123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- ;;; calc-rules.el --- rules for simplifying algebraic expressions in Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- (defun calc-compile-rule-set (name rules)
- (prog2
- (message "Preparing rule set %s..." name)
- (math-read-plain-expr rules t)
- (message "Preparing rule set %s...done" name)))
- (defun calc-CommuteRules ()
- "CommuteRules"
- (calc-compile-rule-set
- "CommuteRules" "[
- iterations(1),
- select(plain(a + b)) := select(plain(b + a)),
- select(plain(a - b)) := select(plain((-b) + a)),
- select(plain((1/a) * b)) := select(b / a),
- select(plain(a * b)) := select(b * a),
- select((1/a) / b) := select((1/b) / a),
- select(a / b) := select((1/b) * a),
- select((a^b) ^ c) := select((a^c) ^ b),
- select(log(a, b)) := select(1 / log(b, a)),
- select(plain(a && b)) := select(b && a),
- select(plain(a || b)) := select(b || a),
- select(plain(a = b)) := select(b = a),
- select(plain(a != b)) := select(b != a),
- select(a < b) := select(b > a),
- select(a > b) := select(b < a),
- select(a <= b) := select(b >= a),
- select(a >= b) := select(b <= a) ]"))
- (defun calc-JumpRules ()
- "JumpRules"
- (calc-compile-rule-set
- "JumpRules" "[
- iterations(1),
- plain(select(x) = y) := 0 = select(-x) + y,
- plain(a + select(x) = y) := a = select(-x) + y,
- plain(a - select(x) = y) := a = select(x) + y,
- plain(select(x) + a = y) := a = select(-x) + y,
- plain(a * select(x) = y) := a = y / select(x),
- plain(a / select(x) = y) := a = select(x) * y,
- plain(select(x) / a = y) := 1/a = y / select(x),
- plain(a ^ select(2) = y) := a = select(sqrt(y)),
- plain(a ^ select(x) = y) := a = y ^ select(1/x),
- plain(select(x) ^ a = y) := a = log(y, select(x)),
- plain(log(a, select(x)) = y) := a = select(x) ^ y,
- plain(log(select(x), a) = y) := a = select(x) ^ (1/y),
- plain(y = select(x)) := y - select(x) = 0,
- plain(y = a + select(x)) := y - select(x) = a,
- plain(y = a - select(x)) := y + select(x) = a,
- plain(y = select(x) + a) := y - select(x) = a,
- plain(y = a * select(x)) := y / select(x) = a,
- plain(y = a / select(x)) := y * select(x) = a,
- plain(y = select(x) / a) := y / select(x) = 1/a,
- plain(y = a ^ select(2)) := select(sqrt(y)) = a,
- plain(y = a ^ select(x)) := y ^ select(1/x) = a,
- plain(y = select(x) ^ a) := log(y, select(x)) = a,
- plain(y = log(a, select(x))) := select(x) ^ y = a,
- plain(y = log(select(x), a)) := select(x) ^ (1/y) = a ]"))
- (defun calc-DistribRules ()
- "DistribRules"
- (calc-compile-rule-set
- "DistribRules" "[
- iterations(1),
- x * select(a + b) := x*select(a) + x*b,
- x * select(sum(a,b,c,d)) := sum(x*select(a),b,c,d),
- x / select(a + b) := 1 / (select(a)/x + b/x),
- select(a + b) / x := select(a)/x + b/x,
