123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914 |
- ;;; calc-alg.el --- algebraic functions for Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- ;;; Algebra commands.
- (defun calc-alg-evaluate (arg)
- (interactive "p")
- (calc-slow-wrapper
- (calc-with-default-simplification
- (let ((math-simplify-only nil))
- (calc-modify-simplify-mode arg)
- (calc-enter-result 1 "dsmp" (calc-top 1))))))
- (defun calc-modify-simplify-mode (arg)
- (if (= (math-abs arg) 2)
- (setq calc-simplify-mode 'alg)
- (if (>= (math-abs arg) 3)
- (setq calc-simplify-mode 'ext)))
- (if (< arg 0)
- (setq calc-simplify-mode (list calc-simplify-mode))))
- (defun calc-simplify ()
- (interactive)
- (calc-slow-wrapper
- (let ((top (calc-top-n 1)))
- (if (calc-is-inverse)
- (setq top
- (let ((calc-simplify-mode nil))
- (math-normalize (math-trig-rewrite top)))))
- (if (calc-is-hyperbolic)
- (setq top
- (let ((calc-simplify-mode nil))
- (math-normalize (math-hyperbolic-trig-rewrite top)))))
- (calc-with-default-simplification
- (calc-enter-result 1 "simp" (math-simplify top))))))
- (defun calc-simplify-extended ()
- (interactive)
- (calc-slow-wrapper
- (calc-with-default-simplification
- (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1))))))
- (defun calc-expand-formula (arg)
- (interactive "p")
- (calc-slow-wrapper
- (calc-with-default-simplification
- (let ((math-simplify-only nil))
- (calc-modify-simplify-mode arg)
- (calc-enter-result 1 "expf"
- (if (> arg 0)
- (let ((math-expand-formulas t))
- (calc-top-n 1))
- (let ((top (calc-top-n 1)))
- (or (math-expand-formula top)
- top))))))))
- (defun calc-factor (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "fctr" (if (calc-is-hyperbolic)
- 'calcFunc-factors 'calcFunc-factor)
- arg)))
- (defun calc-expand (n)
- (interactive "P")
- (calc-slow-wrapper
- (calc-enter-result 1 "expa"
- (append (list 'calcFunc-expand
- (calc-top-n 1))
- (and n (list (prefix-numeric-value n)))))))
- ;;; Write out powers (a*b*...)^n as a*b*...*a*b*...
- (defun calcFunc-powerexpand (expr)
- (math-normalize (math-map-tree 'math-powerexpand expr)))
- (defun math-powerexpand (expr)
- (if (eq (car-safe expr) '^)
- (let ((n (nth 2 expr)))
- (cond ((and (integerp n)
- (> n 0))
- (let ((i 1)
- (a (nth 1 expr))
- (prod (nth 1 expr)))
- (while (< i n)
- (setq prod (math-mul prod a))
- (setq i (1+ i)))
- prod))
- ((and (integerp n)
- (< n 0))
- (let ((i -1)
- (a (math-pow (nth 1 expr) -1))
- (prod (math-pow (nth 1 expr) -1)))
- (while (> i n)
- (setq prod (math-mul a prod))
- (setq i (1- i)))
- prod))
- (t
- expr)))
- expr))
- (defun calc-powerexpand ()
- (interactive)
- (calc-slow-wrapper
- (calc-enter-result 1 "pexp"
- (calcFunc-powerexpand (calc-top-n 1)))))
- (defun calc-collect (&optional var)
- (interactive "sCollect terms involving: ")
- (calc-slow-wrapper
- (if (or (equal var "") (equal var "$") (null var))
- (calc-enter-result 2 "clct" (cons 'calcFunc-collect
- (calc-top-list-n 2)))
- (let ((var (math-read-expr var)))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "clct" (list 'calcFunc-collect
- (calc-top-n 1)
- var))))))
- (defun calc-apart (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "aprt" 'calcFunc-apart arg)))
- (defun calc-normalize-rat (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "nrat" 'calcFunc-nrat arg)))
- (defun calc-poly-gcd (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "pgcd" 'calcFunc-pgcd arg)))
- (defun calc-poly-div (arg)
- (interactive "P")
- (calc-slow-wrapper
- (let ((calc-poly-div-remainder nil))
- (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
- (if (and calc-poly-div-remainder (null arg))
- (progn
- (calc-clear-command-flag 'clear-message)
- (calc-record calc-poly-div-remainder "prem")
- (if (not (Math-zerop calc-poly-div-remainder))
- (message "(Remainder was %s)"
- (math-format-flat-expr calc-poly-div-remainder 0))
- (message "(No remainder)")))))))
- (defun calc-poly-rem (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "prem" 'calcFunc-prem arg)))
- (defun calc-poly-div-rem (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "pdvr" 'calcFunc-pdivide arg)
- (calc-binary-op "pdvr" 'calcFunc-pdivrem arg))))
- (defun calc-substitute (&optional oldname newname)
- (interactive "sSubstitute old: ")
- (calc-slow-wrapper
- (let (old new (num 1) expr)
- (if (or (equal oldname "") (equal oldname "$") (null oldname))
- (setq new (calc-top-n 1)
- old (calc-top-n 2)
- expr (calc-top-n 3)
- num 3)
- (or newname
- (progn (calc-unread-command ?\C-a)
- (setq newname (read-string (concat "Substitute old: "
- oldname
- ", new: ")
- oldname))))
- (if (or (equal newname "") (equal newname "$") (null newname))
- (setq new (calc-top-n 1)
- expr (calc-top-n 2)
- num 2)
- (setq new (if (stringp newname) (math-read-expr newname) newname))
- (if (eq (car-safe new) 'error)
- (error "Bad format in expression: %s" (nth 1 new)))
- (setq expr (calc-top-n 1)))
- (setq old (if (stringp oldname) (math-read-expr oldname) oldname))
- (if (eq (car-safe old) 'error)
- (error "Bad format in expression: %s" (nth 1 old)))
- (or (math-expr-contains expr old)
- (error "No occurrences found")))
- (calc-enter-result num "sbst" (math-expr-subst expr old new)))))
- (defun calc-has-rules (name)
- (setq name (calc-var-value name))
- (and (consp name)
- (memq (car name) '(vec calcFunc-assign calcFunc-condition))
- name))
- ;; math-eval-rules-cache and math-eval-rules-cache-other are
- ;; declared in calc.el, but are used here by math-recompile-eval-rules.
- (defvar math-eval-rules-cache)
- (defvar math-eval-rules-cache-other)
- (defun math-recompile-eval-rules ()
- (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
- (math-compile-rewrites
- '(var EvalRules var-EvalRules)))
- math-eval-rules-cache-other (assq nil math-eval-rules-cache)
- math-eval-rules-cache-tag (calc-var-value 'var-EvalRules)))
- ;;; Try to expand a formula according to its definition.
