123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419 |
- <!doctype html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <meta name="author" content="Eemeli Blåsten">
- <title>Hermite functions</title>
- <!-- Set viewport to device's resolution and initial zoom level -->
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
- <!-- Favicon: the small icon in browser tabs and history -->
- <link rel="shortcut icon" type="image/x-icon" href="pics/favicon.ico" />
- <!-- CSS style sheet -->
- <link rel="stylesheet" href="CSSJS/lettus.css">
- <!-- Configure MathJax -->
- <script src="CSSJS/lettus_conf_mj.js"></script>
- <!-- Typeset MathJax formulas and number theorems etc. -->
- <script src="CSSJS/lettus_mj.js"></script>
- <!-- Latex macros -->
- \(
- \newcommand{\abs}[1]{{\left\lvert #1 \right\rvert}}
- \newcommand{\norm}[1]{{\left\lVert #1 \right\rVert}}
- \newcommand{\supp}{\operatorname{supp}}
- \newcommand{\C}{\mathbb{C}}
- \newcommand{\R}{\mathbb{R}}
- \newcommand{\Z}{\mathbb{Z}}
- \newcommand{\N}{\mathbb{N}}
- \newcommand{\D}{\mathscr{D}}
- \newcommand{\S}{\mathscr{S}}
- \newcommand{\F}{\mathscr{F}}
- \)
- </head>
- <body class="content">
- <p>Test MJ scaling and font: <i>u$u$i$i$f$f$</i></p>
- <p>Test ümlauts, first in the current font (normal, umlaut), then using
- in mathmode normal, using <code>\ddot</code> and <code>\"</code>:
- <i>
- uü$u\ddot u\"u$,
- aä$a\ddot a\"a$,
- oö$o\ddot o\"o$,
- aå$a\phantom{a}\r{a}$
- </i></p>
- <a href="http://www.gnu.org">GNU project <span class="referenceNbr">[3]</span></a>
- <div class="theorem" id="ttt">
- <span class="theorem"><a class="addTxtForbidden" href="#ttt">Theorem A.</a></span>
- <span>a span</span>
- </div>
- <div class="theorem">
- <span class="theorem">Theorem 0.1.</span>
- <p>a paragraph</p>
- </div>
- <div class="theorem">
- <span class="theorem">Theorem.</span>
- No enclosing tags!<p>a paragraph</p>
- </div>
- <div class="theorem">
- <span class="theorem">Theorem B.</span>
- <span>Enclosed in span.</span><p>a paragraph</p>
- </div>
- <div class="theorem">
- <span class="theorem">Theorem.</span>
- <span></span>
- <p>an empty span before this <p></p>
- </div>
- <div class="theorem">
- <span class="theorem">Theorem 0.2.</span>
- </div>
- <div class="lemma">
- <span class="lemma">Lemma.</span>
- The thm above is completely empty
- </div>
- <div class="corollary">
- <span class="corollary">Corollary.</span>
- <span>span</span>
- </div>
- <div class="proposition">
- <span class="proposition">Proposition 0.3.</span>
- <p>paragraph</p>
- </div>
- <div class="conjecture">
- <span class="conjecture">Conjecture.</span>
- <p>paragraph</p>
- </div>
- <div class="definition">
- <span class="definition">Definition 0.4.</span>
- <p>paragraph</p>
- </div>
- <div class="remark">
- <span class="remark">Remark.</span>
- <p>paragraph</p>
- </div>
- <div class="proof">
- <span class="proof">Proof.</span>
- <p>
- These three sentences are a paragraph. According to <a
- href="#ttt">Theorem A</a> we have it. Or simply by <a href="#ttt">A</a>
- </p>
- </div>
- <h1>Basics of the Hermite functions and transform</h1>
- <footer>
- <small>
- <pre> Copyright (C) 2015-2018 Eemeli Blåsten.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
- A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- </pre>
- </small>
- </footer>
- <div class="motivation">
- <span class="motivation">Motivation.</span>
- <p>
- The reason to have this CRAZY document is just to try all the
- different HTML, CSS and JavaScript features.
