Airforce.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. import json
  2. import random
  3. import re
  4. import requests
  5. from aiohttp import ClientSession
  6. from typing import List
  7. from ...typing import AsyncResult, Messages
  8. from ...providers.response import ImageResponse, FinishReason, Usage
  9. from ...requests.raise_for_status import raise_for_status
  10. from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
  11. from ... import debug
  12. def split_message(message: str, max_length: int = 1000) -> List[str]:
  13. """Splits the message into parts up to (max_length)."""
  14. chunks = []
  15. while len(message) > max_length:
  16. split_point = message.rfind(' ', 0, max_length)
  17. if split_point == -1:
  18. split_point = max_length
  19. chunks.append(message[:split_point])
  20. message = message[split_point:].strip()
  21. if message:
  22. chunks.append(message)
  23. return chunks
  24. class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
  25. url = "https://api.airforce"
  26. api_endpoint_completions = "https://api.airforce/chat/completions"
  27. api_endpoint_imagine2 = "https://api.airforce/imagine2"
  28. working = False
  29. supports_stream = True
  30. supports_system_message = True
  31. supports_message_history = True
  32. default_model = "llama-3.1-70b-chat"
  33. default_image_model = "flux"
  34. models = []
  35. image_models = []
  36. hidden_models = {"Flux-1.1-Pro"}
  37. additional_models_imagine = ["flux-1.1-pro", "midjourney", "dall-e-3"]
  38. model_aliases = {
  39. # Alias mappings for models
  40. "openchat-3.5": "openchat-3.5-0106",
  41. "deepseek-coder": "deepseek-coder-6.7b-instruct",
  42. "hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
  43. "hermes-2-pro": "hermes-2-pro-mistral-7b",
  44. "openhermes-2.5": "openhermes-2.5-mistral-7b",
  45. "lfm-40b": "lfm-40b-moe",
  46. "german-7b": "discolm-german-7b-v1",
  47. "llama-2-7b": "llama-2-7b-chat-int8",
  48. "llama-3.1-70b": "llama-3.1-70b-chat",
  49. "llama-3.1-8b": "llama-3.1-8b-chat",
  50. "llama-3.1-70b": "llama-3.1-70b-turbo",
  51. "llama-3.1-8b": "llama-3.1-8b-turbo",
  52. "neural-7b": "neural-chat-7b-v3-1",
  53. "zephyr-7b": "zephyr-7b-beta",
  54. "evil": "any-uncensored",
  55. "sdxl": "stable-diffusion-xl-lightning",
  56. "sdxl": "stable-diffusion-xl-base",
  57. "flux-pro": "flux-1.1-pro",
  58. "llama-3.1-8b": "llama-3.1-8b-chat"
  59. }
  60. @classmethod
  61. def get_models(cls):
  62. """Get available models with error handling"""
  63. if not cls.image_models:
  64. try:
  65. response = requests.get(
  66. f"{cls.url}/imagine2/models",
  67. headers={
  68. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
  69. }
  70. )
  71. response.raise_for_status()
  72. cls.image_models = response.json()
  73. if isinstance(cls.image_models, list):
  74. cls.image_models.extend(cls.additional_models_imagine)
  75. else:
  76. cls.image_models = cls.additional_models_imagine.copy()
  77. except Exception as e:
  78. debug.log(f"Error fetching image models: {e}")
  79. cls.image_models = cls.additional_models_imagine.copy()
  80. if not cls.models:
  81. try:
  82. response = requests.get(
  83. f"{cls.url}/models",
  84. headers={
  85. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
  86. }
  87. )
  88. response.raise_for_status()
  89. data = response.json()
  90. if isinstance(data, dict) and 'data' in data:
  91. cls.models = [model['id'] for model in data['data']]
  92. cls.models.extend(cls.image_models)
  93. cls.models = [model for model in cls.models if model not in cls.hidden_models]
  94. else:
  95. cls.models = list(cls.model_aliases.keys())
  96. except Exception as e:
  97. debug.log(f"Error fetching text models: {e}")
  98. cls.models = list(cls.model_aliases.keys())
  99. return cls.models or list(cls.model_aliases.keys())
  100. @classmethod
  101. def get_model(cls, model: str) -> str:
  102. """Get the actual model name from alias"""
  103. return cls.model_aliases.get(model, model or cls.default_model)
  104. @classmethod
  105. def _filter_content(cls, part_response: str) -> str:
  106. """
  107. Filters out unwanted content from the partial response.
  108. """
  109. part_response = re.sub(
  110. r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
  111. '',
  112. part_response
  113. )
  114. part_response = re.sub(
  115. r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
  116. '',
  117. part_response
  118. )
  119. return part_response
  120. @classmethod
  121. def _filter_response(cls, response: str) -> str:
  122. """
