12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168 |
- ;;; calc-math.el --- mathematical functions for Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- ;;; Find out how many 9s in 9.9999... will give distinct Emacs floats,
- ;;; then back off by one.
- (defvar math-emacs-precision
- (let* ((n 1)
- (x 9)
- (xx (+ x (* 9 (expt 10 (- n))))))
- (while (/= x xx)
- (progn
- (setq n (1+ n))
- (setq x xx)
- (setq xx (+ x (* 9 (expt 10 (- n)))))))
- (1- n))
- "The number of digits in an Emacs float.")
- ;;; Find the largest power of 10 which is an Emacs float,
- ;;; then back off by one so that any float d.dddd...eN
- ;;; is an Emacs float, for acceptable d.dddd....
- (defvar math-largest-emacs-expt
- (let ((x 1)
- (pow 1e2))
- ;; The following loop is for efficiency; it should stop when
- ;; 10^(2x) is too large. This could be indicated by a range
- ;; error when computing 10^(2x) or an infinite value for 10^(2x).
- (while (and
- pow
- (< pow 1.0e+INF))
- (setq x (* 2 x))
- (setq pow (condition-case nil
- (expt 10.0 (* 2 x))
- (error nil))))
- ;; The following loop should stop when 10^(x+1) is too large.
- (setq pow (condition-case nil
- (expt 10.0 (1+ x))
- (error nil)))
- (while (and
- pow
- (< pow 1.0e+INF))
- (setq x (1+ x))
- (setq pow (condition-case nil
- (expt 10.0 (1+ x))
- (error nil))))
- (1- x))
- "The largest exponent which Calc will convert to an Emacs float.")
- (defvar math-smallest-emacs-expt
- (let ((x -1))
- (while (condition-case nil
- (> (expt 10.0 x) 0.0)
- (error nil))
- (setq x (* 2 x)))
- (setq x (/ x 2))
- (while (condition-case nil
- (> (expt 10.0 x) 0.0)
- (error nil))
- (setq x (1- x)))
- (+ x 2))
- "The smallest exponent which Calc will convert to an Emacs float.")
- (defun math-use-emacs-fn (fn x)
- "Use the native Emacs function FN to evaluate the Calc number X.
- If this can't be done, return NIL."
- (and
- (<= calc-internal-prec math-emacs-precision)
- (math-realp x)
- (let* ((fx (math-float x))
- (xpon (+ (nth 2 x) (1- (math-numdigs (nth 1 x))))))
- (and (<= math-smallest-emacs-expt xpon)
- (<= xpon math-largest-emacs-expt)
- (condition-case nil
- (math-read-number
- (number-to-string
- (funcall fn
- (string-to-number
- (let
- ((calc-number-radix 10)
- (calc-twos-complement-mode nil)
- (calc-float-format (list 'float calc-internal-prec))
- (calc-group-digits nil)
- (calc-point-char "."))
- (math-format-number (math-float x)))))))
- (error nil))))))
- (defun calc-sqrt (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "sqrt" 'calcFunc-sqrt arg))))
- (defun calc-isqrt (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "isqt" 'calcFunc-isqrt arg))))
- (defun calc-hypot (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "hypt" 'calcFunc-hypot arg)))
- (defun calc-ln (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-exp arg))
- (defun calc-log10 (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-ln arg))
- (defun calc-log (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "log" 'calcFunc-log arg))))
- (defun calc-ilog (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "ilog" 'calcFunc-ilog arg))))
- (defun calc-lnp1 (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-expm1 arg))
- (defun calc-exp (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "lg10" 'calcFunc-log10 arg)
- (calc-unary-op "10^" 'calcFunc-exp10 arg))
- (if (calc-is-inverse)
- (calc-unary-op "ln" 'calcFunc-ln arg)
- (calc-unary-op "exp" 'calcFunc-exp arg)))))
- (defun calc-expm1 (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "ln+1" 'calcFunc-lnp1 arg)
- (calc-unary-op "ex-1" 'calcFunc-expm1 arg))))
- (defun calc-pi ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (if (calc-is-hyperbolic)
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "phi" '(var phi var-phi))
- (calc-pop-push-record 0 "phi" (math-phi)))
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "gmma" '(var gamma var-gamma))
- (calc-pop-push-record 0 "gmma" (math-gamma-const))))
- (if (calc-is-hyperbolic)
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "e" '(var e var-e))
- (calc-pop-push-record 0 "e" (math-e)))
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "pi" '(var pi var-pi))
- (calc-pop-push-record 0 "pi" (math-pi)))))))
- (defun calc-sin (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "asnh" 'calcFunc-arcsinh arg)
- (calc-unary-op "sinh" 'calcFunc-sinh arg))
- (if (calc-is-inverse)
- (calc-unary-op "asin" 'calcFunc-arcsin arg)
- (calc-unary-op "sin" 'calcFunc-sin arg)))))
- (defun calc-arcsin (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-sin arg))
- (defun calc-sinh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-sin arg))
- (defun calc-arcsinh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-sin arg))
- (defun calc-sec (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-unary-op "sech" 'calcFunc-sech arg)
- (calc-unary-op "sec" 'calcFunc-sec arg))))
- (defun calc-sech (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-sec arg))
- (defun calc-cos (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "acsh" 'calcFunc-arccosh arg)
- (calc-unary-op "cosh" 'calcFunc-cosh arg))
- (if (calc-is-inverse)
- (calc-unary-op "acos" 'calcFunc-arccos arg)
- (calc-unary-op "cos" 'calcFunc-cos arg)))))
- (defun calc-arccos (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-cos arg))
- (defun calc-cosh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-cos arg))
- (defun calc-arccosh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-cos arg))
- (defun calc-csc (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-unary-op "csch" 'calcFunc-csch arg)
- (calc-unary-op "csc" 'calcFunc-csc arg))))
- (defun calc-csch (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-csc arg))
- (defun calc-sincos ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-enter-result 1 "asnc" (list 'calcFunc-arcsincos (calc-top-n 1)))
- (calc-enter-result 1 "sncs" (list 'calcFunc-sincos (calc-top-n 1))))))
- (defun calc-tan (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "atnh" 'calcFunc-arctanh arg)
- (calc-unary-op "tanh" 'calcFunc-tanh arg))
- (if (calc-is-inverse)
- (calc-unary-op "atan" 'calcFunc-arctan arg)
- (calc-unary-op "tan" 'calcFunc-tan arg)))))
- (defun calc-arctan (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-tan arg))
- (defun calc-tanh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-tan arg))
- (defun calc-arctanh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-tan arg))
- (defun calc-cot (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-unary-op "coth" 'calcFunc-coth arg)
- (calc-unary-op "cot" 'calcFunc-cot arg))))
- (defun calc-coth (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-cot arg))
- (defun calc-arctan2 ()
- (interactive)
- (calc-slow-wrapper
- (calc-enter-result 2 "atn2" (cons 'calcFunc-arctan2 (calc-top-list-n 2)))))
- (defun calc-conj (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op "conj" 'calcFunc-conj arg)))
- (defun calc-imaginary ()
- (interactive)
- (calc-slow-wrapper
- (calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1)))))
- (defun calc-to-degrees (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op ">deg" 'calcFunc-deg arg)))
- (defun calc-to-radians (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op ">rad" 'calcFunc-rad arg)))
- (defun calc-degrees-mode (arg)
- (interactive "p")
- (cond ((= arg 1)
- (calc-wrapper
- (calc-change-mode 'calc-angle-mode 'deg)
- (message "Angles measured in degrees")))
- ((= arg 2) (calc-radians-mode))
- ((= arg 3) (calc-hms-mode))
- (t (error "Prefix argument out of range"))))
- (defun calc-radians-mode ()
- (interactive)
- (calc-wrapper
- (calc-change-mode 'calc-angle-mode 'rad)
- (message "Angles measured in radians")))
- ;;; Compute the integer square-root floor(sqrt(A)). A > 0. [I I] [Public]
- ;;; This method takes advantage of the fact that Newton's method starting
- ;;; with an overestimate always works, even using truncating integer division!
- (defun math-isqrt (a)
- (cond ((Math-zerop a) a)
- ((not (math-natnump a))
- (math-reject-arg a 'natnump))
- ((integerp a)
- (math-isqrt-small a))
- (t
- (math-normalize (cons 'bigpos (cdr (math-isqrt-bignum (cdr a))))))))
- (defun calcFunc-isqrt (a)
- (if (math-realp a)
- (math-isqrt (math-floor a))
- (math-floor (math-sqrt a))))
- ;;; This returns (flag . result) where the flag is t if A is a perfect square.