- </p>
- </div>
- <p>
- Here is a try for citing an offline reference: <a
- href="#articleTry"><span class="referenceNbr">[1]</span></a>, and with
- something more descriptive than a simple number: Blåsten,
- Meikäläinen<a href="#articleTry"><span class="referenceNr">
- [1]</span></a>. In particular see <a href="#articleTry"><span
- class="referenceNbr"> [1, Chapter II]</span></a>. Note that above
- <q>Blåsten, Meikäläinen</q> is currently not part of the anchor. If it
- was, then it would display like <q>Chapter II</q> above.
- </p>
- <section>
- <h2>Hermite functions</h2>
- <p>
- Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ligula
- lorem, rhoncus vel hendrerit a, varius a turpis. Praesent in mauris
- non ex vehicula vestibulum sit amet in nulla. Morbi elementum justo
- vestibulum commodo elementum. Aenean sed gravida nulla. Fusce
- faucibus, justo sed porta elementum, turpis nunc tempus urna, a
- tincidunt elit magna non lacus. Fusce ut arcu congue, molestie erat
- sed, ultricies elit. Fusce a interdum elit. Etiam pharetra vestibulum
- diam malesuada euismod. Nulla non vestibulum purus. Fusce semper lorem
- enim, sed lobortis ex interdum blandit. Proin a dapibus augue, non
- venenatis magna. Maecenas est diam, laoreet eu porta ut, vulputate nec
- purus.
- </p>
- <p>
- Vestibulum at iaculis risus. Etiam consectetur ornare ligula quis
- tincidunt. Nulla ultricies felis a posuere interdum. Quisque interdum
- neque eu auctor ornare. Curabitur commodo, mi non tincidunt dignissim,
- ligula lectus ultrices elit, in consectetur ex augue a nibh. Aenean
- ornare enim pulvinar semper suscipit. Mauris facilisis nisl ligula,
- eget tempus nisl egestas eget. Aliquam erat volutpat. Aliquam aliquet
- fermentum tincidunt. Nulla lorem nisl, semper in imperdiet nec,
- gravida quis arcu. Duis euismod interdum odio, eget fermentum felis
- eleifend eu. Integer cursus posuere pulvinar.
- </p>
- <p>
- Ut porta dignissim mi ac rhoncus. Ut in turpis tortor. Quisque vel
- aliquet mi, sed elementum metus. Lorem ipsum dolor sit amet,
- consectetur adipiscing elit. Etiam mauris neque, vestibulum at posuere
- eu, dignissim nec nisl. Nullam ullamcorper ipsum et risus pretium, ac
- cursus mi efficitur. Aenean vel fringilla justo, nec dignissim justo.
- </p>
- <p>
- An unordered list:
- <ul>
- <li>asdf</li>
- <li>faeifs</li>
- <li>fewafwa</li>
- </ul>
- </p>
- <p>
- An ordered list:
- <ol>
- <li>asdf</li>
- <li>faeifs</li>
- <li>fewafwa</li>
- </ol>
- </p>
- <p>
- A description list:
- <dl>
- <dt>aasdaasdadssdf</dt>
- <dd>adaw dad wad wad wdwa daw dwaw dad wa</dd>
- <dt>faeidawdadsfs</dt>
- <dd>lijfes s fesi fhslkjadf wijasd<dd>
- <dt>fewafwadwwda</dt>
- <dd>fdwalidaw lidaw ijalw dwa ldwijald ja</dd>
- <dt>adaliwjd</dt>
- <dt>ijwefoiewf</dt>
- </dl>
- </p>
- <p>
- The following theorem, <a href="#basics">Theorem 1.1</a>, is of utmost
- importance. But don't forget the other stuff in the second <a
- href="example2.html">file<span class="referenceNbr"> [2]</span></a>.
- Namely <a href="example2.html#corolla">AA<span class="referenceNbr">
- [2, #corolla]</span></a> and for example <a
- href="example2.html#eq1">AA<span class="referenceNbr"> [2,
- #eq1]</span></a>, <a href="example2.html#cEquation">AA<span
- class="referenceNbr"> [2, #cEquation]</span></a> and <a
- href="example2.html#thm1">AA<span class="referenceNbr"> [2,
- #thm1]</span></a>. Here is a link pretending to be in this text: <a
- href="#nothere">link</a>.