- (defun math-expand-formula (expr)
- (and (consp expr)
- (symbolp (car expr))
- (or (get (car expr) 'calc-user-defn)
- (get (car expr) 'math-expandable))
- (let ((res (let ((math-expand-formulas t))
- (apply (car expr) (cdr expr)))))
- (and (not (eq (car-safe res) (car expr)))
- res))))
- ;;; True if A comes before B in a canonical ordering of expressions. [P X X]
- (defun math-beforep (a b) ; [Public]
- (cond ((and (Math-realp a) (Math-realp b))
- (let ((comp (math-compare a b)))
- (or (eq comp -1)
- (and (eq comp 0)
- (not (equal a b))
- (> (length (memq (car-safe a)
- '(bigneg nil bigpos frac float)))
- (length (memq (car-safe b)
- '(bigneg nil bigpos frac float))))))))
- ((equal b '(neg (var inf var-inf))) nil)
- ((equal a '(neg (var inf var-inf))) t)
- ((equal a '(var inf var-inf)) nil)
- ((equal b '(var inf var-inf)) t)
- ((Math-realp a)
- (if (and (eq (car-safe b) 'intv) (math-intv-constp b))
- (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b)))
- t
- nil)
- t))
- ((Math-realp b)
- (if (and (eq (car-safe a) 'intv) (math-intv-constp a))
- (if (math-beforep (nth 2 a) b)
- t
- nil)
- nil))
- ((and (eq (car a) 'intv) (eq (car b) 'intv)
- (math-intv-constp a) (math-intv-constp b))
- (let ((comp (math-compare (nth 2 a) (nth 2 b))))
- (cond ((eq comp -1) t)
- ((eq comp 1) nil)
- ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t)
- ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil)
- ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t)
- ((eq comp 1) nil)
- ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t)
- (t nil))))
- ((not (eq (not (Math-objectp a)) (not (Math-objectp b))))
- (Math-objectp a))
- ((eq (car a) 'var)
- (if (eq (car b) 'var)
- (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b)))
- (not (Math-numberp b))))
- ((eq (car b) 'var) (Math-numberp a))
- ((eq (car a) (car b))
- (while (and (setq a (cdr a) b (cdr b)) a
- (equal (car a) (car b))))
- (and b
- (or (null a)
- (math-beforep (car a) (car b)))))
- (t (string-lessp (symbol-name (car a)) (symbol-name (car b))))))
- (defsubst math-simplify-extended (a)
- (let ((math-living-dangerously t))
- (math-simplify a)))
- (defalias 'calcFunc-esimplify 'math-simplify-extended)
- ;;; Rewrite the trig functions in a form easier to simplify.
- (defun math-trig-rewrite (fn)
- "Rewrite trigonometric functions in terms of sines and cosines."
- (cond
- ((not (consp fn))
- fn)
- ((eq (car-safe fn) 'calcFunc-sec)
- (list '/ 1 (cons 'calcFunc-cos (math-trig-rewrite (cdr fn)))))
- ((eq (car-safe fn) 'calcFunc-csc)
- (list '/ 1 (cons 'calcFunc-sin (math-trig-rewrite (cdr fn)))))
- ((eq (car-safe fn) 'calcFunc-tan)
- (let ((newfn (math-trig-rewrite (cdr fn))))
- (list '/ (cons 'calcFunc-sin newfn)
- (cons 'calcFunc-cos newfn))))
- ((eq (car-safe fn) 'calcFunc-cot)
- (let ((newfn (math-trig-rewrite (cdr fn))))
- (list '/ (cons 'calcFunc-cos newfn)
- (cons 'calcFunc-sin newfn))))
- (t
- (mapcar 'math-trig-rewrite fn))))
- (defun math-hyperbolic-trig-rewrite (fn)
- "Rewrite hyperbolic functions in terms of sinhs and coshs."
- (cond
- ((not (consp fn))
- fn)
- ((eq (car-safe fn) 'calcFunc-sech)
- (list '/ 1 (cons 'calcFunc-cosh (math-hyperbolic-trig-rewrite (cdr fn)))))
- ((eq (car-safe fn) 'calcFunc-csch)
- (list '/ 1 (cons 'calcFunc-sinh (math-hyperbolic-trig-rewrite (cdr fn)))))
- ((eq (car-safe fn) 'calcFunc-tanh)
- (let ((newfn (math-hyperbolic-trig-rewrite (cdr fn))))
- (list '/ (cons 'calcFunc-sinh newfn)
- (cons 'calcFunc-cosh newfn))))
- ((eq (car-safe fn) 'calcFunc-coth)
- (let ((newfn (math-hyperbolic-trig-rewrite (cdr fn))))
- (list '/ (cons 'calcFunc-cosh newfn)
- (cons 'calcFunc-sinh newfn))))
- (t
- (mapcar 'math-hyperbolic-trig-rewrite fn))))
- ;; math-top-only is local to math-simplify, but is used by
- ;; math-simplify-step, which is called by math-simplify.
- (defvar math-top-only)
- (defun math-simplify (top-expr)
- (let ((math-simplifying t)
- (math-top-only (consp calc-simplify-mode))
- (simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
- '((var AlgSimpRules var-AlgSimpRules)))
- (and math-living-dangerously
- (calc-has-rules 'var-ExtSimpRules)
- '((var ExtSimpRules var-ExtSimpRules)))
- (and math-simplifying-units
- (calc-has-rules 'var-UnitSimpRules)
- '((var UnitSimpRules var-UnitSimpRules)))
- (and math-integrating
- (calc-has-rules 'var-IntegSimpRules)
- '((var IntegSimpRules var-IntegSimpRules)))))
- res)
- (if math-top-only
- (let ((r simp-rules))
- (setq res (math-simplify-step (math-normalize top-expr))
- calc-simplify-mode '(nil)
- top-expr (math-normalize res))
- (while r
- (setq top-expr (math-rewrite top-expr (car r)
- '(neg (var inf var-inf)))
- r (cdr r))))
- (calc-with-default-simplification
- (while (let ((r simp-rules))
- (setq res (math-normalize top-expr))
- (while r
- (setq res (math-rewrite res (car r))
- r (cdr r)))
- (not (equal top-expr (setq res (math-simplify-step res)))))
- (setq top-expr res)))))
- top-expr)
- (defalias 'calcFunc-simplify 'math-simplify)
- ;;; The following has a "bug" in that if any recursive simplifications
- ;;; occur only the first handler will be tried; this doesn't really
- ;;; matter, since math-simplify-step is iterated to a fixed point anyway.