- (defun math-isqrt-bignum (a) ; [P.l L]
- (let ((len (length a)))
- (if (= (% len 2) 0)
- (let* ((top (nthcdr (- len 2) a)))
- (math-isqrt-bignum-iter
- a
- (math-scale-bignum-digit-size
- (math-bignum-big
- (1+ (math-isqrt-small
- (+ (* (nth 1 top) math-bignum-digit-size) (car top)))))
- (1- (/ len 2)))))
- (let* ((top (nth (1- len) a)))
- (math-isqrt-bignum-iter
- a
- (math-scale-bignum-digit-size
- (list (1+ (math-isqrt-small top)))
- (/ len 2)))))))
- (defun math-isqrt-bignum-iter (a guess) ; [l L l]
- (math-working "isqrt" (cons 'bigpos guess))
- (let* ((q (math-div-bignum a guess))
- (s (math-add-bignum (car q) guess))
- (g2 (math-div2-bignum s))
- (comp (math-compare-bignum g2 guess)))
- (if (< comp 0)
- (math-isqrt-bignum-iter a g2)
- (cons (and (= comp 0)
- (math-zerop-bignum (cdr q))
- (= (% (car s) 2) 0))
- guess))))
- (defun math-zerop-bignum (a)
- (and (eq (car a) 0)
- (progn
- (while (eq (car (setq a (cdr a))) 0))
- (null a))))
- (defun math-scale-bignum-digit-size (a n) ; [L L S]
- (while (> n 0)
- (setq a (cons 0 a)
- n (1- n)))
- a)
- (defun math-isqrt-small (a) ; A > 0. [S S]
- (let ((g (cond ((>= a 1000000) 10000)
- ((>= a 10000) 1000)
- ((>= a 100) 100)
- (t 10)))
- g2)
- (while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
- (setq g g2))
- g))
- ;;; Compute the square root of a number.
- ;;; [T N] if possible, else [F N] if possible, else [C N]. [Public]
- (defun math-sqrt (a)
- (or
- (and (Math-zerop a) a)
- (and (math-known-nonposp a)
- (math-imaginary (math-sqrt (math-neg a))))
- (and (integerp a)
- (let ((sqrt (math-isqrt-small a)))
- (if (= (* sqrt sqrt) a)
- sqrt
- (if calc-symbolic-mode
- (list 'calcFunc-sqrt a)
- (math-sqrt-float (math-float a) (math-float sqrt))))))
- (and (eq (car-safe a) 'bigpos)
- (let* ((res (math-isqrt-bignum (cdr a)))
- (sqrt (math-normalize (cons 'bigpos (cdr res)))))
- (if (car res)
- sqrt
- (if calc-symbolic-mode
- (list 'calcFunc-sqrt a)
- (math-sqrt-float (math-float a) (math-float sqrt))))))
- (and (eq (car-safe a) 'frac)
- (let* ((num-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 1 a)))))
- (num-sqrt (math-normalize (cons 'bigpos (cdr num-res))))
- (den-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 2 a)))))
- (den-sqrt (math-normalize (cons 'bigpos (cdr den-res)))))
- (if (and (car num-res) (car den-res))
- (list 'frac num-sqrt den-sqrt)
- (if calc-symbolic-mode
- (if (or (car num-res) (car den-res))
- (math-div (if (car num-res)
- num-sqrt (list 'calcFunc-sqrt (nth 1 a)))
- (if (car den-res)
- den-sqrt (list 'calcFunc-sqrt (nth 2 a))))
- (list 'calcFunc-sqrt a))
- (math-sqrt-float (math-float a)
- (math-div (math-float num-sqrt) den-sqrt))))))
- (and (eq (car-safe a) 'float)
- (if calc-symbolic-mode
- (if (= (% (nth 2 a) 2) 0)
- (let ((res (math-isqrt-bignum
- (cdr (Math-bignum-test (nth 1 a))))))
- (if (car res)
- (math-make-float (math-normalize
- (cons 'bigpos (cdr res)))
- (/ (nth 2 a) 2))
- (signal 'inexact-result nil)))
- (signal 'inexact-result nil))
- (math-sqrt-float a)))
- (and (eq (car-safe a) 'cplx)
- (math-with-extra-prec 2
- (let* ((d (math-abs a))
- (imag (math-sqrt (math-mul (math-sub d (nth 1 a))
- '(float 5 -1)))))
- (list 'cplx
- (math-sqrt (math-mul (math-add d (nth 1 a)) '(float 5 -1)))
- (if (math-negp (nth 2 a)) (math-neg imag) imag)))))
- (and (eq (car-safe a) 'polar)
- (list 'polar
- (math-sqrt (nth 1 a))
- (math-mul (nth 2 a) '(float 5 -1))))
- (and (eq (car-safe a) 'sdev)
- (let ((sqrt (math-sqrt (nth 1 a))))
- (math-make-sdev sqrt
- (math-div (nth 2 a) (math-mul sqrt 2)))))
- (and (eq (car-safe a) 'intv)
- (not (math-negp (nth 2 a)))
- (math-make-intv (nth 1 a) (math-sqrt (nth 2 a)) (math-sqrt (nth 3 a))))
- (and (eq (car-safe a) '*)
- (or (math-known-nonnegp (nth 1 a))
- (math-known-nonnegp (nth 2 a)))
- (math-mul (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a))))
- (and (eq (car-safe a) '/)
- (or (and (math-known-nonnegp (nth 2 a))
- (math-div (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a))))
- (and (math-known-nonnegp (nth 1 a))
- (not (math-equal-int (nth 1 a) 1))
- (math-mul (math-sqrt (nth 1 a))
- (math-sqrt (math-div 1 (nth 2 a)))))))
- (and (eq (car-safe a) '^)
- (math-known-evenp (nth 2 a))
- (math-known-realp (nth 1 a))
- (math-abs (math-pow (nth 1 a) (math-div (nth 2 a) 2))))
- (let ((inf (math-infinitep a)))
- (and inf
- (math-mul (math-sqrt (math-infinite-dir a inf)) inf)))
- (progn
- (calc-record-why 'numberp a)
- (list 'calcFunc-sqrt a))))
- (defalias 'calcFunc-sqrt 'math-sqrt)
- (defun math-infinite-dir (a &optional inf)
- (or inf (setq inf (math-infinitep a)))
- (math-normalize (math-expr-subst a inf 1)))
- (defun math-sqrt-float (a &optional guess) ; [F F F]
- (if calc-symbolic-mode
- (signal 'inexact-result nil)
- (math-with-extra-prec 1 (math-sqrt-raw a guess))))
- (defun math-sqrt-raw (a &optional guess) ; [F F F]
- (if (not (Math-posp a))
- (math-sqrt a)
- (cond
- ((math-use-emacs-fn 'sqrt a))
- (t
- (if (null guess)
- (let ((ldiff (- (math-numdigs (nth 1 a)) 6)))
- (or (= (% (+ (nth 2 a) ldiff) 2) 0) (setq ldiff (1+ ldiff)))
- (setq guess (math-make-float (math-isqrt-small
- (math-scale-int (nth 1 a) (- ldiff)))
- (/ (+ (nth 2 a) ldiff) 2)))))
- (math-sqrt-float-iter a guess)))))
- (defun math-sqrt-float-iter (a guess) ; [F F F]
- (math-working "sqrt" guess)
- (let ((g2 (math-mul-float (math-add-float guess (math-div-float a guess))
- '(float 5 -1))))
- (if (math-nearly-equal-float g2 guess)
- g2
- (math-sqrt-float-iter a g2))))
- ;;; True if A and B differ only in the last digit of precision. [P F F]
- (defun math-nearly-equal-float (a b)
- (let ((ediff (- (nth 2 a) (nth 2 b))))
- (cond ((= ediff 0) ;; Expanded out for speed
- (setq ediff (math-add (Math-integer-neg (nth 1 a)) (nth 1 b)))
- (or (eq ediff 0)
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 a)) calc-internal-prec))))
- ((= ediff 1)
- (setq ediff (math-add (Math-integer-neg (nth 1 b))
- (math-scale-int (nth 1 a) 1)))
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 b)) calc-internal-prec)))
- ((= ediff -1)
- (setq ediff (math-add (Math-integer-neg (nth 1 a))
- (math-scale-int (nth 1 b) 1)))
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 a)) calc-internal-prec))))))
- (defun math-nearly-equal (a b) ; [P N N] [Public]
- (setq a (math-float a))
- (setq b (math-float b))
- (if (eq (car a) 'polar) (setq a (math-complex a)))
- (if (eq (car b) 'polar) (setq b (math-complex b)))
- (if (eq (car a) 'cplx)
- (if (eq (car b) 'cplx)
- (and (or (math-nearly-equal-float (nth 1 a) (nth 1 b))
- (and (math-nearly-zerop-float (nth 1 a) (nth 2 a))
- (math-nearly-zerop-float (nth 1 b) (nth 2 b))))
- (or (math-nearly-equal-float (nth 2 a) (nth 2 b))
- (and (math-nearly-zerop-float (nth 2 a) (nth 1 a))
- (math-nearly-zerop-float (nth 2 b) (nth 1 b)))))
- (and (math-nearly-equal-float (nth 1 a) b)
- (math-nearly-zerop-float (nth 2 a) b)))
- (if (eq (car b) 'cplx)
- (and (math-nearly-equal-float a (nth 1 b))
- (math-nearly-zerop-float a (nth 2 b)))
- (math-nearly-equal-float a b))))
- ;;; True if A is nearly zero compared to B. [P F F]
- (defun math-nearly-zerop-float (a b)
- (or (eq (nth 1 a) 0)
- (<= (+ (math-numdigs (nth 1 a)) (nth 2 a))
- (1+ (- (+ (math-numdigs (nth 1 b)) (nth 2 b)) calc-internal-prec)))))
- (defun math-nearly-zerop (a b) ; [P N R] [Public]
- (setq a (math-float a))
- (setq b (math-float b))
- (if (eq (car a) 'cplx)
- (and (math-nearly-zerop-float (nth 1 a) b)
- (math-nearly-zerop-float (nth 2 a) b))
- (if (eq (car a) 'polar)
- (math-nearly-zerop-float (nth 1 a) b)
- (math-nearly-zerop-float a b))))
- ;;; This implementation could be improved, accuracy-wise.