- sum(select(a),b,c,d) / x := sum(select(a)/x,b,c,d),
- x ^ select(a + b) := x^select(a) * x^b,
- x ^ select(sum(a,b,c,d)) := prod(x^select(a),b,c,d),
- x ^ select(a * b) := (x^a)^select(b),
- x ^ select(a / b) := (x^a)^select(1/b),
- select(a + b) ^ n := select(x)
- :: integer(n) :: n >= 2
- :: let(x, expandpow(a+b,n))
- :: quote(matches(x,y+z)),
- select(a + b) ^ x := a*select(a+b)^(x-1) + b*select(a+b)^(x-1),
- select(a * b) ^ x := a^x * select(b)^x,
- select(prod(a,b,c,d)) ^ x := prod(select(a)^x,b,c,d),
- select(a / b) ^ x := select(a)^x / b^x,
- select(- a) ^ x := (-1)^x * select(a)^x,
- plain(-select(a + b)) := select(-a) - b,
- plain(-select(sum(a,b,c,d))) := sum(select(-a),b,c,d),
- plain(-select(a * b)) := select(-a) * b,
- plain(-select(a / b)) := select(-a) / b,
- sqrt(select(a * b)) := sqrt(select(a)) * sqrt(b),
- sqrt(select(prod(a,b,c,d))) := prod(sqrt(select(a)),b,c,d),
- sqrt(select(a / b)) := sqrt(select(a)) / sqrt(b),
- sqrt(select(- a)) := sqrt(-1) sqrt(select(a)),
- exp(select(a + b)) := exp(select(a)) / exp(-b) :: negative(b),
- exp(select(a + b)) := exp(select(a)) * exp(b),
- exp(select(sum(a,b,c,d))) := prod(exp(select(a)),b,c,d),
- exp(select(a * b)) := exp(select(a)) ^ b :: constant(b),
- exp(select(a * b)) := exp(select(a)) ^ b,
- exp(select(a / b)) := exp(select(a)) ^ (1/b),
- ln(select(a * b)) := ln(select(a)) + ln(b),
- ln(select(prod(a,b,c,d))) := sum(ln(select(a)),b,c,d),
- ln(select(a / b)) := ln(select(a)) - ln(b),
- ln(select(a ^ b)) := ln(select(a)) * b,
- log10(select(a * b)) := log10(select(a)) + log10(b),
- log10(select(prod(a,b,c,d))) := sum(log10(select(a)),b,c,d),
- log10(select(a / b)) := log10(select(a)) - log10(b),
- log10(select(a ^ b)) := log10(select(a)) * b,
- log(select(a * b), x) := log(select(a), x) + log(b,x),
- log(select(prod(a,b,c,d)),x) := sum(log(select(a),x),b,c,d),
- log(select(a / b), x) := log(select(a), x) - log(b,x),
- log(select(a ^ b), x) := log(select(a), x) * b,
- log(a, select(b)) := ln(a) / select(ln(b)),
- sin(select(a + b)) := sin(select(a)) cos(b) + cos(a) sin(b),
- sin(select(2 a)) := 2 sin(select(a)) cos(a),
- sin(select(n a)) := 2sin((n-1) select(a)) cos(a) - sin((n-2) a)
- :: integer(n) :: n > 2,
- cos(select(a + b)) := cos(select(a)) cos(b) - sin(a) sin(b),
- cos(select(2 a)) := 2 cos(select(a))^2 - 1,
- cos(select(n a)) := 2cos((n-1) select(a)) cos(a) - cos((n-2) a)
- :: integer(n) :: n > 2,
- tan(select(a + b)) := (tan(select(a)) + tan(b)) /
- (1 - tan(a) tan(b)),
- tan(select(2 a)) := 2 tan(select(a)) / (1 - tan(a)^2),
- tan(select(n a)) := (tan((n-1) select(a)) + tan(a)) /
- (1 - tan((n-1) a) tan(a))
- :: integer(n) :: n > 2,
- cot(select(a + b)) := (cot(select(a)) cot(b) - 1) /
- (cot(a) + cot(b)),
- sinh(select(a + b)) := sinh(select(a)) cosh(b) + cosh(a) sinh(b),