- (defun math-simplify-step (a)
- (if (Math-primp a)
- a
- (let ((aa (if (or math-top-only
- (memq (car a) '(calcFunc-quote calcFunc-condition
- calcFunc-evalto)))
- a
- (cons (car a) (mapcar 'math-simplify-step (cdr a))))))
- (and (symbolp (car aa))
- (let ((handler (get (car aa) 'math-simplify)))
- (and handler
- (while (and handler
- (equal (setq aa (or (funcall (car handler) aa)
- aa))
- a))
- (setq handler (cdr handler))))))
- aa)))
- (defmacro math-defsimplify (funcs &rest code)
- (cons 'progn
- (mapcar #'(lambda (func)
- `(put ',func 'math-simplify
- (nconc
- (get ',func 'math-simplify)
- (list
- #'(lambda (math-simplify-expr) ,@code)))))
- (if (symbolp funcs) (list funcs) funcs))))
- (put 'math-defsimplify 'lisp-indent-hook 1)
- ;; The function created by math-defsimplify uses the variable
- ;; math-simplify-expr, and so is used by functions in math-defsimplify
- (defvar math-simplify-expr)
- (math-defsimplify (+ -)
- (math-simplify-plus))
- (defun math-simplify-plus ()
- (cond ((and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
- (Math-numberp (nth 2 (nth 1 math-simplify-expr)))
- (not (Math-numberp (nth 2 math-simplify-expr))))
- (let ((x (nth 2 math-simplify-expr))
- (op (car math-simplify-expr)))
- (setcar (cdr (cdr math-simplify-expr)) (nth 2 (nth 1 math-simplify-expr)))
- (setcar math-simplify-expr (car (nth 1 math-simplify-expr)))
- (setcar (cdr (cdr (nth 1 math-simplify-expr))) x)
- (setcar (nth 1 math-simplify-expr) op)))
- ((and (eq (car math-simplify-expr) '+)
- (Math-numberp (nth 1 math-simplify-expr))
- (not (Math-numberp (nth 2 math-simplify-expr))))
- (let ((x (nth 2 math-simplify-expr)))
- (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
- (setcar (cdr math-simplify-expr) x))))
- (let ((aa math-simplify-expr)
- aaa temp)
- (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
- (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 math-simplify-expr)
- (eq (car aaa) '-)
- (eq (car math-simplify-expr) '-) t))
- (progn
- (setcar (cdr (cdr math-simplify-expr)) temp)
- (setcar math-simplify-expr '+)
- (setcar (cdr (cdr aaa)) 0)))
- (setq aa (nth 1 aa)))
- (if (setq temp (math-combine-sum aaa (nth 2 math-simplify-expr)
- nil (eq (car math-simplify-expr) '-) t))
- (progn
- (setcar (cdr (cdr math-simplify-expr)) temp)
- (setcar math-simplify-expr '+)
- (setcar (cdr aa) 0)))
- math-simplify-expr))
- (math-defsimplify *
- (math-simplify-times))
- (defun math-simplify-times ()
- (if (eq (car-safe (nth 2 math-simplify-expr)) '*)
- (and (math-beforep (nth 1 (nth 2 math-simplify-expr)) (nth 1 math-simplify-expr))
- (or (math-known-scalarp (nth 1 math-simplify-expr) t)
- (math-known-scalarp (nth 1 (nth 2 math-simplify-expr)) t))
- (let ((x (nth 1 math-simplify-expr)))
- (setcar (cdr math-simplify-expr) (nth 1 (nth 2 math-simplify-expr)))
- (setcar (cdr (nth 2 math-simplify-expr)) x)))
- (and (math-beforep (nth 2 math-simplify-expr) (nth 1 math-simplify-expr))
- (or (math-known-scalarp (nth 1 math-simplify-expr) t)
- (math-known-scalarp (nth 2 math-simplify-expr) t))
- (let ((x (nth 2 math-simplify-expr)))
- (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
- (setcar (cdr math-simplify-expr) x))))
- (let ((aa math-simplify-expr)
- aaa temp
- (safe t) (scalar (math-known-scalarp (nth 1 math-simplify-expr))))
- (if (and (Math-ratp (nth 1 math-simplify-expr))
- (setq temp (math-common-constant-factor (nth 2 math-simplify-expr))))
- (progn
- (setcar (cdr (cdr math-simplify-expr))
- (math-cancel-common-factor (nth 2 math-simplify-expr) temp))
- (setcar (cdr math-simplify-expr) (math-mul (nth 1 math-simplify-expr) temp))))
- (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
- safe)
- (if (setq temp (math-combine-prod (nth 1 math-simplify-expr)
- (nth 1 aaa) nil nil t))
- (progn
- (setcar (cdr math-simplify-expr) temp)
- (setcar (cdr aaa) 1)))
- (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
- aa (nth 2 aa)))
- (if (and (setq temp (math-combine-prod aaa (nth 1 math-simplify-expr) nil nil t))
- safe)
- (progn
- (setcar (cdr math-simplify-expr) temp)
- (setcar (cdr (cdr aa)) 1)))
- (if (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
- (memq (nth 1 (nth 1 math-simplify-expr)) '(1 -1)))
- (math-div (math-mul (nth 2 math-simplify-expr)
- (nth 1 (nth 1 math-simplify-expr)))
- (nth 2 (nth 1 math-simplify-expr)))
- math-simplify-expr)))
- (math-defsimplify /
- (math-simplify-divide))
- (defun math-simplify-divide ()
- (let ((np (cdr math-simplify-expr))
- (nover nil)
- (nn (and (or (eq (car math-simplify-expr) '/)
- (not (Math-realp (nth 2 math-simplify-expr))))
- (math-common-constant-factor (nth 2 math-simplify-expr))))
- n op)
- (if nn
- (progn
- (setq n (and (or (eq (car math-simplify-expr) '/)
- (not (Math-realp (nth 1 math-simplify-expr))))
- (math-common-constant-factor (nth 1 math-simplify-expr))))
- (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
- (progn
- (setcar (cdr math-simplify-expr)
- (math-mul (nth 2 nn) (nth 1 math-simplify-expr)))
- (setcar (cdr (cdr math-simplify-expr))
- (math-cancel-common-factor (nth 2 math-simplify-expr) nn))
- (if (and (math-negp nn)
- (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table)))
- (setcar math-simplify-expr (nth 1 op))))
- (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
- (progn
- (setcar (cdr math-simplify-expr)
- (math-cancel-common-factor (nth 1 math-simplify-expr) n))
- (setcar (cdr (cdr math-simplify-expr))
- (math-cancel-common-factor (nth 2 math-simplify-expr) n))
- (if (and (math-negp n)
- (setq op (assq (car math-simplify-expr)
- calc-tweak-eqn-table)))
- (setcar math-simplify-expr (nth 1 op))))))))
- (if (and (eq (car-safe (car np)) '/)
- (math-known-scalarp (nth 2 math-simplify-expr) t))
- (progn
- (setq np (cdr (nth 1 math-simplify-expr)))
- (while (eq (car-safe (setq n (car np))) '*)
- (and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nil t))
- (setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nil t)
- (setq nover t
- np (cdr (cdr (nth 1 math-simplify-expr))))))
- (while (eq (car-safe (setq n (car np))) '*)
- (and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nover t))
- (setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nover t)
- math-simplify-expr))
- ;; The variables math-simplify-divisor-nover and math-simplify-divisor-dover
- ;; are local variables for math-simplify-divisor, but are used by
- ;; math-simplify-one-divisor.