- (defun math-hypot (a b)
- (cond ((Math-zerop a) (math-abs b))
- ((Math-zerop b) (math-abs a))
- ((not (Math-scalarp a))
- (if (math-infinitep a)
- (if (math-infinitep b)
- (if (equal a b)
- a
- '(var nan var-nan))
- a)
- (calc-record-why 'scalarp a)
- (list 'calcFunc-hypot a b)))
- ((not (Math-scalarp b))
- (if (math-infinitep b)
- b
- (calc-record-why 'scalarp b)
- (list 'calcFunc-hypot a b)))
- ((and (Math-numberp a) (Math-numberp b))
- (math-with-extra-prec 1
- (math-sqrt (math-add (calcFunc-abssqr a) (calcFunc-abssqr b)))))
- ((eq (car-safe a) 'hms)
- (if (eq (car-safe b) 'hms) ; this helps sdev's of hms forms
- (math-to-hms (math-hypot (math-from-hms a 'deg)
- (math-from-hms b 'deg)))
- (math-to-hms (math-hypot (math-from-hms a 'deg) b))))
- ((eq (car-safe b) 'hms)
- (math-to-hms (math-hypot a (math-from-hms b 'deg))))
- (t nil)))
- (defalias 'calcFunc-hypot 'math-hypot)
- (defun calcFunc-sqr (x)
- (math-pow x 2))
- (defun math-nth-root (a n)
- (cond ((= n 2) (math-sqrt a))
- ((Math-zerop a) a)
- ((Math-negp a) nil)
- ((Math-integerp a)
- (let ((root (math-nth-root-integer a n)))
- (if (car root)
- (cdr root)
- (and (not calc-symbolic-mode)
- (math-nth-root-float (math-float a) n
- (math-float (cdr root)))))))
- ((eq (car-safe a) 'frac)
- (let* ((num-root (math-nth-root-integer (nth 1 a) n))
- (den-root (math-nth-root-integer (nth 2 a) n)))
- (if (and (car num-root) (car den-root))
- (list 'frac (cdr num-root) (cdr den-root))
- (and (not calc-symbolic-mode)
- (math-nth-root-float
- (math-float a) n
- (math-div-float (math-float (cdr num-root))
- (math-float (cdr den-root))))))))
- ((eq (car-safe a) 'float)
- (and (not calc-symbolic-mode)
- (math-nth-root-float a n)))
- ((eq (car-safe a) 'polar)
- (let ((root (math-nth-root (nth 1 a) n)))
- (and root (list 'polar root (math-div (nth 2 a) n)))))
- (t nil)))
- ;; The variables math-nrf-n, math-nrf-nf and math-nrf-nfm1 are local
- ;; to math-nth-root-float, but are used by math-nth-root-float-iter,
- ;; which is called by math-nth-root-float.
- (defvar math-nrf-n)
- (defvar math-nrf-nf)
- (defvar math-nrf-nfm1)
- (defun math-nth-root-float (a math-nrf-n &optional guess)
- (math-inexact-result)
- (math-with-extra-prec 1
- (let ((math-nrf-nf (math-float math-nrf-n))
- (math-nrf-nfm1 (math-float (1- math-nrf-n))))
- (math-nth-root-float-iter a (or guess
- (math-make-float
- 1 (/ (+ (math-numdigs (nth 1 a))
- (nth 2 a)
- (/ math-nrf-n 2))
- math-nrf-n)))))))
- (defun math-nth-root-float-iter (a guess)
- (math-working "root" guess)
- (let ((g2 (math-div-float (math-add-float (math-mul math-nrf-nfm1 guess)
- (math-div-float
- a (math-ipow guess (1- math-nrf-n))))
- math-nrf-nf)))
- (if (math-nearly-equal-float g2 guess)
- g2
- (math-nth-root-float-iter a g2))))
- ;; The variable math-nri-n is local to math-nth-root-integer, but
- ;; is used by math-nth-root-int-iter, which is called by
- ;; math-nth-root-int.
- (defvar math-nri-n)
- (defun math-nth-root-integer (a math-nri-n &optional guess) ; [I I S]
- (math-nth-root-int-iter a (or guess
- (math-scale-int 1 (/ (+ (math-numdigs a)
- (1- math-nri-n))
- math-nri-n)))))
- (defun math-nth-root-int-iter (a guess)
- (math-working "root" guess)
- (let* ((q (math-idivmod a (math-ipow guess (1- math-nri-n))))
- (s (math-add (car q) (math-mul (1- math-nri-n) guess)))
- (g2 (math-idivmod s math-nri-n)))
- (if (Math-natnum-lessp (car g2) guess)
- (math-nth-root-int-iter a (car g2))
- (cons (and (equal (car g2) guess)
- (eq (cdr q) 0)
- (eq (cdr g2) 0))
- guess))))
- (defun calcFunc-nroot (x n)
- (calcFunc-pow x (if (integerp n)
- (math-make-frac 1 n)
- (math-div 1 n))))
- ;;;; Transcendental functions.
- ;;; All of these functions are defined on the complex plane.
- ;;; (Branch cuts, etc. follow Steele's Common Lisp book.)
- ;;; Most functions increase calc-internal-prec by 2 digits, then round
- ;;; down afterward. "-raw" functions use the current precision, require
- ;;; their arguments to be in float (or complex float) format, and always
- ;;; work in radians (where applicable).
- (defun math-to-radians (a) ; [N N]
- (cond ((eq (car-safe a) 'hms)
- (math-from-hms a 'rad))
- ((memq calc-angle-mode '(deg hms))
- (math-mul a (math-pi-over-180)))
- (t a)))
- (defun math-from-radians (a) ; [N N]
- (cond ((eq calc-angle-mode 'deg)
- (if (math-constp a)
- (math-div a (math-pi-over-180))
- (list 'calcFunc-deg a)))
- ((eq calc-angle-mode 'hms)
- (math-to-hms a 'rad))
- (t a)))
- (defun math-to-radians-2 (a) ; [N N]
- (cond ((eq (car-safe a) 'hms)
- (math-from-hms a 'rad))
- ((memq calc-angle-mode '(deg hms))
- (if calc-symbolic-mode
- (math-div (math-mul a '(var pi var-pi)) 180)
- (math-mul a (math-pi-over-180))))
- (t a)))
- (defun math-from-radians-2 (a) ; [N N]
- (cond ((memq calc-angle-mode '(deg hms))
- (if calc-symbolic-mode
- (math-div (math-mul 180 a) '(var pi var-pi))
- (math-div a (math-pi-over-180))))
- (t a)))
- ;;; Sine, cosine, and tangent.