- </p>
- <div class="theorem" title="Basic identities" id="basics">
- <span class="theorem">
- <a href="#basics">Theorem 1.1 <span class="theoremName">(Basic identities)</span>.</a>
- </span>
- <p>
- Let $\psi_\alpha$, $\alpha\in\N$, be Hermite functions. Then
-
- \[
- \psi_\alpha'(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) -
- \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x)
- \]
-
- and
-
- \[
- x\psi_\alpha(x) = \sqrt{\frac{\alpha}{2}}\psi_{\alpha-1}(x) +
- \sqrt{\frac{\alpha+1}{2}}\psi_{\alpha+1}(x).
- \]
-
- Moreover the Hermite functions are eigenfunctions to the quantum
- mechanical oscillator
-
- \begin{equation}
- \label{eigenFunction}
- (x^2 - \partial_x^2) \psi_\alpha(x) = (2\alpha + 1)\psi_\alpha(x).
- \end{equation}
- </p>
- </div>
- </section>
- <section>
- <h2>Hermite transform</h2>
- <p>
- In this section we will first show that the Hermite functions form an
- orthonormal set in $L^2(\R)$. After that we will show that the set is
- complete and that leads to the Hermite transform.
- </p>
- <div class="lemma" id="orthonormalSequenceLemma">
- <span class="lemma">
- <a href="#orthonormalSequenceLemma">Lemma 2.1.</a>
- </span>
- <p>
- Let $\psi_\alpha:\R\to\R$ be Hermite functions. Then
-
- \[
- \int_{-\infty}^\infty \psi_\alpha(x)\psi_\beta(x) dx =
- \delta_{\alpha\beta}
- \]
-
- i.e. the sequence $(\psi_\alpha)_{\alpha=0}^\infty$ is orthonormal in
- $L^2(\R)$.
- </p>
- </div>
- <div class="proof">
- <span class="proof">Proof.</span>
- <p>
- Note first the identity $(x+\partial_x)(x-\partial_x) =
- (x^2-\partial_x^2) + 1$. Combine it with the fact that $\psi_n$ is
- an eigenfunction for the quantum oscillator \eqref{eigenFunction} to
- get
-
- \[
- (x+\partial_x)(x-\partial_x)\psi_n = 2(n+1)\psi_n
- \]
-
- for any $n\in\N$. Note also that the transpose of $x-\partial_x$ in
- the $L^2$ inner product is $x+\partial_x$.
- </p>
- <p>
- Hence we get
-
- \begin{align*}
- &\int \psi_\alpha \psi_\beta dx = \frac{1}{2\sqrt{\alpha\beta}}
- \int (x-\partial_x)\psi_{\alpha-1}(x+\partial_x)\psi_{\beta-1} dx
- \\ &\qquad = \frac{1}{2\sqrt{\alpha\beta}} \int \psi_{\alpha-1}
- (x+\partial_x)(x-\partial_x)\psi_{\beta-1} \\ &\qquad =
- \sqrt{\frac{\beta}{\alpha}} \int \psi_{\alpha-1}\psi_{\beta-1} dx.
- \end{align*}
- </p>
- <p>
- Using the previous equation we see that
-
- \[
- \int \psi_\alpha \psi_\alpha dx = \int \psi_0^2 dx =
- \pi^{-1/2}\int_{-\infty}^\infty e^{-x^2} dx = 1.
- \]
- </p>
- <p>
- If, on the other hand for example $\alpha\lt\beta$, then
-
- \[
- \int\psi_\alpha\psi_\beta dx = \ldots = c_{\alpha,\beta} \int
- \psi_0\psi_{\beta-\alpha} dx = c'_{\alpha,\beta}
- \int_{-\infty}^\infty \partial_x^{\beta-\alpha} e^{-x^2} dx = 0
- \]
-
- since all the derivatives of Gaussians vanish at infinity.
- </p>
- </div>
- <div class="corollary">
- <span class="corollary">Corollary 2.2.</span>
- <p>
- Let $\mathscr{O}=\{x, \partial_x\}$ be the set of operators containing
- the multiplication by $x$ and differentiation by $x$ operators. Let
- $L^0_\alpha = \{\psi_\alpha\}$ and
-
- \[
- L^{k+1}_\alpha = \{ Sf \mid S\in\mathscr{O}, \, f\in L^k_\alpha \}.