- (defvar math-simplify-divisor-nover)
- (defvar math-simplify-divisor-dover)
- (defun math-simplify-divisor (np dp math-simplify-divisor-nover
- math-simplify-divisor-dover)
- (cond ((eq (car-safe (car dp)) '/)
- (math-simplify-divisor np (cdr (car dp))
- math-simplify-divisor-nover
- math-simplify-divisor-dover)
- (and (math-known-scalarp (nth 1 (car dp)) t)
- (math-simplify-divisor np (cdr (cdr (car dp)))
- math-simplify-divisor-nover
- (not math-simplify-divisor-dover))))
- ((or (or (eq (car math-simplify-expr) '/)
- (let ((signs (math-possible-signs (car np))))
- (or (memq signs '(1 4))
- (and (memq (car math-simplify-expr) '(calcFunc-eq calcFunc-neq))
- (eq signs 5))
- math-living-dangerously)))
- (math-numberp (car np)))
- (let (d
- (safe t)
- (scalar (math-known-scalarp (car np))))
- (while (and (eq (car-safe (setq d (car dp))) '*)
- safe)
- (math-simplify-one-divisor np (cdr d))
- (setq safe (or scalar (math-known-scalarp (nth 1 d) t))
- dp (cdr (cdr d))))
- (if safe
- (math-simplify-one-divisor np dp))))))
- (defun math-simplify-one-divisor (np dp)
- (let ((temp (math-combine-prod (car np) (car dp) math-simplify-divisor-nover
- math-simplify-divisor-dover t))
- op)
- (if temp
- (progn
- (and (not (memq (car math-simplify-expr) '(/ calcFunc-eq calcFunc-neq)))
- (math-known-negp (car dp))
- (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table))
- (setcar math-simplify-expr (nth 1 op)))
- (setcar np (if math-simplify-divisor-nover (math-div 1 temp) temp))
- (setcar dp 1))
- (and math-simplify-divisor-dover (not math-simplify-divisor-nover)
- (eq (car math-simplify-expr) '/)
- (eq (car-safe (car dp)) 'calcFunc-sqrt)
- (Math-integerp (nth 1 (car dp)))
- (progn
- (setcar np (math-mul (car np)
- (list 'calcFunc-sqrt (nth 1 (car dp)))))
- (setcar dp (nth 1 (car dp))))))))
- (defun math-common-constant-factor (expr)
- (if (Math-realp expr)
- (if (Math-ratp expr)
- (and (not (memq expr '(0 1 -1)))
- (math-abs expr))
- (if (math-ratp (setq expr (math-to-simple-fraction expr)))
- (math-common-constant-factor expr)))
- (if (memq (car expr) '(+ - cplx sdev))
- (let ((f1 (math-common-constant-factor (nth 1 expr)))
- (f2 (math-common-constant-factor (nth 2 expr))))
- (and f1 f2
- (not (eq (setq f1 (math-frac-gcd f1 f2)) 1))
- f1))
- (if (memq (car expr) '(* polar))
- (math-common-constant-factor (nth 1 expr))
- (if (eq (car expr) '/)
- (or (math-common-constant-factor (nth 1 expr))
- (and (Math-integerp (nth 2 expr))
- (list 'frac 1 (math-abs (nth 2 expr))))))))))
- (defun math-cancel-common-factor (expr val)
- (if (memq (car-safe expr) '(+ - cplx sdev))
- (progn
- (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val))
- (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val))
- expr)
- (if (eq (car-safe expr) '*)
- (math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
- (math-div expr val))))
- (defun math-frac-gcd (a b)
- (if (Math-zerop a)
- b
- (if (Math-zerop b)
- a
- (if (and (Math-integerp a)
- (Math-integerp b))
- (math-gcd a b)
- (and (Math-integerp a) (setq a (list 'frac a 1)))
- (and (Math-integerp b) (setq b (list 'frac b 1)))
- (math-make-frac (math-gcd (nth 1 a) (nth 1 b))
- (math-gcd (nth 2 a) (nth 2 b)))))))
- (math-defsimplify %
- (math-simplify-mod))
- (defun math-simplify-mod ()
- (and (Math-realp (nth 2 math-simplify-expr))
- (Math-posp (nth 2 math-simplify-expr))
- (let ((lin (math-is-linear (nth 1 math-simplify-expr)))
- t1 t2 t3)
- (or (and lin
- (or (math-negp (car lin))
- (not (Math-lessp (car lin) (nth 2 math-simplify-expr))))
- (list '%
- (list '+
- (math-mul (nth 1 lin) (nth 2 lin))
- (math-mod (car lin) (nth 2 math-simplify-expr)))
- (nth 2 math-simplify-expr)))
- (and lin
- (not (math-equal-int (nth 1 lin) 1))
- (math-num-integerp (nth 1 lin))
- (math-num-integerp (nth 2 math-simplify-expr))
- (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 math-simplify-expr)))
- (not (math-equal-int t1 1))
- (list '*
- t1
- (list '%
- (list '+
- (math-mul (math-div (nth 1 lin) t1)
- (nth 2 lin))
- (let ((calc-prefer-frac t))
- (math-div (car lin) t1)))
- (math-div (nth 2 math-simplify-expr) t1))))
- (and (math-equal-int (nth 2 math-simplify-expr) 1)
- (math-known-integerp (if lin
- (math-mul (nth 1 lin) (nth 2 lin))
- (nth 1 math-simplify-expr)))
- (if lin (math-mod (car lin) 1) 0))))))
- (math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
- calcFunc-gt calcFunc-leq calcFunc-geq)
- (if (= (length math-simplify-expr) 3)
- (math-simplify-ineq)))
- (defun math-simplify-ineq ()
- (let ((np (cdr math-simplify-expr))
- n)
- (while (memq (car-safe (setq n (car np))) '(+ -))
- (math-simplify-add-term (cdr (cdr n)) (cdr (cdr math-simplify-expr))
- (eq (car n) '-) nil)
- (setq np (cdr n)))
- (math-simplify-add-term np (cdr (cdr math-simplify-expr)) nil
- (eq np (cdr math-simplify-expr)))
- (math-simplify-divide)
- (let ((signs (math-possible-signs (cons '- (cdr math-simplify-expr)))))
- (or (cond ((eq (car math-simplify-expr) 'calcFunc-eq)
- (or (and (eq signs 2) 1)
- (and (memq signs '(1 4 5)) 0)))
- ((eq (car math-simplify-expr) 'calcFunc-neq)
- (or (and (eq signs 2) 0)
- (and (memq signs '(1 4 5)) 1)))
- ((eq (car math-simplify-expr) 'calcFunc-lt)
- (or (and (eq signs 1) 1)
- (and (memq signs '(2 4 6)) 0)))
- ((eq (car math-simplify-expr) 'calcFunc-gt)
- (or (and (eq signs 4) 1)
- (and (memq signs '(1 2 3)) 0)))
- ((eq (car math-simplify-expr) 'calcFunc-leq)
- (or (and (eq signs 4) 0)
- (and (memq signs '(1 2 3)) 1)))
- ((eq (car math-simplify-expr) 'calcFunc-geq)
- (or (and (eq signs 1) 0)
- (and (memq signs '(2 4 6)) 1))))
- math-simplify-expr))))
- (defun math-simplify-add-term (np dp minus lplain)
- (or (math-vectorp (car np))
- (let ((rplain t)
- n d dd temp)
- (while (memq (car-safe (setq n (car np) d (car dp))) '(+ -))
- (setq rplain nil)
- (if (setq temp (math-combine-sum n (nth 2 d)
- minus (eq (car d) '+) t))
- (if (or lplain (eq (math-looks-negp temp) minus))
- (progn
- (setcar np (setq n (if minus (math-neg temp) temp)))
- (setcar (cdr (cdr d)) 0))
- (progn
- (setcar np 0)
- (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+)
- (math-neg temp)
- temp))))))
- (setq dp (cdr d)))
- (if (setq temp (math-combine-sum n d minus t t))
- (if (or lplain
- (and (not rplain)
- (eq (math-looks-negp temp) minus)))
- (progn
- (setcar np (setq n (if minus (math-neg temp) temp)))
- (setcar dp 0))
- (progn
- (setcar np 0)
- (setcar dp (setq n (math-neg temp)))))))))
- (math-defsimplify calcFunc-sin
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-sin (math-neg (nth 1 math-simplify-expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-known-sin (car n) (nth 1 n) 120 0))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr
- (nth 1 (nth 1 math-simplify-expr))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-add 1 (math-sqr
- (nth 1 (nth 1 math-simplify-expr)))))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (list '+
- (list '* (list 'calcFunc-sin (list '* (1- n) a))