- (defun calcFunc-sin (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 90) 0)
- (= x 0)))
- (aref [0 1 0 -1] (math-mod (/ x 90) 4)))
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-sin-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (math-make-sdev (car sc) (math-mul xs (cdr sc)))))
- (math-make-sdev (calcFunc-sin (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-cos (nth 1 x))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (calcFunc-cos (math-sub x (math-quarter-circle nil))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-sin x))))
- (defun calcFunc-cos (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 90) 0)
- (= x 0)))
- (aref [1 0 -1 0] (math-mod (/ x 90) 4)))
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-cos-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (math-make-sdev (cdr sc) (math-mul xs (car sc)))))
- (math-make-sdev (calcFunc-cos (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-sin (nth 1 x))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (nth 2 xx) (math-pi))))
- (nb (math-floor (math-div (nth 3 xx) (math-pi))))
- (span (math-sub nb na)))
- (if (memq span '(0 1))
- (let ((int (math-sort-intv (nth 1 x)
- (math-cos-raw (nth 2 xx))
- (math-cos-raw (nth 3 xx)))))
- (if (eq span 1)
- (if (math-evenp na)
- (math-make-intv (logior (nth 1 x) 2)
- -1
- (nth 3 int))
- (math-make-intv (logior (nth 1 x) 1)
- (nth 2 int)
- 1))
- int))
- (list 'intv 3 -1 1)))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-cos x))))
- (defun calcFunc-sincos (x) ; [V N] [Public]
- (if (Math-scalarp x)
- (math-with-extra-prec 2
- (let ((sc (math-sin-cos-raw (math-to-radians (math-float x)))))
- (list 'vec (cdr sc) (car sc)))) ; the vector [cos, sin]
- (list 'vec (calcFunc-sin x) (calcFunc-cos x))))
- (defun calcFunc-tan (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 180) 0)
- (= x 0)))
- 0)
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-tan-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (if (and (math-zerop (cdr sc)) (not calc-infinite-mode))
- (progn
- (calc-record-why "*Division by zero")
- (list 'calcFunc-tan x))
- (math-make-sdev (math-div-float (car sc) (cdr sc))
- (math-div-float xs (math-sqr (cdr sc)))))))
- (math-make-sdev (calcFunc-tan (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-cos (nth 1 x)))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (or (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (math-sub (nth 2 xx)
- (math-pi-over-2))
- (math-pi))))
- (nb (math-floor (math-div (math-sub (nth 3 xx)
- (math-pi-over-2))
- (math-pi)))))
- (and (equal na nb)
- (math-sort-intv (nth 1 x)
- (math-tan-raw (nth 2 xx))
- (math-tan-raw (nth 3 xx))))))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-tan x))))
- (defun calcFunc-sec (x)
- (cond ((and (integerp x)
- (eq calc-angle-mode 'deg)
- (= (% x 180) 0))
- (if (= (% x 360) 0)
- 1
- -1))
- ((and (integerp x)
- (eq calc-angle-mode 'rad)
- (= x 0))
- 1)
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-sec-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (if (and (math-zerop (cdr sc))
- (not calc-infinite-mode))
- (progn
- (calc-record-why "*Division by zero")
- (list 'calcFunc-sec x))
- (math-make-sdev (math-div-float '(float 1 0) (cdr sc))
- (math-div-float
- (math-mul xs (car sc))
- (math-sqr (cdr sc)))))))
- (math-make-sdev (calcFunc-sec (nth 1 x))
- (math-div
- (math-mul (nth 2 x)
- (calcFunc-sin (nth 1 x)))
- (math-sqr (calcFunc-cos (nth 1 x)))))))
- ((and (eq (car x) 'intv)
- (math-intv-constp x))
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (math-sub (nth 2 xx)
- (math-pi-over-2))
- (math-pi))))
- (nb (math-floor (math-div (math-sub (nth 3 xx)
- (math-pi-over-2))
- (math-pi))))
- (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2))))
- (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2))))
- (span (math-sub nbb naa)))
- (if (not (equal na nb))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
- (let ((int (math-sort-intv (nth 1 x)
- (math-sec-raw (nth 2 xx))
- (math-sec-raw (nth 3 xx)))))
- (if (eq span 1)
- (if (math-evenp (math-div (math-add naa 1) 2))
- (math-make-intv (logior (nth 1 int) 2)
- 1
- (nth 3 int))
- (math-make-intv (logior (nth 1 int) 1)
- (nth 2 int)
- -1))
- int))))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-sec x))))
- (defun calcFunc-csc (x)
- (cond ((and (integerp x)
- (eq calc-angle-mode 'deg)
- (= (% (- x 90) 180) 0))
- (if (= (% (- x 90) 360) 0)
- 1
- -1))
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-csc-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (if (and (math-zerop (car sc))
- (not calc-infinite-mode))
- (progn
- (calc-record-why "*Division by zero")
- (list 'calcFunc-csc x))
- (math-make-sdev (math-div-float '(float 1 0) (car sc))
- (math-div-float
- (math-mul xs (cdr sc))
- (math-sqr (car sc)))))))
- (math-make-sdev (calcFunc-csc (nth 1 x))
- (math-div
- (math-mul (nth 2 x)
- (calcFunc-cos (nth 1 x)))
- (math-sqr (calcFunc-sin (nth 1 x)))))))
- ((and (eq (car x) 'intv)
- (math-intv-constp x))
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (nth 2 xx) (math-pi))))
- (nb (math-floor (math-div (nth 3 xx) (math-pi))))
- (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2))))
- (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2))))
- (span (math-sub nbb naa)))
- (if (not (equal na nb))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
- (let ((int (math-sort-intv (nth 1 x)
- (math-csc-raw (nth 2 xx))
- (math-csc-raw (nth 3 xx)))))
- (if (eq span 1)
- (if (math-evenp (math-div naa 2))
- (math-make-intv (logior (nth 1 int) 2)
- 1
- (nth 3 int))
- (math-make-intv (logior (nth 1 int) 1)
- (nth 2 int)
- -1))
- int))))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-csc x))))
- (defun calcFunc-cot (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% (- x 90) 180) 0)
- (= x 0)))
- 0)
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-cot-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (if (and (math-zerop (car sc)) (not calc-infinite-mode))
- (progn
- (calc-record-why "*Division by zero")
- (list 'calcFunc-cot x))
- (math-make-sdev (math-div-float (cdr sc) (car sc))
- (math-div-float xs (math-sqr (car sc)))))))
- (math-make-sdev (calcFunc-cot (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-sin (nth 1 x)))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (or (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (nth 2 xx) (math-pi))))
- (nb (math-floor (math-div (nth 3 xx) (math-pi)))))
- (and (equal na nb)
- (math-sort-intv (nth 1 x)
- (math-cot-raw (nth 2 xx))
- (math-cot-raw (nth 3 xx))))))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-cot x))))
- (defun math-sin-raw (x &optional orgx) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sc (math-sin-cos-raw (nth 1 x))))
- (list 'cplx
- (math-mul-float (car sc)
- (math-mul-float (math-add-float expx expmx)
- '(float 5 -1)))
- (math-mul-float (cdr sc)
- (math-mul-float (math-sub-float expx expmx)
- '(float 5 -1))))))
- ((eq (car x) 'polar)
- (math-polar (math-sin-raw (math-complex x))))
- ((Math-integer-negp (nth 1 x))
- (math-neg-float (math-sin-raw (math-neg-float x) (if orgx orgx x))))
- ((math-lessp-float '(float 7 0) x) ; avoid inf loops due to roundoff
- (math-sin-raw (math-mod x (math-two-pi)) (if orgx orgx x)))
- (t (math-sin-raw-2 x (if orgx orgx x)))))
- (defun math-cos-raw (x) ; [N N]
- (if (eq (car-safe x) 'polar)
- (math-polar (math-cos-raw (math-complex x)))
- (math-sin-raw (math-sub (math-pi-over-2) x) x)))
- (defun math-sec-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((x (math-mul x '(float 1 0)))
- (expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
- (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
- (sc (math-sin-cos-raw (nth 1 x)))
- (d (math-add-float
- (math-mul-float (math-sqr (car sc))
- (math-sqr sh))
- (math-mul-float (math-sqr (cdr sc))
- (math-sqr ch)))))
- (and (not (eq (nth 1 d) 0))
- (list 'cplx
- (math-div-float (math-mul-float (cdr sc) ch) d)
- (math-div-float (math-mul-float (car sc) sh) d)))))
- ((eq (car x) 'polar)
- (math-polar (math-sec-raw (math-complex x))))
- (t
- (let ((cs (math-cos-raw x)))
- (if (eq cs 0)
- (math-div 1 0)
- (math-div-float '(float 1 0) cs))))))
- (defun math-csc-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((x (math-mul x '(float 1 0)))
- (expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
- (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
