taken care of by lam/equal?,
- ;; we only need to compare the lams here.
- ;; It is sufficient to check that lam1 is a global-lam, since
- ;; lam/equal? guarantees that they occupy the same place in the
- ;; environment tree.
- (let ((lam1 (var/lam var1))
- (lam2 (var/lam var2)))
- (and (lam/equal? lam1 lam2)
- (or (not (global-lam? lam1))
- (eq? (var/name var1) (var/name var2))))))))
- ;;;; Utilities for expression/process
- (define-integrable (constant-value node)
- (constant-node/value node))
- (define-integrable (variable-name node)
- (var-node/name node))
- (define-integrable (lambda-parameters node)
- (lam-node/params node))
- (define-integrable (lambda-body node)
- (lam-node/body node))
- (define-integrable (combination-operator node)
- (car (node/children node)))
- (define-integrable (combination-operands node)
- (cdr (node/children node)))
- ;;;; Utilities for expression/process (continued)
- (define (build-expression node)
- (let ((expr
- (expression/copy
- (expression/make true
- '()
- '()
- (node/extra (build-lambda '() node))))))
- (relink-lambdas! expr)
- (collect-input-set! (expression/node expr))
- (let ((free-vars (node/input-set (expression/body expr)))
- (lam (expression/graph expr)))
- (for-each (lambda (var)
- (set-var-node/lam! var lam))
- free-vars)
- (expression/make true
- (collect-constants expr)
- free-vars
- (expression/graph expr)))))
- (define (find-variable context node)
- (if (global-lam? (var-node/lam node))
- (intern-free-variable context (var-node/name node))
- (or (table+/association (context/bound-vars context) node)
- (error "find-variable: Not found!" node context))))
- (define (build-lambda variables body)
- ;; The parent field for the lambda will be set when the
- ;; expression is relinked. Similarly for the parent field
- ;; for body.
- (let* ((lam (lam/make false))
- (node (node/make 'REDUCIBLE 'LAMBDA lam (list body))))
- (set-lam/params! lam variables)
- (set-lam/body! lam body)
- (set-lam/node! lam node)
- (for-each (lambda (var)
- (if (var-node/lam var)
- (error "build-lambda: Rebinding variable" var)
- (set-var-node/lam! var lam)))
- variables)
- node))
- (define (bind-variables context variables)
- (%map-1 (lambda (var)
- (let ((table (context/bound-vars context)))
- (if (table+/association table var)
- (error "bind-variables: Already bound" var)
- (let ((var* (build-variable (variable-name var))))
- (table+/associate! table var var*)
- var*))))
- variables))
- (define (build-combination operator operands)
- ;; Parent field for children will be set when the
- ;; expression is relinked.
- (node/make 'REDUCIBLE 'COMBINATION
- false
- (cons operator operands)))
- (define-integrable (make-interner selector maker)
- (lambda (context value)
- (or (table+/association (selector context) value)
- (let ((node (maker value)))
- (table+/associate! (selector context) value node)
- node))))
- ;;;; Utilities for expression/process (continued)
- (define intern-constant
- (make-interner context/constants
- (lambda (constant)
- (node/make 'INPUT 'CONSTANT constant))))
- (define-integrable (build-variable name)
- (node/make 'INPUT 'VARIABLE (var/make name false)))
- (define intern-free-variable
- (make-interner context/free-vars build-variable))
- ;; letrec will make this fail!
- (define (relink-lambdas! expr)
- (define (walk-node node lam)
- (cond ((not (eq? (node/type node) 'LAMBDA))
- (for-each (lambda (child) (walk-node child lam))
- (node/children node)))
- ((lam/parent (node/extra node))
- =>
- (lambda (current-parent)
- (let ((lam* (node/extra node)))
- (if (not (eq? current-parent lam))
- (let ((real-parent
- (find-common-ancestor lam current-parent)))
- (set-lam/parent! lam* real-parent)
- (walk-node (lam/body lam*) lam*))))))
- (else
- (let ((lam* (node/extra node)))
- (set-lam/parent! lam* lam)
- (walk-node (lam/body lam*) lam)))))
- (walk-node (expression/body expr)
- (expression/graph expr)))
- (define (find-common-ancestor lam1 lam2)
- (define (collect-chain lam)
- (cons lam
- (let ((parent (lam/parent lam)))
- (if parent
- (collect-chain parent)
- '()))))
- (let ((chain1 (reverse (collect-chain lam1)))
- (chain2 (reverse (collect-chain lam2))))
- (if (not (eq? (car chain1) (car chain2)))
- (error "find-common-ancestor: No common ancestor" lam1 lam2)
- (let loop ((answer (car chain1))
- (chain1 (cdr chain1))
- (chain2 (cdr chain2)))
- (if (or (null? chain1)
- (null? chain2)
- (not (eq? (car chain1) (car chain2))))
- answer
- (loop (car chain1) (cdr chain1) (cdr chain2)))))))
- (define (collect-constants expr)
- (graph-accumulate
- (expression/node expr)
- (lambda (node rest)
- (if (eq? (node/type node) 'CONSTANT)
- (cons (cons (constant-node/value node) node)
- rest)
- rest))
- '()))
- ;;;; Graph utilities
- (define (walk-graph! graph procedure)
- (if (not (null? (node/parents graph)))
- (error "walk-graph!: Invoked on non-root" graph))
- (let ((new-generation (1+ (node/generation graph))))
- (define (walk-node node)
- (if (not (= (node/generation node) new-generation))
- (begin
- (set-node/generation! node new-generation)
- (for-each walk-node (node/children node))
- (procedure node))))
- (walk-node graph)))
- (define (graph-accumulate graph accumulator null-value)
- (if (not (null? (node/parents graph)))
- (error "graph-accumulate: Invoked on non-root" graph))
- (let ((new-generation (1+ (node/generation graph))))
- (define (walk-node node result)
- (if (= (node/generation node) new-generation)
- result
- (begin
- (set-node/generation! node new-generation)
- (accumulator node
- ;; This does not use reduce because the current
- ;; version ignores the initial value when the
- ;; list is not empty.
- (map&reduce identity-procedure walk-node result
- (node/children node))))))
- (walk-node graph null-value)))
- (define (choose-descendant lam1 lam2)
- (define (try start ancestor)
- (let ((end *global-lam*))
- (let loop ((next start))
- (if (eq? next ancestor)
- start
- (and (not (eq? next end))
- (loop (lam/parent next)))))))
- (or (try lam1 lam2)
- (try lam2 lam1)
- (error "IMPLEMENTATION-ERROR: choose-descendant: cousins"
- lam1 lam2)))
- 'i-am-ready
|