- (list 'calcFunc-cos a))
- (list '* (list 'calcFunc-cos (list '* (1- n) a))
- (list 'calcFunc-sin a))))))))
- (math-defsimplify calcFunc-cos
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (list 'calcFunc-cos (math-neg (nth 1 math-simplify-expr))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-known-sin (car n) (nth 1 n) 120 300))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (math-div 1
- (list 'calcFunc-sqrt
- (math-add 1
- (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (list '-
- (list '* (list 'calcFunc-cos (list '* (1- n) a))
- (list 'calcFunc-cos a))
- (list '* (list 'calcFunc-sin (list '* (1- n) a))
- (list 'calcFunc-sin a))))))))
- (math-defsimplify calcFunc-sec
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (list 'calcFunc-sec (math-neg (nth 1 math-simplify-expr))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-div 1 (math-known-sin (car n) (nth 1 n) 120 300)))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-div 1 (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (math-div
- 1
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (math-div
- 1
- (nth 1 (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (list 'calcFunc-sqrt
- (math-add 1
- (math-sqr (nth 1 (nth 1 math-simplify-expr))))))))
- (math-defsimplify calcFunc-csc
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-csc (math-neg (nth 1 math-simplify-expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-div 1 (math-known-sin (car n) (nth 1 n) 120 0)))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-div 1 (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (math-div 1 (nth 1 (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (math-div
- 1
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr
- (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (math-div (list 'calcFunc-sqrt
- (math-add 1 (math-sqr
- (nth 1 (nth 1 math-simplify-expr)))))
- (nth 1 (nth 1 math-simplify-expr))))))
- (defun math-should-expand-trig (x &optional hyperbolic)
- (let ((m (math-is-multiple x)))
- (and math-living-dangerously
- m (or (and (integerp (car m)) (> (car m) 1))
- (equal (car m) '(frac 1 2)))
- (or math-integrating
- (memq (car-safe (nth 1 m))
- (if hyperbolic
- '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh)
- '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
- (and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
- (eq hyperbolic 'exp)))
- m)))
- (defun math-known-sin (plus n mul off)
- (setq n (math-mul n mul))
- (and (math-num-integerp n)
- (setq n (math-mod (math-add (math-trunc n) off) 240))
- (if (>= n 120)
- (and (setq n (math-known-sin plus (- n 120) 1 0))
- (math-neg n))
- (if (> n 60)
- (setq n (- 120 n)))
- (if (math-zerop plus)
- (and (or calc-symbolic-mode
- (memq n '(0 20 60)))
- (cdr (assq n
- '( (0 . 0)
- (10 . (/ (calcFunc-sqrt
- (- 2 (calcFunc-sqrt 3))) 2))
- (12 . (/ (- (calcFunc-sqrt 5) 1) 4))
- (15 . (/ (calcFunc-sqrt
- (- 2 (calcFunc-sqrt 2))) 2))
- (20 . (/ 1 2))
- (24 . (* (^ (/ 1 2) (/ 3 2))
- (calcFunc-sqrt
- (- 5 (calcFunc-sqrt 5)))))
- (30 . (/ (calcFunc-sqrt 2) 2))
- (36 . (/ (+ (calcFunc-sqrt 5) 1) 4))
- (40 . (/ (calcFunc-sqrt 3) 2))
- (45 . (/ (calcFunc-sqrt
- (+ 2 (calcFunc-sqrt 2))) 2))
- (48 . (* (^ (/ 1 2) (/ 3 2))
- (calcFunc-sqrt
- (+ 5 (calcFunc-sqrt 5)))))
- (50 . (/ (calcFunc-sqrt
- (+ 2 (calcFunc-sqrt 3))) 2))
- (60 . 1)))))
- (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
- ((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
- (t nil))))))
- (math-defsimplify calcFunc-tan
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-tan (math-neg (nth 1 math-simplify-expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-known-tan (car n) (nth 1 n) 120))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (math-div (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
- (nth 1 (nth 1 math-simplify-expr))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
- (and m
- (if (equal (car m) '(frac 1 2))
- (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
- (list 'calcFunc-sin (nth 1 m)))
- (math-div (list 'calcFunc-sin (nth 1 math-simplify-expr))
- (list 'calcFunc-cos (nth 1 math-simplify-expr))))))))
- (math-defsimplify calcFunc-cot
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-cot (math-neg (nth 1 math-simplify-expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
- (and n
- (math-div 1 (math-known-tan (car n) (nth 1 n) 120)))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
- (and n
- (math-div 1 (math-known-tan (car n) (nth 1 n) '(frac 2 3))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
- (math-div (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
- (nth 1 (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
- (math-div 1 (nth 1 (nth 1 math-simplify-expr))))))
- (defun math-known-tan (plus n mul)
- (setq n (math-mul n mul))
- (and (math-num-integerp n)
- (setq n (math-mod (math-trunc n) 120))
- (if (> n 60)
- (and (setq n (math-known-tan plus (- 120 n) 1))
- (math-neg n))
- (if (math-zerop plus)
- (and (or calc-symbolic-mode
- (memq n '(0 30 60)))
- (cdr (assq n '( (0 . 0)
- (10 . (- 2 (calcFunc-sqrt 3)))
- (12 . (calcFunc-sqrt
- (- 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
- (15 . (- (calcFunc-sqrt 2) 1))
- (20 . (/ (calcFunc-sqrt 3) 3))
- (24 . (calcFunc-sqrt
- (- 5 (* 2 (calcFunc-sqrt 5)))))
- (30 . 1)
- (36 . (calcFunc-sqrt
- (+ 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
- (40 . (calcFunc-sqrt 3))
- (45 . (+ (calcFunc-sqrt 2) 1))
- (48 . (calcFunc-sqrt
- (+ 5 (* 2 (calcFunc-sqrt 5)))))
- (50 . (+ 2 (calcFunc-sqrt 3)))
- (60 . (var uinf var-uinf))))))
- (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
- ((eq n 60) (math-normalize (list '/ -1
- (list 'calcFunc-tan plus))))
- (t nil))))))
- (math-defsimplify calcFunc-sinh
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-sinh (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (if (> n 1)
- (list '+
- (list '* (list 'calcFunc-sinh (list '* (1- n) a))
- (list 'calcFunc-cosh a))
- (list '* (list 'calcFunc-cosh (list '* (1- n) a))
- (list 'calcFunc-sinh a)))))))))
- (math-defsimplify calcFunc-cosh
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (list 'calcFunc-cosh (math-neg (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div 1
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (if (> n 1)
- (list '+
- (list '* (list 'calcFunc-cosh (list '* (1- n) a))
- (list 'calcFunc-cosh a))
- (list '* (list 'calcFunc-sinh (list '* (1- n) a))
- (list 'calcFunc-sinh a)))))))))
- (math-defsimplify calcFunc-tanh
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- (nth 1 (nth 1 math-simplify-expr)))
- (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-tanh (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (math-div (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))
- (nth 1 (nth 1 math-simplify-expr))))
- (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
- (and m
- (if (equal (car m) '(frac 1 2))