- (sc (math-sin-cos-raw (nth 1 x)))
- (d (math-add-float
- (math-mul-float (math-sqr (car sc))
- (math-sqr ch))
- (math-mul-float (math-sqr (cdr sc))
- (math-sqr sh)))))
- (and (not (eq (nth 1 d) 0))
- (list 'cplx
- (math-div-float (math-mul-float (car sc) ch) d)
- (math-div-float (math-mul-float (cdr sc) sh) d)))))
- ((eq (car x) 'polar)
- (math-polar (math-csc-raw (math-complex x))))
- (t
- (let ((sn (math-sin-raw x)))
- (if (eq sn 0)
- (math-div 1 0)
- (math-div-float '(float 1 0) sn))))))
- (defun math-cot-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((x (math-mul x '(float 1 0)))
- (expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
- (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
- (sc (math-sin-cos-raw (nth 1 x)))
- (d (math-add-float
- (math-sqr (car sc))
- (math-sqr sh))))
- (and (not (eq (nth 1 d) 0))
- (list 'cplx
- (math-div-float
- (math-mul-float (car sc) (cdr sc))
- d)
- (math-neg
- (math-div-float
- (math-mul-float sh ch)
- d))))))
- ((eq (car x) 'polar)
- (math-polar (math-cot-raw (math-complex x))))
- (t
- (let ((sc (math-sin-cos-raw x)))
- (if (eq (nth 1 (car sc)) 0)
- (math-div (cdr sc) 0)
- (math-div-float (cdr sc) (car sc)))))))
- ;;; This could use a smarter method: Reduce x as in math-sin-raw, then
- ;;; compute either sin(x) or cos(x), whichever is smaller, and compute
- ;;; the other using the identity sin(x)^2 + cos(x)^2 = 1.
- (defun math-sin-cos-raw (x) ; [F.F F] (result is (sin x . cos x))
- (cons (math-sin-raw x) (math-cos-raw x)))
- (defun math-tan-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((x (math-mul x '(float 2 0)))
- (expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sc (math-sin-cos-raw (nth 1 x)))
- (d (math-add-float (cdr sc)
- (math-mul-float (math-add-float expx expmx)
- '(float 5 -1)))))
- (and (not (eq (nth 1 d) 0))
- (list 'cplx
- (math-div-float (car sc) d)
- (math-div-float (math-mul-float (math-sub-float expx
- expmx)
- '(float 5 -1)) d)))))
- ((eq (car x) 'polar)
- (math-polar (math-tan-raw (math-complex x))))
- (t
- (let ((sc (math-sin-cos-raw x)))
- (if (eq (nth 1 (cdr sc)) 0)
- (math-div (car sc) 0)
- (math-div-float (car sc) (cdr sc)))))))
- (defun math-sin-raw-2 (x orgx) ; This avoids poss of inf recursion. [F F]
- (let ((xmpo2 (math-sub-float (math-pi-over-2) x)))
- (cond ((Math-integer-negp (nth 1 xmpo2))
- (math-neg-float (math-sin-raw-2 (math-sub-float x (math-pi))
- orgx)))
- ((math-lessp-float (math-pi-over-4) x)
- (math-cos-raw-2 xmpo2 orgx))
- ((math-lessp-float x (math-neg (math-pi-over-4)))
- (math-neg (math-cos-raw-2 (math-add (math-pi-over-2) x) orgx)))
- ((math-with-extra-prec -1 (math-nearly-zerop-float x orgx))
- '(float 0 0))
- ((math-use-emacs-fn 'sin x))
- (calc-symbolic-mode (signal 'inexact-result nil))
- (t (math-sin-series x 6 4 x (math-neg-float (math-sqr-float x)))))))
- (defun math-cos-raw-2 (x orgx) ; [F F]
- (cond ((math-with-extra-prec -1 (math-nearly-zerop-float x orgx))
- '(float 1 0))
- ((math-use-emacs-fn 'cos x))
- (calc-symbolic-mode (signal 'inexact-result nil))
- (t (let ((xnegsqr (math-neg-float (math-sqr-float x))))
- (math-sin-series
- (math-add-float '(float 1 0)
- (math-mul-float xnegsqr '(float 5 -1)))
- 24 5 xnegsqr xnegsqr)))))
- (defun math-sin-series (sum nfac n x xnegsqr)
- (math-working "sin" sum)
- (let* ((nextx (math-mul-float x xnegsqr))
- (nextsum (math-add-float sum (math-div-float nextx
- (math-float nfac)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-sin-series nextsum (math-mul nfac (* n (1+ n)))
- (+ n 2) nextx xnegsqr))))
- ;;; Inverse sine, cosine, tangent.
- (defun calcFunc-arcsin (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (eq x 1) (eq calc-angle-mode 'deg)) 90)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) -90)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arcsin-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arcsin (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-sqrt
- (math-sub 1 (math-sqr (nth 1 x))))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arcsin (nth 2 x))
- (calcFunc-arcsin (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsin x))))
- (defun calcFunc-arccos (x) ; [N N] [Public]
- (cond ((eq x 1) 0)
- ((and (eq x 0) (eq calc-angle-mode 'deg)) 90)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) 180)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arccos-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arccos (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-sqrt
- (math-sub 1 (math-sqr (nth 1 x))))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arccos (nth 2 x))
- (calcFunc-arccos (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arccos x))))
- (defun calcFunc-arctan (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (eq x 1) (eq calc-angle-mode 'deg)) 45)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) -45)
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arctan-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arctan (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-add 1 (math-sqr (nth 1 x)))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arctan (nth 2 x))
- (calcFunc-arctan (nth 3 x))))
- ((equal x '(var inf var-inf))
- (math-quarter-circle t))
- ((equal x '(neg (var inf var-inf)))
- (math-neg (math-quarter-circle t)))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arctan x))))
- (defun math-arcsin-raw (x) ; [N N]
- (let ((a (math-sqrt-raw (math-sub '(float 1 0) (math-sqr x)))))
- (if (or (memq (car x) '(cplx polar))
- (memq (car a) '(cplx polar)))
- (math-with-extra-prec 2 ; use extra precision for difficult case
- (math-mul '(cplx 0 -1)
- (math-ln-raw (math-add (math-mul '(cplx 0 1) x) a))))
- (math-arctan2-raw x a))))
- (defun math-arccos-raw (x) ; [N N]
- (math-sub (math-pi-over-2) (math-arcsin-raw x)))
- (defun math-arctan-raw (x) ; [N N]
- (cond ((memq (car x) '(cplx polar))
- (math-with-extra-prec 2 ; extra-extra
- (math-div (math-sub
- (math-ln-raw (math-add 1 (math-mul '(cplx 0 1) x)))
- (math-ln-raw (math-add 1 (math-mul '(cplx 0 -1) x))))
- '(cplx 0 2))))
- ((Math-integer-negp (nth 1 x))
- (math-neg-float (math-arctan-raw (math-neg-float x))))
- ((math-zerop x) x)
- ((math-use-emacs-fn 'atan x))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((math-equal-int x 1) (math-pi-over-4))
- ((math-equal-int x -1) (math-neg (math-pi-over-4)))
- ((math-lessp-float '(float 414214 -6) x) ; if x > sqrt(2) - 1, reduce
- (if (math-lessp-float '(float 1 0) x)
- (math-sub-float (math-mul-float (math-pi) '(float 5 -1))
- (math-arctan-raw (math-div-float '(float 1 0) x)))
- (math-sub-float (math-mul-float (math-pi) '(float 25 -2))
- (math-arctan-raw (math-div-float
- (math-sub-float '(float 1 0) x)
- (math-add-float '(float 1 0)
- x))))))
- (t (math-arctan-series x 3 x (math-neg-float (math-sqr-float x))))))
- (defun math-arctan-series (sum n x xnegsqr)
- (math-working "arctan" sum)
- (let* ((nextx (math-mul-float x xnegsqr))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-arctan-series nextsum (+ n 2) nextx xnegsqr))))
- (defun calcFunc-arctan2 (y x) ; [F R R] [Public]
- (if (Math-anglep y)
- (if (Math-anglep x)
- (math-with-extra-prec 2
- (math-from-radians (math-arctan2-raw (math-float y)
- (math-float x))))
- (calc-record-why 'anglep x)
- (list 'calcFunc-arctan2 y x))
- (if (and (or (math-infinitep x) (math-anglep x))
- (or (math-infinitep y) (math-anglep y)))
- (progn
- (if (math-posp x)
- (setq x 1)
- (if (math-negp x)
- (setq x -1)
- (or (math-zerop x)
- (setq x nil))))
- (if (math-posp y)
- (setq y 1)
- (if (math-negp y)
- (setq y -1)
- (or (math-zerop y)
- (setq y nil))))
- (if (and y x)
- (calcFunc-arctan2 y x)
- '(var nan var-nan)))
- (calc-record-why 'anglep y)
- (list 'calcFunc-arctan2 y x))))
- (defun math-arctan2-raw (y x) ; [F R R]
- (cond ((math-zerop y)
- (if (math-negp x) (math-pi)
- (if (or (math-floatp x) (math-floatp y)) '(float 0 0) 0)))
- ((math-zerop x)
- (if (math-posp y)
- (math-pi-over-2)
- (math-neg (math-pi-over-2))))
- ((math-posp x)
- (math-arctan-raw (math-div-float y x)))
- ((math-posp y)
- (math-add-float (math-arctan-raw (math-div-float y x))
- (math-pi)))
- (t
- (math-sub-float (math-arctan-raw (math-div-float y x))
- (math-pi)))))
- (defun calcFunc-arcsincos (x) ; [V N] [Public]
- (if (and (Math-vectorp x)
- (= (length x) 3))
- (calcFunc-arctan2 (nth 2 x) (nth 1 x))
- (math-reject-arg x "*Two-element vector expected")))
- ;;; Exponential function.
