This document details the enhanced G4F File API, allowing users to upload files, download files from web URLs, and process a wider range of file types for integration with language models.
Key Improvements:
Web URL Downloads: Upload a downloads.json
file to your bucket containing a list of URLs. The API will download and process these files. Example: [{"url": "https://example.com/document.pdf"}]
Expanded File Support: Added support for additional plain text file extensions: .txt
, .xml
, .json
, .js
, .har
, .sh
, .py
, .php
, .css
, .yaml
, .sql
, .log
, .csv
, .twig
, .md
. Binary file support remains for .pdf
, .html
, .docx
, .odt
, .epub
, .xlsx
, and .zip
.
Server-Sent Events (SSE): SSE are now used to provide asynchronous updates on file download and processing progress. This improves the user experience, particularly for large files and multiple downloads.
API Endpoints:
Upload: /v1/files/{bucket_id}
(POST)
bucket_id
(Generated by your own. For example a UUID)downloads.json
file containing URLs.bucket_id
, url
, and a list of uploaded/downloaded filenames.Retrieve: /v1/files/{bucket_id}
(GET)
bucket_id
delete_files
: (Optional, boolean, default true
) Delete files after retrieval.refine_chunks_with_spacy
: (Optional, boolean, default false
) Apply spaCy-based refinement.markers. SSE updates are sent if the
Acceptheader includes
text/event-stream`.Example Usage (Python):
import requests
import uuid
import json
def upload_and_process(files_or_urls, bucket_id=None):
if bucket_id is None:
bucket_id = str(uuid.uuid4())
if isinstance(files_or_urls, list): #URLs
files = {'files': ('downloads.json', json.dumps(files_or_urls), 'application/json')}
elif isinstance(files_or_urls, dict): #Files
files = files_or_urls
else:
raise ValueError("files_or_urls must be a list of URLs or a dictionary of files")
upload_response = requests.post(f'http://localhost:1337/v1/files/{bucket_id}', files=files)
if upload_response.status_code == 200:
upload_data = upload_response.json()
print(f"Upload successful. Bucket ID: {upload_data['bucket_id']}")
else:
print(f"Upload failed: {upload_response.status_code} - {upload_response.text}")
response = requests.get(f'http://localhost:1337/v1/files/{bucket_id}', stream=True, headers={'Accept': 'text/event-stream'})
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data:'):
try:
data = json.loads(line[5:]) #remove data: prefix
if "action" in data:
print(f"SSE Event: {data}")
elif "error" in data:
print(f"Error: {data['error']['message']}")
else:
print(f"File data received: {data}") #Assuming it's file content
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
else:
print(f"Unhandled SSE event: {line}")
response.close()
# Example with URLs
urls = [{"url": "https://github.com/xtekky/gpt4free/issues"}]
bucket_id = upload_and_process(urls)
#Example with files
files = {'files': open('document.pdf', 'rb'), 'files': open('data.json', 'rb')}
bucket_id = upload_and_process(files)
Example Usage (JavaScript):
function uuid() {
return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c =>
(c ^ crypto.getRandomValues(new Uint8Array(1))[0] & 15 >> c / 4).toString(16)
);
}
async function upload_files_or_urls(data) {
let bucket_id = uuid(); // Use a random generated key for your bucket
let formData = new FormData();
if (typeof data === "object" && data.constructor === Array) { //URLs
const blob = new Blob([JSON.stringify(data)], { type: 'application/json' });
const file = new File([blob], 'downloads.json', { type: 'application/json' }); // Create File object
formData.append('files', file); // Append as a file
} else { //Files
Array.from(data).forEach(file => {
formData.append('files', file);
});
}
await fetch("/v1/files/" + bucket_id, {
method: 'POST',
body: formData
});
function connectToSSE(url) {
const eventSource = new EventSource(url);
eventSource.onmessage = (event) => {
const data = JSON.parse(event.data);
if (data.error) {
console.error("Error:", data.error.message);
} else if (data.action === "done") {
console.log("Files loaded successfully. Bucket ID:", bucket_id);
// Use bucket_id in your LLM prompt.
const prompt = `Use files from bucket. ${JSON.stringify({"bucket_id": bucket_id})} to answer this: ...your question...`;
// ... Send prompt to your language model ...
} else {
console.log("SSE Event:", data); // Update UI with progress as needed
}
};
eventSource.onerror = (event) => {
console.error("SSE Error:", event);
eventSource.close();
};
}
connectToSSE(`/v1/files/${bucket_id}`); //Retrieve and refine
}
// Example with URLs
const urls = [{"url": "https://github.com/xtekky/gpt4free/issues"}];
upload_files_or_urls(urls)
// Example with files (using a file input element)
const fileInput = document.getElementById('fileInput');
fileInput.addEventListener('change', () => {
upload_files_or_urls(fileInput.files);
});
Integrating with ChatCompletion
:
To incorporate file uploads into your client applications, include the tool_calls
parameter in your chat completion requests, using the bucket_tool
function. The bucket_id
is passed as a JSON object within your prompt.
{
"messages": [
{
"role": "user",
"content": "Answer this question using the files in the specified bucket: ...your question...\n{\"bucket_id\": \"your_actual_bucket_id\"}"
}
],
"tool_calls": [
{
"function": {
"name": "bucket_tool"
},
"type": "function"
}
]
}
Important Considerations:
pip install -U g4f[files]
for Python).