- (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
- (list 'calcFunc-sinh (nth 1 m)))
- (math-div (list 'calcFunc-sinh (nth 1 math-simplify-expr))
- (list 'calcFunc-cosh (nth 1 math-simplify-expr))))))))
- (math-defsimplify calcFunc-sech
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (list 'calcFunc-sech (math-neg (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (math-div
- 1
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (math-div 1 (nth 1 (nth 1 math-simplify-expr))) 1)
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr))))))))
- (math-defsimplify calcFunc-csch
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-csch (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (math-div 1 (nth 1 (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (math-div
- 1
- (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
- (nth 1 (nth 1 math-simplify-expr))))))
- (math-defsimplify calcFunc-coth
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-coth (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (math-div (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))
- (nth 1 (nth 1 math-simplify-expr))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (math-div (nth 1 (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div 1 (nth 1 (nth 1 math-simplify-expr))))))
- (math-defsimplify calcFunc-arcsin
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (nth 1 math-simplify-expr) 1)
- (math-quarter-circle t))
- (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
- (math-div (math-half-circle t) 6))
- (and math-living-dangerously
- (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
- (nth 1 (nth 1 math-simplify-expr)))
- (and math-living-dangerously
- (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
- (math-sub (math-quarter-circle t)
- (nth 1 (nth 1 math-simplify-expr))))))
- (math-defsimplify calcFunc-arccos
- (or (and (eq (nth 1 math-simplify-expr) 0)
- (math-quarter-circle t))
- (and (eq (nth 1 math-simplify-expr) -1)
- (math-half-circle t))
- (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
- (math-div (math-half-circle t) 3))
- (and (equal (nth 1 math-simplify-expr) '(frac -1 2))
- (math-div (math-mul (math-half-circle t) 2) 3))
- (and math-living-dangerously
- (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
- (nth 1 (nth 1 math-simplify-expr)))
- (and math-living-dangerously
- (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
- (math-sub (math-quarter-circle t)
- (nth 1 (nth 1 math-simplify-expr))))))
- (math-defsimplify calcFunc-arctan
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-arctan (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (nth 1 math-simplify-expr) 1)
- (math-div (math-half-circle t) 4))
- (and math-living-dangerously
- (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tan)
- (nth 1 (nth 1 math-simplify-expr)))))
- (math-defsimplify calcFunc-arcsinh
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sinh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
- (nth 1 (nth 1 math-simplify-expr)))))
- (math-defsimplify calcFunc-arccosh
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
- (nth 1 (nth 1 math-simplify-expr))))
- (math-defsimplify calcFunc-arctanh
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tanh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
- (nth 1 (nth 1 math-simplify-expr)))))
- (math-defsimplify calcFunc-sqrt
- (math-simplify-sqrt))
- (defun math-simplify-sqrt ()
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
- (math-div (list 'calcFunc-sqrt
- (math-mul (nth 1 (nth 1 math-simplify-expr))
- (nth 2 (nth 1 math-simplify-expr))))
- (nth 2 (nth 1 math-simplify-expr))))
- (let ((fac (if (math-objectp (nth 1 math-simplify-expr))
- (math-squared-factor (nth 1 math-simplify-expr))
- (math-common-constant-factor (nth 1 math-simplify-expr)))))
- (and fac (not (eq fac 1))
- (math-mul (math-normalize (list 'calcFunc-sqrt fac))
- (math-normalize
- (list 'calcFunc-sqrt
- (math-cancel-common-factor
- (nth 1 math-simplify-expr) fac))))))
- (and math-living-dangerously
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
- (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 1)
- (eq (car-safe (nth 2 (nth 1 math-simplify-expr))) '^)
- (math-equal-int (nth 2 (nth 2 (nth 1 math-simplify-expr))) 2)
- (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
- 'calcFunc-sin)
- (list 'calcFunc-cos
- (nth 1 (nth 1 (nth 2 (nth 1 math-simplify-expr))))))
- (and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
- 'calcFunc-cos)
- (list 'calcFunc-sin
- (nth 1 (nth 1 (nth 2
- (nth 1 math-simplify-expr))))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
- (math-equal-int (nth 2 (nth 1 math-simplify-expr)) 1)
- (eq (car-safe (nth 1 (nth 1 math-simplify-expr))) '^)
- (math-equal-int (nth 2 (nth 1 (nth 1 math-simplify-expr))) 2)
- (and (eq (car-safe (nth 1 (nth 1 (nth 1 math-simplify-expr))))
- 'calcFunc-cosh)
- (list 'calcFunc-sinh
- (nth 1 (nth 1 (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) '+)
- (let ((a (nth 1 (nth 1 math-simplify-expr)))
- (b (nth 2 (nth 1 math-simplify-expr))))
- (and (or (and (math-equal-int a 1)
- (setq a b b (nth 1 (nth 1 math-simplify-expr))))
- (math-equal-int b 1))
- (eq (car-safe a) '^)
- (math-equal-int (nth 2 a) 2)
- (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh)
- (list 'calcFunc-cosh (nth 1 (nth 1 a))))
- (and (eq (car-safe (nth 1 a)) 'calcFunc-csch)
- (list 'calcFunc-coth (nth 1 (nth 1 a))))
- (and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
- (list '/ 1 (list 'calcFunc-cos
- (nth 1 (nth 1 a)))))
- (and (eq (car-safe (nth 1 a)) 'calcFunc-cot)
- (list '/ 1 (list 'calcFunc-sin
- (nth 1 (nth 1 a)))))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
- (list '^
- (nth 1 (nth 1 math-simplify-expr))
- (math-div (nth 2 (nth 1 math-simplify-expr)) 2)))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
- (list '^ (nth 1 (nth 1 math-simplify-expr)) (math-div 1 4)))
- (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
- (list (car (nth 1 math-simplify-expr))
- (list 'calcFunc-sqrt (nth 1 (nth 1 math-simplify-expr)))
- (list 'calcFunc-sqrt (nth 2 (nth 1 math-simplify-expr)))))
- (and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
- (not (math-any-floats (nth 1 math-simplify-expr)))
- (let ((f (calcFunc-factors (calcFunc-expand
- (nth 1 math-simplify-expr)))))
- (and (math-vectorp f)
- (or (> (length f) 2)
- (> (nth 2 (nth 1 f)) 1))
- (let ((out 1) (rest 1) (sums 1) fac pow)
- (while (setq f (cdr f))
- (setq fac (nth 1 (car f))
- pow (nth 2 (car f)))
- (if (> pow 1)
- (setq out (math-mul out (math-pow
- fac (/ pow 2)))
- pow (% pow 2)))
- (if (> pow 0)
- (if (memq (car-safe fac) '(+ -))
- (setq sums (math-mul-thru sums fac))
- (setq rest (math-mul rest fac)))))
- (and (not (and (eq out 1) (memq rest '(1 -1))))
- (math-mul
- out
- (list 'calcFunc-sqrt
- (math-mul sums rest))))))))))))
- ;;; Rather than factoring x into primes, just check for the first ten primes.