- (defun calcFunc-exp (x) ; [N N] [Public]
- (cond ((eq x 0) 1)
- ((and (memq x '(1 -1)) calc-symbolic-mode)
- (if (eq x 1) '(var e var-e) (math-div 1 '(var e var-e))))
- ((Math-numberp x)
- (math-with-extra-prec 2 (math-exp-raw (math-float x))))
- ((eq (car-safe x) 'sdev)
- (let ((ex (calcFunc-exp (nth 1 x))))
- (math-make-sdev ex (math-mul (nth 2 x) ex))))
- ((eq (car-safe x) 'intv)
- (math-make-intv (nth 1 x) (calcFunc-exp (nth 2 x))
- (calcFunc-exp (nth 3 x))))
- ((equal x '(var inf var-inf))
- x)
- ((equal x '(neg (var inf var-inf)))
- 0)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-exp x))))
- (defun calcFunc-expm1 (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((math-zerop x) '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((x (math-float x)))
- (if (and (eq (car x) 'float)
- (math-lessp-float x '(float 1 0))
- (math-lessp-float '(float -1 0) x))
- (math-exp-minus-1-raw x)
- (math-add (math-exp-raw x) -1)))))
- ((eq (car-safe x) 'sdev)
- (if (math-constp x)
- (let ((ex (calcFunc-expm1 (nth 1 x))))
- (math-make-sdev ex (math-mul (nth 2 x) (math-add ex 1))))
- (math-make-sdev (calcFunc-expm1 (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-exp (nth 1 x))))))
- ((eq (car-safe x) 'intv)
- (math-make-intv (nth 1 x)
- (calcFunc-expm1 (nth 2 x))
- (calcFunc-expm1 (nth 3 x))))
- ((equal x '(var inf var-inf))
- x)
- ((equal x '(neg (var inf var-inf)))
- -1)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-expm1 x))))
- (defun calcFunc-exp10 (x) ; [N N] [Public]
- (if (eq x 0)
- 1
- (math-pow '(float 1 1) x)))
- (defun math-exp-raw (x) ; [N N]
- (cond ((math-zerop x) '(float 1 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((eq (car x) 'cplx)
- (let ((expx (math-exp-raw (nth 1 x)))
- (sc (math-sin-cos-raw (nth 2 x))))
- (list 'cplx
- (math-mul-float expx (cdr sc))
- (math-mul-float expx (car sc)))))
- ((eq (car x) 'polar)
- (let ((xc (math-complex x)))
- (list 'polar
- (math-exp-raw (nth 1 xc))
- (math-from-radians (nth 2 xc)))))
- ((math-use-emacs-fn 'exp x))
- ((or (math-lessp-float '(float 5 -1) x)
- (math-lessp-float x '(float -5 -1)))
- (if (math-lessp-float '(float 921035 1) x)
- (math-overflow)
- (if (math-lessp-float x '(float -921035 1))
- (math-underflow)))
- (let* ((two-x (math-mul-float x '(float 2 0)))
- (hint (math-scale-int (nth 1 two-x) (nth 2 two-x)))
- (hfrac (math-sub-float x (math-mul-float (math-float hint)
- '(float 5 -1)))))
- (math-mul-float (math-ipow (math-sqrt-e) hint)
- (math-add-float '(float 1 0)
- (math-exp-minus-1-raw hfrac)))))
- (t (math-add-float '(float 1 0) (math-exp-minus-1-raw x)))))
- (defun math-exp-minus-1-raw (x) ; [F F]
- (math-exp-series x 2 3 x x))
- (defun math-exp-series (sum nfac n xpow x)
- (math-working "exp" sum)
- (let* ((nextx (math-mul-float xpow x))
- (nextsum (math-add-float sum (math-div-float nextx
- (math-float nfac)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-exp-series nextsum (math-mul nfac n) (1+ n) nextx x))))
- ;;; Logarithms.