- cosh(select(a + b)) := cosh(select(a)) cosh(b) + sinh(a) sinh(b),
- tanh(select(a + b)) := (tanh(select(a)) + tanh(b)) /
- (1 + tanh(a) tanh(b)),
- coth(select(a + b)) := (coth(select(a)) coth(b) + 1) /
- (coth(a) + coth(b)),
- x && select(a || b) := (x && select(a)) || (x && b),
- select(a || b) && x := (select(a) && x) || (b && x),
- ! select(a && b) := (!a) || (!b),
- ! select(a || b) := (!a) && (!b) ]"))
- (defun calc-MergeRules ()
- "MergeRules"
- (calc-compile-rule-set
- "MergeRules" "[
- iterations(1),
- (x*opt(a)) + select(x*b) := x * (a + select(b)),
- (x*opt(a)) - select(x*b) := x * (a - select(b)),
- sum(select(x)*a,b,c,d) := x * sum(select(a),b,c,d),
- (a/x) + select(b/x) := (a + select(b)) / x,
- (a/x) - select(b/x) := (a - select(b)) / x,
- sum(a/select(x),b,c,d) := sum(select(a),b,c,d) / x,
- (a/opt(b)) + select(c/d) := ((select(a)*d) + (b*c)) / (b*d),
- (a/opt(b)) - select(c/d) := ((select(a)*d) - (b*c)) / (b*d),
- (x^opt(a)) * select(x^b) := x ^ (a + select(b)),
- (x^opt(a)) / select(x^b) := x ^ (a - select(b)),
- select(x^a) / (x^opt(b)) := x ^ (select(a) - b),
- prod(select(x)^a,b,c,d) := x ^ sum(select(a),b,c,d),
- select(x^a) / (x^opt(b)) := x ^ (select(a) - b),
- (a^x) * select(b^x) := select((a * b) ^x),
- (a^x) / select(b^x) := select((b / b) ^ x),
- select(a^x) / (b^x) := select((a / b) ^ x),
- prod(a^select(x),b,c,d) := select(prod(a,b,c,d) ^ x),
- (a^x) * select(b^y) := select((a * b^(y-x)) ^x),
- (a^x) / select(b^y) := select((b / b^(y-x)) ^ x),
- select(a^x) / (b^y) := select((a / b^(y-x)) ^ x),
- select(x^a) ^ b := x ^ select(a * b),
- (x^a) ^ select(b) := x ^ select(a * b),
- select(sqrt(a)) ^ b := select(a ^ (b / 2)),
- sqrt(a) ^ select(b) := select(a ^ (b / 2)),
- sqrt(select(a) ^ b) := select(a ^ (b / 2)),
- sqrt(a ^ select(b)) := select(a ^ (b / 2)),
- sqrt(a) * select(sqrt(b)) := select(sqrt(a * b)),
- sqrt(a) / select(sqrt(b)) := select(sqrt(a / b)),
- select(sqrt(a)) / sqrt(b) := select(sqrt(a / b)),
- prod(select(sqrt(a)),b,c,d) := select(sqrt(prod(a,b,c,d))),
- exp(a) * select(exp(b)) := select(exp(a + b)),
- exp(a) / select(exp(b)) := select(exp(a - b)),
- select(exp(a)) / exp(b) := select(exp(a - b)),
- prod(select(exp(a)),b,c,d) := select(exp(sum(a,b,c,d))),
- select(exp(a)) ^ b := select(exp(a * b)),
- exp(a) ^ select(b) := select(exp(a * b)),
- ln(a) + select(ln(b)) := select(ln(a * b)),
- ln(a) - select(ln(b)) := select(ln(a / b)),
- select(ln(a)) - ln(b) := select(ln(a / b)),
- sum(select(ln(a)),b,c,d) := select(ln(prod(a,b,c,d))),
- b * select(ln(a)) := select(ln(a ^ b)),
- select(b) * ln(a) := select(ln(a ^ b)),
- select(ln(a)) / ln(b) := select(log(a, b)),
- ln(a) / select(ln(b)) := select(log(a, b)),
- select(ln(a)) / b := select(ln(a ^ (1/b))),