- (defun math-squared-factor (x)
- (if (Math-integerp x)
- (let ((prsqr '(4 9 25 49 121 169 289 361 529 841))
- (fac 1)
- res)
- (while prsqr
- (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0)
- (setq x (car res)
- fac (math-mul fac (car prsqr)))
- (setq prsqr (cdr prsqr))))
- fac)))
- (math-defsimplify calcFunc-exp
- (math-simplify-exp (nth 1 math-simplify-expr)))
- (defun math-simplify-exp (x)
- (or (and (eq (car-safe x) 'calcFunc-ln)
- (nth 1 x))
- (and math-living-dangerously
- (or (and (eq (car-safe x) 'calcFunc-arcsinh)
- (math-add (nth 1 x)
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 x)) 1))))
- (and (eq (car-safe x) 'calcFunc-arccosh)
- (math-add (nth 1 x)
- (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 x)) 1))))
- (and (eq (car-safe x) 'calcFunc-arctanh)
- (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x)))
- (list 'calcFunc-sqrt (math-sub 1 (nth 1 x)))))
- (let ((m (math-should-expand-trig x 'exp)))
- (and m (integerp (car m))
- (list '^ (list 'calcFunc-exp (nth 1 m)) (car m))))))
- (and calc-symbolic-mode
- (math-known-imagp x)
- (let* ((ip (calcFunc-im x))
- (n (math-linear-in ip '(var pi var-pi)))
- s c)
- (and n
- (setq s (math-known-sin (car n) (nth 1 n) 120 0))
- (setq c (math-known-sin (car n) (nth 1 n) 120 300))
- (list '+ c (list '* s '(var i var-i))))))))
- (math-defsimplify calcFunc-ln
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
- (nth 1 (nth 1 math-simplify-expr)))
- (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
- (equal (nth 1 (nth 1 math-simplify-expr)) '(var e var-e))
- (or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
- (nth 2 (nth 1 math-simplify-expr)))
- (and calc-symbolic-mode
- (math-known-negp (nth 1 math-simplify-expr))
- (math-add (list 'calcFunc-ln (math-neg (nth 1 math-simplify-expr)))
- '(* (var pi var-pi) (var i var-i))))
- (and calc-symbolic-mode
- (math-known-imagp (nth 1 math-simplify-expr))
- (let* ((ip (calcFunc-im (nth 1 math-simplify-expr)))
- (ips (math-possible-signs ip)))
- (or (and (memq ips '(4 6))
- (math-add (list 'calcFunc-ln ip)
- '(/ (* (var pi var-pi) (var i var-i)) 2)))
- (and (memq ips '(1 3))
- (math-sub (list 'calcFunc-ln (math-neg ip))
- '(/ (* (var pi var-pi) (var i var-i)) 2))))))))
- (math-defsimplify ^
- (math-simplify-pow))
- (defun math-simplify-pow ()
- (or (and math-living-dangerously
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
- (list '^
- (nth 1 (nth 1 math-simplify-expr))
- (math-mul (nth 2 math-simplify-expr)
- (nth 2 (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
- (list '^
- (nth 1 (nth 1 math-simplify-expr))
- (math-div (nth 2 math-simplify-expr) 2)))
- (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
- (list (car (nth 1 math-simplify-expr))
- (list '^ (nth 1 (nth 1 math-simplify-expr))
- (nth 2 math-simplify-expr))
- (list '^ (nth 2 (nth 1 math-simplify-expr))
- (nth 2 math-simplify-expr))))))
- (and (math-equal-int (nth 1 math-simplify-expr) 10)
- (eq (car-safe (nth 2 math-simplify-expr)) 'calcFunc-log10)
- (nth 1 (nth 2 math-simplify-expr)))
- (and (equal (nth 1 math-simplify-expr) '(var e var-e))
- (math-simplify-exp (nth 2 math-simplify-expr)))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
- (not math-integrating)
- (list 'calcFunc-exp (math-mul (nth 1 (nth 1 math-simplify-expr))
- (nth 2 math-simplify-expr))))
- (and (equal (nth 1 math-simplify-expr) '(var i var-i))
- (math-imaginary-i)
- (math-num-integerp (nth 2 math-simplify-expr))
- (let ((x (math-mod (math-trunc (nth 2 math-simplify-expr)) 4)))
- (cond ((eq x 0) 1)
- ((eq x 1) (nth 1 math-simplify-expr))
- ((eq x 2) -1)
- ((eq x 3) (math-neg (nth 1 math-simplify-expr))))))
- (and math-integrating
- (integerp (nth 2 math-simplify-expr))
- (>= (nth 2 math-simplify-expr) 2)
- (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
- (math-mul (math-pow (nth 1 math-simplify-expr)
- (- (nth 2 math-simplify-expr) 2))
- (math-sub 1
- (math-sqr
- (list 'calcFunc-sin
- (nth 1 (nth 1 math-simplify-expr)))))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
- (math-mul (math-pow (nth 1 math-simplify-expr)
- (- (nth 2 math-simplify-expr) 2))
- (math-add 1
- (math-sqr
- (list 'calcFunc-sinh
- (nth 1 (nth 1 math-simplify-expr)))))))))
- (and (eq (car-safe (nth 2 math-simplify-expr)) 'frac)
- (Math-ratp (nth 1 math-simplify-expr))
- (Math-posp (nth 1 math-simplify-expr))
- (if (equal (nth 2 math-simplify-expr) '(frac 1 2))
- (list 'calcFunc-sqrt (nth 1 math-simplify-expr))
- (let ((flr (math-floor (nth 2 math-simplify-expr))))
- (and (not (Math-zerop flr))
- (list '* (list '^ (nth 1 math-simplify-expr) flr)
- (list '^ (nth 1 math-simplify-expr)
- (math-sub (nth 2 math-simplify-expr) flr)))))))
- (and (eq (math-quarter-integer (nth 2 math-simplify-expr)) 2)
- (let ((temp (math-simplify-sqrt)))
- (and temp
- (list '^ temp (math-mul (nth 2 math-simplify-expr) 2)))))))
- (math-defsimplify calcFunc-log10
- (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
- (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 10)
