123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- import json
- import random
- import re
- import requests
- from aiohttp import ClientSession
- from typing import List
- from ..typing import AsyncResult, Messages
- from ..image import ImageResponse
- from ..providers.response import FinishReason, Usage
- from ..requests.raise_for_status import raise_for_status
- from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
- from .. import debug
-
- def split_message(message: str, max_length: int = 1000) -> List[str]:
- """Splits the message into parts up to (max_length)."""
- chunks = []
- while len(message) > max_length:
- split_point = message.rfind(' ', 0, max_length)
- if split_point == -1:
- split_point = max_length
- chunks.append(message[:split_point])
- message = message[split_point:].strip()
- if message:
- chunks.append(message)
- return chunks
- class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
- url = "https://api.airforce"
- api_endpoint_completions = "https://api.airforce/chat/completions"
- api_endpoint_imagine2 = "https://api.airforce/imagine2"
- working = True
- supports_stream = True
- supports_system_message = True
- supports_message_history = True
- default_model = "llama-3.1-70b-chat"
- default_image_model = "flux"
-
- models = []
- image_models = []
-
- hidden_models = {"Flux-1.1-Pro"}
- additional_models_imagine = ["flux-1.1-pro", "midjourney", "dall-e-3"]
- model_aliases = {
- # Alias mappings for models
- "openchat-3.5": "openchat-3.5-0106",
- "deepseek-coder": "deepseek-coder-6.7b-instruct",
- "hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
- "hermes-2-pro": "hermes-2-pro-mistral-7b",
- "openhermes-2.5": "openhermes-2.5-mistral-7b",
- "lfm-40b": "lfm-40b-moe",
- "german-7b": "discolm-german-7b-v1",
- "llama-2-7b": "llama-2-7b-chat-int8",
- "llama-3.1-70b": "llama-3.1-70b-chat",
- "llama-3.1-8b": "llama-3.1-8b-chat",
- "llama-3.1-70b": "llama-3.1-70b-turbo",
- "llama-3.1-8b": "llama-3.1-8b-turbo",
- "neural-7b": "neural-chat-7b-v3-1",
- "zephyr-7b": "zephyr-7b-beta",
- "evil": "any-uncensored",
- "sdxl": "stable-diffusion-xl-lightning",
- "sdxl": "stable-diffusion-xl-base",
- "flux-pro": "flux-1.1-pro",
- "llama-3.1-8b": "llama-3.1-8b-chat"
- }
- @classmethod
- def get_models(cls):
- """Get available models with error handling"""
- if not cls.image_models:
- try:
- response = requests.get(
- f"{cls.url}/imagine2/models",
- headers={
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
- }
- )
- response.raise_for_status()
- cls.image_models = response.json()
- if isinstance(cls.image_models, list):
- cls.image_models.extend(cls.additional_models_imagine)
- else:
- cls.image_models = cls.additional_models_imagine.copy()
- except Exception as e:
- debug.log(f"Error fetching image models: {e}")
- cls.image_models = cls.additional_models_imagine.copy()
- if not cls.models:
- try:
- response = requests.get(
- f"{cls.url}/models",
- headers={
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
- }
- )
- response.raise_for_status()
- data = response.json()
- if isinstance(data, dict) and 'data' in data:
- cls.models = [model['id'] for model in data['data']]
- cls.models.extend(cls.image_models)
- cls.models = [model for model in cls.models if model not in cls.hidden_models]
- else:
- cls.models = list(cls.model_aliases.keys())
- except Exception as e:
- debug.log(f"Error fetching text models: {e}")
- cls.models = list(cls.model_aliases.keys())
- return cls.models or list(cls.model_aliases.keys())
- @classmethod
- def get_model(cls, model: str) -> str:
- """Get the actual model name from alias"""
- return cls.model_aliases.get(model, model or cls.default_model)
- @classmethod
- def _filter_content(cls, part_response: str) -> str:
- """
- Filters out unwanted content from the partial response.
- """
- part_response = re.sub(
- r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
- '',
- part_response
- )
- part_response = re.sub(
- r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
- '',
- part_response
- )
- return part_response
- @classmethod
- def _filter_response(cls, response: str) -> str:
- """
- Filters the full response to remove system errors and other unwanted text.