- ln(a) / select(b) := select(ln(a ^ (1/b))),
- log10(a) + select(log10(b)) := select(log10(a * b)),
- log10(a) - select(log10(b)) := select(log10(a / b)),
- select(log10(a)) - log10(b) := select(log10(a / b)),
- sum(select(log10(a)),b,c,d) := select(log10(prod(a,b,c,d))),
- b * select(log10(a)) := select(log10(a ^ b)),
- select(b) * log10(a) := select(log10(a ^ b)),
- select(log10(a)) / log10(b) := select(log(a, b)),
- log10(a) / select(log10(b)) := select(log(a, b)),
- select(log10(a)) / b := select(log10(a ^ (1/b))),
- log10(a) / select(b) := select(log10(a ^ (1/b))),
- log(a,x) + select(log(b,x)) := select(log(a * b,x)),
- log(a,x) - select(log(b,x)) := select(log(a / b,x)),
- select(log(a,x)) - log(b,x) := select(log(a / b,x)),
- sum(select(log(a,x)),b,c,d) := select(log(prod(a,b,c,d),x)),
- b * select(log(a,x)) := select(log(a ^ b,x)),
- select(b) * log(a,x) := select(log(a ^ b,x)),
- select(log(a,x)) / log(b,x) := select(log(a, b)),
- log(a,x) / select(log(b,x)) := select(log(a, b)),
- select(log(a,x)) / b := select(log(a ^ (1/b),x)),
- log(a,x) / select(b) := select(log(a ^ (1/b),x)),
- select(x && a) || (x && opt(b)) := x && (select(a) || b) ]"))
- (defun calc-NegateRules ()
- "NegateRules"
- (calc-compile-rule-set
- "NegateRules" "[
- iterations(1),
- a + select(x) := a - select(-x),
- a - select(x) := a + select(-x),
- sum(select(x),b,c,d) := -sum(select(-x),b,c,d),
- a * select(x) := -a * select(-x),
- a / select(x) := -a / select(-x),
- select(x) / a := -select(-x) / a,
- prod(select(x),b,c,d) := (-1)^(d-c+1) * prod(select(-x),b,c,d),
- select(x) ^ n := select(-x) ^ a :: integer(n) :: n%2 = 0,
- select(x) ^ n := -(select(-x) ^ a) :: integer(n) :: n%2 = 1,
- select(x) ^ a := (-select(-x)) ^ a,
- a ^ select(x) := (1 / a)^select(-x),
- abs(select(x)) := abs(select(-x)),
- i sqrt(select(x)) := -sqrt(select(-x)),
- sqrt(select(x)) := i sqrt(select(-x)),
- re(select(x)) := -re(select(-x)),
- im(select(x)) := -im(select(-x)),
- conj(select(x)) := -conj(select(-x)),
- trunc(select(x)) := -trunc(select(-x)),
- round(select(x)) := -round(select(-x)),
- floor(select(x)) := -ceil(select(-x)),
- ceil(select(x)) := -floor(select(-x)),
- ftrunc(select(x)) := -ftrunc(select(-x)),
- fround(select(x)) := -fround(select(-x)),
- ffloor(select(x)) := -fceil(select(-x)),
- fceil(select(x)) := -ffloor(select(-x)),
- exp(select(x)) := 1 / exp(select(-x)),
- sin(select(x)) := -sin(select(-x)),
- cos(select(x)) := cos(select(-x)),
- tan(select(x)) := -tan(select(-x)),
- sec(select(x)) := sec(select(-x)),
- csc(select(x)) := -csc(select(-x)),
- cot(select(x)) := -cot(select(-x)),
- arcsin(select(x)) := -arcsin(select(-x)),
- arccos(select(x)) := 4 arctan(1) - arccos(select(-x)),
- arctan(select(x)) := -arctan(select(-x)),