- \]
-
- Then
-
- \[
- \norm{f}_{L^2(\R)} \leq 2^{k/2} \prod_{\ell=1}^k \sqrt{\alpha+\ell}
- = \sqrt{ 2^k \frac{(a+k)!}{a!} }
- \]
-
- for any $f \in L^k_\alpha$.
- </p>
- </div>
- <div class="proof">
- <span class="proof">Proof.</span>
- <p>
- The sequence $(\psi_\alpha)_\alpha$ is orthonormal by <a
- href=#orthonormalSequenceLemma>Lemma 2.1</a>. Hence we have
- $\norm{\psi_\alpha}_2=1$. Assume that the claim is true for
- $L^k_\alpha$ for any $\alpha\in\N$. We will prove it for
- $L^{k+1}_\alpha$. Let that $f\in L^k_\alpha$. Then there are
- operators $S_1,\ldots,S_k \in \mathscr{O}$ such that $f =
- S_1S_2\cdots S_k \psi_\alpha$.
- </p>
- <p>
- Consider the case $S_k = \partial_x$. Let $O\in\mathscr{O}$ and use
- one of the basic identities to get
-
- \begin{align*}
- &\norm{Of}_2 = \norm{OS_1\cdots S_{k-1} \partial_x \psi_\alpha}_2
- \\ &\qquad = \norm{OS_1\cdots S_{k-1} \left(
- \sqrt{\tfrac{\alpha}{2}}\psi_{\alpha-1} -
- \sqrt{\tfrac{\alpha+1}{2}}\psi_{\alpha+1}\right)}_2 \\ &\qquad
- \leq \sqrt{\tfrac{\alpha}{2}} \norm{OS_1\cdots S_{k-1}
- \psi_{\alpha-1}}_2 + \sqrt{\tfrac{\alpha+1}{2}} \norm{OS_1\cdots
- S_{k-1} \psi_{\alpha+1}}_2 \\ &\qquad \leq
- \sqrt{\tfrac{\alpha+1}{2}} 2^{k/2} \left( \prod_{\ell=1}^k
- \sqrt{\alpha-1+\ell} + \prod_{\ell=1}^k \sqrt{\alpha+1+\ell}
- \right) \\ &\qquad \leq 2^{(k-1)/2} \sqrt{\alpha+1} \cdot 2
- \prod_{\ell=1}^k\sqrt{\alpha+1+\ell} \\ &\qquad \leq 2^{(k+1)/2}
- \prod_{\ell=1}^{k+1} \sqrt{\alpha+\ell}
- \end{align*}
-
- since $OS_1\cdots S_{k-1} \psi_{\alpha-1}$ and $OS_1\cdots S_{k-1}
- \psi_{\alpha+1}$ are in $L^k_{\alpha-1}$ and $L^k_{\alpha+1}$,
- respectively. The same kind of deduction works in the case when
- $S_k$ is multiplication by $x$. Hence the claim follows by
- induction.
- </p>
- </div>
- </section>
- <footer id="bibliography">
- <h2>References</h2>
- <h3>Offline sources</h3>
- <ul class="referenceList">
- <li id="articleTry" class="reference">
- <span class="ref-nbr">[1]</span>
- <span class="ref-authors">E. Blåsten</span> and
- <span class="ref-authors">M. Meikäläinen:</span>
- <span class="ref-title">A proof of the Riemann conjecture,</span>
- <span class="ref-journal">Annals of Mathematics,</span>
- <span class="ref-volume">23,</span>
- <span class="ref-issue">2</span>
- <span class="ref-year">(2069),</span>
- <span class="ref-pages">1–503.</span>
- </li>
- </ul>
- <h3>Links</h3>
- <ul class="referenceList">
- <li class="reference">
- <span class="referenceNbr">[2]</span>
- <a href="example2.html" class="addTxtForbidden">example2.html</a>
- </li>
- <li class="reference">
- <span class="referenceNbr">[3]</span>
- <a href="http://www.gnu.org" class="addTxtForbidden">http://www.gnu.org</a>
- </li>
- </ul>
- </footer>
- </body>
|