  123. Filters the full response to remove system errors and other unwanted text.
  124. """
  125. if "Model not found or too long input. Or any other error (xD)" in response:
  126. raise ValueError(response)
  127. filtered_response = re.sub(r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'", '', response) # any-uncensored
  128. filtered_response = re.sub(r'<\|im_end\|>', '', filtered_response) # remove <|im_end|> token
  129. filtered_response = re.sub(r'</s>', '', filtered_response) # neural-chat-7b-v3-1
  130. filtered_response = re.sub(r'^(Assistant: |AI: |ANSWER: |Output: )', '', filtered_response) # phi-2
  131. filtered_response = cls._filter_content(filtered_response)
  132. return filtered_response
  133. @classmethod
  134. async def generate_image(
  135. cls,
  136. model: str,
  137. prompt: str,
  138. size: str,
  139. seed: int,
  140. proxy: str = None
  141. ) -> AsyncResult:
  142. headers = {
  143. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
  144. "Accept": "image/avif,image/webp,image/png,image/svg+xml,image/*;q=0.8,*/*;q=0.5",
  145. "Accept-Language": "en-US,en;q=0.5",
  146. "Accept-Encoding": "gzip, deflate, br",
  147. "Content-Type": "application/json",
  148. }
  149. params = {"model": model, "prompt": prompt, "size": size, "seed": seed}
  150. async with ClientSession(headers=headers) as session:
  151. async with session.get(cls.api_endpoint_imagine2, params=params, proxy=proxy) as response:
  152. if response.status == 200:
  153. image_url = str(response.url)
  154. yield ImageResponse(images=image_url, alt=prompt)
  155. else:
  156. error_text = await response.text()
  157. raise RuntimeError(f"Image generation failed: {response.status} - {error_text}")
  158. @classmethod
  159. async def generate_text(
  160. cls,
  161. model: str,
  162. messages: Messages,
  163. max_tokens: int,
  164. temperature: float,
  165. top_p: float,
  166. stream: bool,
  167. proxy: str = None
  168. ) -> AsyncResult:
  169. """
  170. Generates text, buffers the response, filters it, and returns the final result.
  171. """
  172. headers = {
  173. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
  174. "Accept": "application/json, text/event-stream",
  175. "Accept-Language": "en-US,en;q=0.5",
  176. "Accept-Encoding": "gzip, deflate, br",
  177. "Content-Type": "application/json",
  178. }
  179. final_messages = []
  180. for message in messages:
  181. message_chunks = split_message(message["content"], max_length=1000)
  182. final_messages.extend([{"role": message["role"], "content": chunk} for chunk in message_chunks])
  183. data = {
  184. "messages": final_messages,
  185. "model": model,
  186. "temperature": temperature,
  187. "top_p": top_p,
  188. "stream": stream,
  189. }
  190. if max_tokens != 512:
  191. data["max_tokens"] = max_tokens
  192. async with ClientSession(headers=headers) as session:
  193. async with session.post(cls.api_endpoint_completions, json=data, proxy=proxy) as response:
  194. await raise_for_status(response)
  195. if stream:
  196. idx = 0
  197. async for line in response.content:
  198. line = line.decode('utf-8').strip()
  199. if line.startswith('data: '):
  200. try:
  201. json_str = line[6:] # Remove 'data: ' prefix
  202. chunk = json.loads(json_str)
  203. if 'choices' in chunk and chunk['choices']:
  204. delta = chunk['choices'][0].get('delta', {})
  205. if 'content' in delta:
  206. chunk = cls._filter_response(delta['content'])
  207. if chunk:
  208. yield chunk
  209. idx += 1
  210. except json.JSONDecodeError:
  211. continue
  212. if idx == 512:
  213. yield FinishReason("length")
  214. else:
  215. # Non-streaming response
  216. result = await response.json()
  217. if "usage" in result:
  218. yield Usage(**result["usage"])
  219. if result["usage"]["completion_tokens"] == 512:
  220. yield FinishReason("length")
  221. if 'choices' in result and result['choices']:
  222. message = result['choices'][0].get('message', {})
  223. content = message.get('content', '')
  224. filtered_response = cls._filter_response(content)
  225. yield filtered_response
  226. @classmethod
  227. async def create_async_generator(
  228. cls,
  229. model: str,
  230. messages: Messages,
  231. prompt: str = None,
  232. proxy: str = None,
  233. max_tokens: int = 512,
  234. temperature: float = 1,
  235. top_p: float = 1,
  236. stream: bool = True,
  237. size: str = "1:1",
  238. seed: int = None,
  239. **kwargs
  240. ) -> AsyncResult:
  241. model = cls.get_model(model)
  242. if model in cls.image_models:
  243. if prompt is None:
  244. prompt = messages[-1]['content']
  245. if seed is None:
  246. seed = random.randint(0, 10000)
  247. async for result in cls.generate_image(model, prompt, size, seed, proxy):
  248. yield result
  249. else:
  250. async for result in cls.generate_text(model, messages, max_tokens, temperature, top_p, stream, proxy):
  251. yield result