- sinh(select(x)) := -sinh(select(-x)),
- cosh(select(x)) := cosh(select(-x)),
- tanh(select(x)) := -tanh(select(-x)),
- sech(select(x)) := sech(select(-x)),
- csch(select(x)) := -csch(select(-x)),
- coth(select(x)) := -coth(select(-x)),
- arcsinh(select(x)) := -arcsinh(select(-x)),
- arctanh(select(x)) := -arctanh(select(-x)),
- select(x) = a := select(-x) = -a,
- select(x) != a := select(-x) != -a,
- select(x) < a := select(-x) > -a,
- select(x) > a := select(-x) < -a,
- select(x) <= a := select(-x) >= -a,
- select(x) >= a := select(-x) <= -a,
- a < select(x) := -a > select(-x),
- a > select(x) := -a < select(-x),
- a <= select(x) := -a >= select(-x),
- a >= select(x) := -a <= select(-x),
- select(x) := -select(-x) ]"))
- (defun calc-InvertRules ()
- "InvertRules"
- (calc-compile-rule-set
- "InvertRules" "[
- iterations(1),
- a * select(x) := a / select(1/x),
- a / select(x) := a * select(1/x),
- select(x) / a := 1 / (select(1/x) a),
- prod(select(x),b,c,d) := 1 / prod(select(1/x),b,c,d),
- abs(select(x)) := 1 / abs(select(1/x)),
- sqrt(select(x)) := 1 / sqrt(select(1/x)),
- ln(select(x)) := -ln(select(1/x)),
- log10(select(x)) := -log10(select(1/x)),
- log(select(x), a) := -log(select(1/x), a),
- log(a, select(x)) := -log(a, select(1/x)),
- arctan(select(x)) := simplify(2 arctan(1))-arctan(select(1/x)),
- select(x) = a := select(1/x) = 1/a,
- select(x) != a := select(1/x) != 1/a,
- select(x) < a := select(1/x) > 1/a,
- select(x) > a := select(1/x) < 1/a,
- select(x) <= a := select(1/x) >= 1/a,
- select(x) >= a := select(1/x) <= 1/a,
- a < select(x) := 1/a > select(1/x),
- a > select(x) := 1/a < select(1/x),
- a <= select(x) := 1/a >= select(1/x),
- a >= select(x) := 1/a <= select(1/x),
- select(x) := 1 / select(1/x) ]"))
- (defun calc-FactorRules ()
- "FactorRules"
- (calc-compile-rule-set
- "FactorRules" "[
- thecoefs(x, [z, a+b, c]) := thefactors(x, [d x + d a/c, (c/d) x + (b/d)])
- :: z = a b/c :: let(d := pgcd(pcont(c), pcont(b))),
- thecoefs(x, [z, a, c]) := thefactors(x, [(r x + a/(2 r))^2])
- :: z = (a/2)^2/c :: let(r := esimplify(sqrt(c)))
- :: !matches(r, sqrt(rr)),
- thecoefs(x, [z, 0, c]) := thefactors(x, [rc x + rz, rc x - rz])
- :: negative(z)
- :: let(rz := esimplify(sqrt(-z))) :: !matches(rz, sqrt(rzz))
- :: let(rc := esimplify(sqrt(c))) :: !matches(rc, sqrt(rcc)),
- thecoefs(x, [z, 0, c]) := thefactors(x, [rz + rc x, rz - rc x])
- :: negative(c)
- :: let(rz := esimplify(sqrt(z))) :: !matches(rz, sqrt(rzz))
- :: let(rc := esimplify(sqrt(-c))) :: !matches(rc, sqrt(rcc))
- ]"))
- ;;(setq var-FactorRules 'calc-FactorRules)
- (defun calc-IntegAfterRules ()
- "IntegAfterRules"
- (calc-compile-rule-set
- "IntegAfterRules" "[
- opt(a) ln(x) + opt(b) ln(y) := 2 a esimplify(arctanh(x-1))
- :: a + b = 0 :: nrat(x + y) = 2 || nrat(x - y) = 2,