- """
- if "Model not found or too long input. Or any other error (xD)" in response:
- raise ValueError(response)
- filtered_response = re.sub(r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'", '', response) # any-uncensored
- filtered_response = re.sub(r'<\|im_end\|>', '', filtered_response) # remove <|im_end|> token
- filtered_response = re.sub(r'</s>', '', filtered_response) # neural-chat-7b-v3-1
- filtered_response = re.sub(r'^(Assistant: |AI: |ANSWER: |Output: )', '', filtered_response) # phi-2
- filtered_response = cls._filter_content(filtered_response)
- return filtered_response
- @classmethod
- async def generate_image(
- cls,
- model: str,
- prompt: str,
- size: str,
- seed: int,
- proxy: str = None
- ) -> AsyncResult:
- headers = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
- "Accept": "image/avif,image/webp,image/png,image/svg+xml,image/*;q=0.8,*/*;q=0.5",
- "Accept-Language": "en-US,en;q=0.5",
- "Accept-Encoding": "gzip, deflate, br",
- "Content-Type": "application/json",
- }
- params = {"model": model, "prompt": prompt, "size": size, "seed": seed}
- async with ClientSession(headers=headers) as session:
- async with session.get(cls.api_endpoint_imagine2, params=params, proxy=proxy) as response:
- if response.status == 200:
- image_url = str(response.url)
- yield ImageResponse(images=image_url, alt=prompt)
- else:
- error_text = await response.text()
- raise RuntimeError(f"Image generation failed: {response.status} - {error_text}")
- @classmethod
- async def generate_text(
- cls,
- model: str,
- messages: Messages,
- max_tokens: int,
- temperature: float,
- top_p: float,
- stream: bool,
- proxy: str = None
- ) -> AsyncResult:
- """
- Generates text, buffers the response, filters it, and returns the final result.
- """
- headers = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
- "Accept": "application/json, text/event-stream",
- "Accept-Language": "en-US,en;q=0.5",
- "Accept-Encoding": "gzip, deflate, br",
- "Content-Type": "application/json",
- }
- final_messages = []
- for message in messages:
- message_chunks = split_message(message["content"], max_length=1000)
- final_messages.extend([{"role": message["role"], "content": chunk} for chunk in message_chunks])
- data = {
- "messages": final_messages,
- "model": model,
- "temperature": temperature,
- "top_p": top_p,
- "stream": stream,
- }
- if max_tokens != 512:
- data["max_tokens"] = max_tokens
- async with ClientSession(headers=headers) as session:
- async with session.post(cls.api_endpoint_completions, json=data, proxy=proxy) as response:
- await raise_for_status(response)
- if stream:
- idx = 0
- async for line in response.content:
- line = line.decode('utf-8').strip()
- if line.startswith('data: '):
- try:
- json_str = line[6:] # Remove 'data: ' prefix
- chunk = json.loads(json_str)
- if 'choices' in chunk and chunk['choices']:
- delta = chunk['choices'][0].get('delta', {})
- if 'content' in delta:
- chunk = cls._filter_response(delta['content'])
- if chunk:
- yield chunk
- idx += 1
- except json.JSONDecodeError:
- continue
- if idx == 512:
- yield FinishReason("length")
- else:
- # Non-streaming response
- result = await response.json()
- if "usage" in result:
- yield Usage(**result["usage"])
- if result["usage"]["completion_tokens"] == 512:
- yield FinishReason("length")
- if 'choices' in result and result['choices']:
- message = result['choices'][0].get('message', {})
- content = message.get('content', '')
- filtered_response = cls._filter_response(content)
- yield filtered_response
- @classmethod
- async def create_async_generator(
- cls,
- model: str,
- messages: Messages,
- prompt: str = None,
- proxy: str = None,
- max_tokens: int = 512,
- temperature: float = 1,
- top_p: float = 1,
- stream: bool = True,
- size: str = "1:1",
- seed: int = None,
- **kwargs
- ) -> AsyncResult:
- model = cls.get_model(model)
- if model in cls.image_models:
- if prompt is None:
- prompt = messages[-1]['content']
- if seed is None:
- seed = random.randint(0, 10000)
- async for result in cls.generate_image(model, prompt, size, seed, proxy):
- yield result
- else:
- async for result in cls.generate_text(model, messages, max_tokens, temperature, top_p, stream, proxy):
- yield result
|