- (defun calcFunc-ln (x) ; [N N] [Public]
- (cond ((math-zerop x)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- ((eq x 1) 0)
- ((Math-numberp x)
- (math-with-extra-prec 2 (math-ln-raw (math-float x))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-ln (nth 1 x))
- (math-div (nth 2 x) (nth 1 x))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (Math-zerop (nth 2 x))
- (not (math-intv-constp x))))
- (let ((calc-infinite-mode t))
- (math-make-intv (nth 1 x) (calcFunc-ln (nth 2 x))
- (calcFunc-ln (nth 3 x)))))
- ((equal x '(var e var-e))
- 1)
- ((and (eq (car-safe x) '^)
- (equal (nth 1 x) '(var e var-e))
- (math-known-realp (nth 2 x)))
- (nth 2 x))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-ln x))))
- (defun calcFunc-log10 (x) ; [N N] [Public]
- (cond ((math-equal-int x 1)
- (if (math-floatp x) '(float 0 0) 0))
- ((and (Math-integerp x)
- (math-posp x)
- (let ((res (math-integer-log x 10)))
- (and (car res)
- (setq x (cdr res)))))
- x)
- ((and (eq (car-safe x) 'frac)
- (eq (nth 1 x) 1)
- (let ((res (math-integer-log (nth 2 x) 10)))
- (and (car res)
- (setq x (- (cdr res))))))
- x)
- ((math-zerop x)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((xf (math-float x)))
- (if (eq (nth 1 xf) 0)
- (math-reject-arg x "*Logarithm of zero"))
- (if (Math-integer-posp (nth 1 xf))
- (if (eq (nth 1 xf) 1) ; log10(1*10^n) = n
- (math-float (nth 2 xf))
- (let ((xdigs (1- (math-numdigs (nth 1 xf)))))
- (math-add-float
- (math-div-float (math-ln-raw-2
- (list 'float (nth 1 xf) (- xdigs)))
- (math-ln-10))
- (math-float (+ (nth 2 xf) xdigs)))))
- (math-div (calcFunc-ln xf) (math-ln-10))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-log10 (nth 1 x))
- (math-div (nth 2 x)
- (math-mul (nth 1 x) (math-ln-10)))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x))))
- (math-make-intv (nth 1 x)
- (calcFunc-log10 (nth 2 x))
- (calcFunc-log10 (nth 3 x))))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-log10 x))))
- (defun calcFunc-log (x &optional b) ; [N N N] [Public]
- (cond ((or (null b) (equal b '(var e var-e)))
- (math-normalize (list 'calcFunc-ln x)))
- ((or (eq b 10) (equal b '(float 1 1)))
- (math-normalize (list 'calcFunc-log10 x)))
- ((math-zerop x)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) (calcFunc-ln b))
- (math-reject-arg x "*Logarithm of zero")))
- ((math-zerop b)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) (calcFunc-ln b))
- (math-reject-arg b "*Logarithm of zero")))
- ((math-equal-int b 1)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) 0)
- (math-reject-arg b "*Logarithm base one")))
- ((math-equal-int x 1)
- (if (math-floatp b) '(float 0 0) 0))
- ((and (Math-ratp x) (Math-ratp b)
- (math-posp x) (math-posp b)
- (let* ((sign 1) (inv nil)
- (xx (if (Math-lessp 1 x)
- x
- (setq sign -1)
- (math-div 1 x)))
- (bb (if (Math-lessp 1 b)
- b
- (setq sign (- sign))
- (math-div 1 b)))
- (res (if (Math-lessp xx bb)
- (setq inv (math-integer-log bb xx))
- (math-integer-log xx bb))))
- (and (car res)
- (setq x (if inv
- (math-div 1 (* sign (cdr res)))
- (* sign (cdr res)))))))
- x)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((and (Math-numberp x) (Math-numberp b))
- (math-with-extra-prec 2
- (math-div (math-ln-raw (math-float x))
- (math-log-base-raw b))))
- ((and (eq (car-safe x) 'sdev)
- (Math-numberp b))
- (math-make-sdev (calcFunc-log (nth 1 x) b)
- (math-div (nth 2 x)
- (math-mul (nth 1 x)
- (math-log-base-raw b)))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x)))
- (math-realp b))
- (math-make-intv (nth 1 x)
- (calcFunc-log (nth 2 x) b)
- (calcFunc-log (nth 3 x) b)))
- ((or (eq (car-safe x) 'intv) (eq (car-safe b) 'intv))
- (math-div (calcFunc-ln x) (calcFunc-ln b)))
- ((or (math-infinitep x)
- (math-infinitep b))
- (math-div (calcFunc-ln x) (calcFunc-ln b)))
- (t (if (Math-numberp b)
- (calc-record-why 'numberp x)
- (calc-record-why 'numberp b))
- (list 'calcFunc-log x b))))
- (defun calcFunc-alog (x &optional b)
- (cond ((or (null b) (equal b '(var e var-e)))
- (math-normalize (list 'calcFunc-exp x)))
- (t (math-pow b x))))
- (defun calcFunc-ilog (x b)
- (if (and (math-natnump x) (not (eq x 0))
- (math-natnump b) (not (eq b 0)))
- (if (eq b 1)
- (math-reject-arg x "*Logarithm base one")
- (if (Math-natnum-lessp x b)
- 0
- (cdr (math-integer-log x b))))
- (math-floor (calcFunc-log x b))))
- (defun math-integer-log (x b)
- (let ((pows (list b))
- (pow (math-sqr b))
- next
- sum n)
- (while (not (Math-lessp x pow))
- (setq pows (cons pow pows)
- pow (math-sqr pow)))
- (setq n (lsh 1 (1- (length pows)))
- sum n
- pow (car pows))
- (while (and (setq pows (cdr pows))
- (Math-lessp pow x))
- (setq n (/ n 2)
- next (math-mul pow (car pows)))
- (or (Math-lessp x next)
- (setq pow next
- sum (+ sum n))))
- (cons (equal pow x) sum)))
- (defvar math-log-base-cache nil)
- (defun math-log-base-raw (b) ; [N N]
- (if (not (and (equal (car math-log-base-cache) b)
- (eq (nth 1 math-log-base-cache) calc-internal-prec)))
- (setq math-log-base-cache (list b calc-internal-prec
- (math-ln-raw (math-float b)))))
- (nth 2 math-log-base-cache))
- (defun calcFunc-lnp1 (x) ; [N N] [Public]
- (cond ((Math-equal-int x -1)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- ((eq x 0) 0)
- ((math-zerop x) '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((x (math-float x)))
- (if (and (eq (car x) 'float)
- (math-lessp-float x '(float 5 -1))
- (math-lessp-float '(float -5 -1) x))
- (math-ln-plus-1-raw x)
- (math-ln-raw (math-add-float x '(float 1 0)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-lnp1 (nth 1 x))
- (math-div (nth 2 x) (math-add (nth 1 x) 1))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x))))
- (math-make-intv (nth 1 x)
- (calcFunc-lnp1 (nth 2 x))
- (calcFunc-lnp1 (nth 3 x))))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-lnp1 x))))
- (defun math-ln-raw (x) ; [N N] --- must be float format!
- (cond ((eq (car-safe x) 'cplx)
- (list 'cplx
- (math-mul-float (math-ln-raw
- (math-add-float (math-sqr-float (nth 1 x))
- (math-sqr-float (nth 2 x))))
- '(float 5 -1))
- (math-arctan2-raw (nth 2 x) (nth 1 x))))
- ((eq (car x) 'polar)
- (math-polar (list 'cplx
- (math-ln-raw (nth 1 x))
- (math-to-radians (nth 2 x)))))
- ((Math-equal-int x 1)
- '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((math-posp (nth 1 x)) ; positive and real
- (cond
- ((math-use-emacs-fn 'log x))
- (t
- (let ((xdigs (1- (math-numdigs (nth 1 x)))))
- (math-add-float (math-ln-raw-2 (list 'float (nth 1 x) (- xdigs)))
- (math-mul-float (math-float (+ (nth 2 x) xdigs))
- (math-ln-10)))))))
- ((math-zerop x)
- (math-reject-arg x "*Logarithm of zero"))
- ((eq calc-complex-mode 'polar) ; negative and real
- (math-polar
- (list 'cplx ; negative and real
- (math-ln-raw (math-neg-float x))
- (math-pi))))
- (t (list 'cplx ; negative and real
- (math-ln-raw (math-neg-float x))
- (math-pi)))))
- (defun math-ln-raw-2 (x) ; [F F]
- (cond ((math-lessp-float '(float 14 -1) x)
- (math-add-float (math-ln-raw-2 (math-mul-float x '(float 5 -1)))
- (math-ln-2)))
- (t ; now .7 < x <= 1.4
- (math-ln-raw-3 (math-div-float (math-sub-float x '(float 1 0))
- (math-add-float x '(float 1 0)))))))
- (defun math-ln-raw-3 (x) ; [F F]
- (math-mul-float (math-ln-raw-series x 3 x (math-sqr-float x))
- '(float 2 0)))
- ;;; Compute ln((1+x)/(1-x))
- (defun math-ln-raw-series (sum n x xsqr)
- (math-working "log" sum)
- (let* ((nextx (math-mul-float x xsqr))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-ln-raw-series nextsum (+ n 2) nextx xsqr))))
- (defun math-ln-plus-1-raw (x)
- (math-lnp1-series x 2 x (math-neg x)))
- (defun math-lnp1-series (sum n xpow x)
- (math-working "lnp1" sum)
- (let* ((nextx (math-mul-float xpow x))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-lnp1-series nextsum (1+ n) nextx x))))
- (defconst math-approx-ln-10
- (math-read-number-simple "2.302585092994045684018")
- "An approximation for ln(10).")
-
- (math-defcache math-ln-10 math-approx-ln-10
- (math-ln-raw-2 '(float 1 1)))
- (defconst math-approx-ln-2
- (math-read-number-simple "0.693147180559945309417")
- "An approximation for ln(2).")
- (math-defcache math-ln-2 math-approx-ln-2
- (math-ln-raw-3 (math-float '(frac 1 3))))
- ;;; Hyperbolic functions.