- a * (b + c) := a b + a c :: constant(a)
- ]"))
- ;;(setq var-IntegAfterRules 'calc-IntegAfterRules)
- (defun calc-FitRules ()
- "FitRules"
- (calc-compile-rule-set
- "FitRules" "[
- schedule(1,2,3,4),
- iterations(inf),
- phase(1),
- e^x := exp(x),
- x^y := exp(y ln(x)) :: !istrue(constant(y)),
- x/y := x fitinv(y),
- fitinv(x y) := fitinv(x) fitinv(y),
- exp(a) exp(b) := exp(a + b),
- a exp(b) := exp(ln(a) + b) :: !hasfitvars(a),
- fitinv(exp(a)) := exp(-a),
- ln(a b) := ln(a) + ln(b),
- ln(fitinv(a)) := -ln(a),
- log10(a b) := log10(a) + log10(b),
- log10(fitinv(a)) := -log10(a),
- log(a,b) := ln(a)/ln(b),
- ln(exp(a)) := a,
- a*(b+c) := a*b + a*c,
- (a+b)^n := x :: integer(n) :: n >= 2
- :: let(x, expandpow(a+b,n))
- :: quote(matches(x,y+z)),
- phase(1,2),
- fitmodel(y = x) := fitmodel(0, y - x),
- fitmodel(y, x+c) := fitmodel(y-c, x) :: !hasfitparams(c),
- fitmodel(y, x c) := fitmodel(y/c, x) :: !hasfitparams(c),
- fitmodel(y, x/(c opt(d))) := fitmodel(y c, x/d) :: !hasfitparams(c),
- fitmodel(y, apply(f,[x])) := fitmodel(yy, x)
- :: hasfitparams(x)
- :: let(FTemp() = yy,
- solve(apply(f,[FTemp()]) = y,
- FTemp())),
- fitmodel(y, apply(f,[x,c])) := fitmodel(yy, x)
- :: !hasfitparams(c)
- :: let(FTemp() = yy,
- solve(apply(f,[FTemp(),c]) = y,
- FTemp())),
- fitmodel(y, apply(f,[c,x])) := fitmodel(yy, x)
- :: !hasfitparams(c)
- :: let(FTemp() = yy,
- solve(apply(f,[c,FTemp()]) = y,
- FTemp())),
- phase(2,3),
- fitmodel(y, x) := fitsystem(y, [], [], fitpart(1,1,x)),
- fitpart(a,b,plain(x + y)) := fitpart(a,b,x) + fitpart(a,b,y),
- fitpart(a,b,plain(x - y)) := fitpart(a,b,x) + fitpart(-a,b,y),
- fitpart(a,b,plain(-x)) := fitpart(-a,b,x),
- fitpart(a,b,x opt(c)) := fitpart(a,x b,c) :: !hasfitvars(x),
- fitpart(a,x opt(b),c) := fitpart(x a,b,c) :: !hasfitparams(x),
- fitpart(a,x y + x opt(z),c) := fitpart(a,x*(y+z),c),
- fitpart(a,b,c) := fitpart2(a,b,c),
- phase(3),
- fitpart2(a1,b1,x) + fitpart2(a2,b2,x) := fitpart(1, a1 b1 + a2 b2, x),
- fitpart2(a1,x,c1) + fitpart2(a2,x,c2) := fitpart2(1, x, a1 c1 + a2 c2),
- phase(4),
- fitinv(x) := 1 / x,
- exp(x + ln(y)) := y exp(x),
- exp(x ln(y)) := y^x,
- ln(x) + ln(y) := ln(x y),
- ln(x) - ln(y) := ln(x/y),
- x*y + x*z := x*(y+z),
- fitsystem(y, xv, pv, fitpart2(a,fitparam(b),c) + opt(d))
- := fitsystem(y, rcons(xv, a c),
- rcons(pv, fitdummy(b) = fitparam(b)), d)
- :: b = vlen(pv)+1,
- fitsystem(y, xv, pv, fitpart2(a,b,c) + opt(d))
- := fitsystem(y, rcons(xv, a c),
- rcons(pv, fitdummy(vlen(pv)+1) = b), d),
- fitsystem(y, xv, pv, 0) := fitsystem(y, xv, cons(fvh,fvt))
- :: !hasfitparams(xv)
- :: let(cons(fvh,fvt),
- solve(pv, table(fitparam(j), j, 1,
- hasfitparams(pv)))),
- fitparam(n) = x := x ]"))
- (provide 'calc-rules)
- ;;; calc-rules.el ends here
|