- (defun calcFunc-sinh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (list '/ (list '- (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))) 2)))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-mul (math-add expx (math-div -1 expx)) '(float 5 -1)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-sinh (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-cosh (nth 1 x)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-sinh (nth 2 x))
- (calcFunc-sinh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-sinh x))))
- (put 'calcFunc-sinh 'math-expandable t)
- (defun calcFunc-cosh (x) ; [N N] [Public]
- (cond ((eq x 0) 1)
- (math-expand-formulas
- (math-normalize
- (list '/ (list '+ (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))) 2)))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-mul (math-add expx (math-div 1 expx)) '(float 5 -1)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-cosh (nth 1 x))
- (math-mul (nth 2 x)
- (calcFunc-sinh (nth 1 x)))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (setq x (math-abs x))
- (math-sort-intv (nth 1 x)
- (calcFunc-cosh (nth 2 x))
- (calcFunc-cosh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- (math-abs x))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-cosh x))))
- (put 'calcFunc-cosh 'math-expandable t)
- (defun calcFunc-tanh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (let ((expx (list 'calcFunc-exp x))
- (expmx (list 'calcFunc-exp (list 'neg x))))
- (math-normalize
- (list '/ (list '- expx expmx) (list '+ expx expmx))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let* ((expx (calcFunc-exp (math-float x)))
- (expmx (math-div 1 expx)))
- (math-div (math-sub expx expmx)
- (math-add expx expmx)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-tanh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-cosh (nth 1 x))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-tanh (nth 2 x))
- (calcFunc-tanh (nth 3 x))))
- ((equal x '(var inf var-inf))
- 1)
- ((equal x '(neg (var inf var-inf)))
- -1)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-tanh x))))
- (put 'calcFunc-tanh 'math-expandable t)
- (defun calcFunc-sech (x) ; [N N] [Public]
- (cond ((eq x 0) 1)
- (math-expand-formulas
- (math-normalize
- (list '/ 2 (list '+ (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-div '(float 2 0) (math-add expx (math-div 1 expx))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-sech (nth 1 x))
- (math-mul (nth 2 x)
- (math-mul (calcFunc-sech (nth 1 x))
- (calcFunc-tanh (nth 1 x))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (setq x (math-abs x))
- (math-sort-intv (nth 1 x)
- (calcFunc-sech (nth 2 x))
- (calcFunc-sech (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf))))
- 0)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-sech x))))
- (put 'calcFunc-sech 'math-expandable t)
- (defun calcFunc-csch (x) ; [N N] [Public]
- (cond ((eq x 0) (math-div 1 0))
- (math-expand-formulas
- (math-normalize
- (list '/ 2 (list '- (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-div '(float 2 0) (math-add expx (math-div -1 expx))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-csch (nth 1 x))
- (math-mul (nth 2 x)
- (math-mul (calcFunc-csch (nth 1 x))
- (calcFunc-coth (nth 1 x))))))
- ((eq (car x) 'intv)
- (if (and (Math-negp (nth 2 x))
- (Math-posp (nth 3 x)))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
- (math-sort-intv (nth 1 x)
- (calcFunc-csch (nth 2 x))
- (calcFunc-csch (nth 3 x)))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf))))
- 0)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-csch x))))
- (put 'calcFunc-csch 'math-expandable t)
- (defun calcFunc-coth (x) ; [N N] [Public]
- (cond ((eq x 0) (math-div 1 0))
- (math-expand-formulas
- (math-normalize
- (let ((expx (list 'calcFunc-exp x))
- (expmx (list 'calcFunc-exp (list 'neg x))))
- (math-normalize
- (list '/ (list '+ expx expmx) (list '- expx expmx))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let* ((expx (calcFunc-exp (math-float x)))
- (expmx (math-div 1 expx)))
- (math-div (math-add expx expmx)
- (math-sub expx expmx)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-coth (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-sinh (nth 1 x))))))
- ((eq (car x) 'intv)
- (if (and (Math-negp (nth 2 x))
- (Math-posp (nth 3 x)))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
- (math-sort-intv (nth 1 x)
- (calcFunc-coth (nth 2 x))
- (calcFunc-coth (nth 3 x)))))
- ((equal x '(var inf var-inf))
- 1)
- ((equal x '(neg (var inf var-inf)))
- -1)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-coth x))))
- (put 'calcFunc-coth 'math-expandable t)
- (defun calcFunc-arcsinh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt
- (list '+ (list '^ x 2) 1))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (math-ln-raw (math-add x (math-sqrt-raw (math-add (math-sqr x)
- '(float 1 0)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arcsinh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqrt
- (math-add (math-sqr (nth 1 x)) 1)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arcsinh (nth 2 x))
- (calcFunc-arcsinh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsinh x))))
- (put 'calcFunc-arcsinh 'math-expandable t)
- (defun calcFunc-arccosh (x) ; [N N] [Public]
- (cond ((eq x 1) 0)
- ((and (eq x -1) calc-symbolic-mode)
- '(var pi var-pi))
- ((and (eq x 0) calc-symbolic-mode)
- (math-div (math-mul '(var pi var-pi) '(var i var-i)) 2))
- (math-expand-formulas
- (math-normalize
- (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt
- (list '- (list '^ x 2) 1))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (if (Math-equal-int x -1)
- (math-imaginary (math-pi))
- (math-with-extra-prec 2
- (if (or t ; need to do this even in the real case!
- (memq (car-safe x) '(cplx polar)))
- (let ((xp1 (math-add 1 x))) ; this gets the branch cuts right
- (math-ln-raw
- (math-add x (math-mul xp1
- (math-sqrt-raw
- (math-div (math-sub
- x
- '(float 1 0))
- xp1))))))
- (math-ln-raw
- (math-add x (math-sqrt-raw (math-add (math-sqr x)
- '(float -1 0)))))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arccosh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqrt
- (math-add (math-sqr (nth 1 x)) -1)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arccosh (nth 2 x))
- (calcFunc-arccosh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arccosh x))))
- (put 'calcFunc-arccosh 'math-expandable t)
- (defun calcFunc-arctanh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (Math-equal-int x 1) calc-infinite-mode)
- '(var inf var-inf))
- ((and (Math-equal-int x -1) calc-infinite-mode)
- '(neg (var inf var-inf)))
- (math-expand-formulas
- (list '/ (list '-
- (list 'calcFunc-ln (list '+ 1 x))
- (list 'calcFunc-ln (list '- 1 x))) 2))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (if (or (memq (car-safe x) '(cplx polar))
- (Math-lessp 1 x))
- (math-mul (math-sub (math-ln-raw (math-add '(float 1 0) x))
- (math-ln-raw (math-sub '(float 1 0) x)))
- '(float 5 -1))
- (if (and (math-equal-int x 1) calc-infinite-mode)
- '(var inf var-inf)
- (if (and (math-equal-int x -1) calc-infinite-mode)
- '(neg (var inf var-inf))
- (math-mul (math-ln-raw (math-div (math-add '(float 1 0) x)
- (math-sub 1 x)))
- '(float 5 -1)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arctanh (nth 1 x))
- (math-div (nth 2 x)
- (math-sub 1 (math-sqr (nth 1 x))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arctanh (nth 2 x))
- (calcFunc-arctanh (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arctanh x))))
- (put 'calcFunc-arctanh 'math-expandable t)
- ;;; Convert A from HMS or degrees to radians.
- (defun calcFunc-rad (a) ; [R R] [Public]
- (cond ((or (Math-numberp a)
- (eq (car a) 'intv))
- (math-with-extra-prec 2
- (math-mul a (math-pi-over-180))))
- ((eq (car a) 'hms)
- (math-from-hms a 'rad))
- ((eq (car a) 'sdev)
- (math-make-sdev (calcFunc-rad (nth 1 a))
- (calcFunc-rad (nth 2 a))))
- (math-expand-formulas
- (math-div (math-mul a '(var pi var-pi)) 180))
- ((math-infinitep a) a)
- (t (list 'calcFunc-rad a))))
- (put 'calcFunc-rad 'math-expandable t)
- ;;; Convert A from HMS or radians to degrees.
- (defun calcFunc-deg (a) ; [R R] [Public]
- (cond ((or (Math-numberp a)
- (eq (car a) 'intv))
- (math-with-extra-prec 2
- (math-div a (math-pi-over-180))))
- ((eq (car a) 'hms)
- (math-from-hms a 'deg))
- ((eq (car a) 'sdev)
- (math-make-sdev (calcFunc-deg (nth 1 a))
- (calcFunc-deg (nth 2 a))))
- (math-expand-formulas
- (math-div (math-mul 180 a) '(var pi var-pi)))
- ((math-infinitep a) a)
- (t (list 'calcFunc-deg a))))
- (put 'calcFunc-deg 'math-expandable t)
- (provide 'calc-math)
- ;;; calc-math.el ends here
|