- (or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
- (nth 2 (nth 1 math-simplify-expr))))
- (math-defsimplify calcFunc-erf
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-neg (list 'calcFunc-erf (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
- (list 'calcFunc-conj
- (list 'calcFunc-erf (nth 1 (nth 1 math-simplify-expr)))))))
- (math-defsimplify calcFunc-erfc
- (or (and (math-looks-negp (nth 1 math-simplify-expr))
- (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 math-simplify-expr)))))
- (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
- (list 'calcFunc-conj
- (list 'calcFunc-erfc (nth 1 (nth 1 math-simplify-expr)))))))
- (defun math-linear-in (expr term &optional always)
- (if (math-expr-contains expr term)
- (let* ((calc-prefer-frac t)
- (p (math-is-polynomial expr term 1)))
- (and (cdr p)
- p))
- (and always (list expr 0))))
- (defun math-multiple-of (expr term)
- (let ((p (math-linear-in expr term)))
- (and p
- (math-zerop (car p))
- (nth 1 p))))
- ; not perfect, but it'll do
- (defun math-integer-plus (expr)
- (cond ((Math-integerp expr)
- (list 0 expr))
- ((and (memq (car expr) '(+ -))
- (Math-integerp (nth 1 expr)))
- (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))
- (nth 1 expr)))
- ((and (memq (car expr) '(+ -))
- (Math-integerp (nth 2 expr)))
- (list (nth 1 expr)
- (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
- (t nil)))
- (defun math-is-linear (expr &optional always)
- (let ((offset nil)
- (coef nil))
- (if (eq (car-safe expr) '+)
- (if (Math-objectp (nth 1 expr))
- (setq offset (nth 1 expr)
- expr (nth 2 expr))
- (if (Math-objectp (nth 2 expr))
- (setq offset (nth 2 expr)
- expr (nth 1 expr))))
- (if (eq (car-safe expr) '-)
- (if (Math-objectp (nth 1 expr))
- (setq offset (nth 1 expr)
- expr (math-neg (nth 2 expr)))
- (if (Math-objectp (nth 2 expr))
- (setq offset (math-neg (nth 2 expr))
- expr (nth 1 expr))))))
- (setq coef (math-is-multiple expr always))
- (if offset
- (list offset (or (car coef) 1) (or (nth 1 coef) expr))
- (if coef
- (cons 0 coef)))))
- (defun math-is-multiple (expr &optional always)
- (or (if (eq (car-safe expr) '*)
- (if (Math-objectp (nth 1 expr))
- (list (nth 1 expr) (nth 2 expr)))
- (if (eq (car-safe expr) '/)
- (if (and (Math-objectp (nth 1 expr))
- (not (math-equal-int (nth 1 expr) 1)))
- (list (nth 1 expr) (math-div 1 (nth 2 expr)))
- (if (Math-objectp (nth 2 expr))
- (list (math-div 1 (nth 2 expr)) (nth 1 expr))
- (let ((res (math-is-multiple (nth 1 expr))))
- (if res
- (list (car res)
- (math-div (nth 2 (nth 1 expr)) (nth 2 expr)))
- (setq res (math-is-multiple (nth 2 expr)))
- (if res
- (list (math-div 1 (car res))
- (math-div (nth 1 expr)
- (nth 2 (nth 2 expr)))))))))
- (if (eq (car-safe expr) 'neg)
- (list -1 (nth 1 expr)))))
- (if (Math-objvecp expr)
- (and (eq always 1)
- (list expr 1))
- (and always
- (list 1 expr)))))
- (defun calcFunc-lin (expr &optional var)
- (if var
- (let ((res (math-linear-in expr var t)))
- (or res (math-reject-arg expr "Linear term expected"))
- (list 'vec (car res) (nth 1 res) var))
- (let ((res (math-is-linear expr t)))
- (or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res))))
- (defun calcFunc-linnt (expr &optional var)
- (if var
- (let ((res (math-linear-in expr var)))
- (or res (math-reject-arg expr "Linear term expected"))
- (list 'vec (car res) (nth 1 res) var))
- (let ((res (math-is-linear expr)))
- (or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res))))
- (defun calcFunc-islin (expr &optional var)
- (if (and (Math-objvecp expr) (not var))
- 0
- (calcFunc-lin expr var)
- 1))
- (defun calcFunc-islinnt (expr &optional var)
- (if (Math-objvecp expr)
- 0
- (calcFunc-linnt expr var)
- 1))
- ;;; Simple operations on expressions.
- ;;; Return number of occurrences of thing in expr, or nil if none.
- (defun math-expr-contains-count (expr thing)
- (cond ((equal expr thing) 1)
- ((Math-primp expr) nil)
- (t
- (let ((num 0))
- (while (setq expr (cdr expr))
- (setq num (+ num (or (math-expr-contains-count
- (car expr) thing) 0))))
- (and (> num 0)
- num)))))
- (defun math-expr-contains (expr thing)
- (cond ((equal expr thing) 1)
- ((Math-primp expr) nil)
- (t
- (while (and (setq expr (cdr expr))
- (not (math-expr-contains (car expr) thing))))
- expr)))
- ;;; Return non-nil if any variable of thing occurs in expr.
- (defun math-expr-depends (expr thing)
- (if (Math-primp thing)
- (and (eq (car-safe thing) 'var)
- (math-expr-contains expr thing))
- (while (and (setq thing (cdr thing))
- (not (math-expr-depends expr (car thing)))))
- thing))
- ;;; Substitute all occurrences of old for new in expr (non-destructive).
- ;; The variables math-expr-subst-old and math-expr-subst-new are local
- ;; for math-expr-subst, but used by math-expr-subst-rec.
- (defvar math-expr-subst-old)
- (defvar math-expr-subst-new)
- (defun math-expr-subst (expr math-expr-subst-old math-expr-subst-new)
- (math-expr-subst-rec expr))
- (defalias 'calcFunc-subst 'math-expr-subst)
- (defun math-expr-subst-rec (expr)
- (cond ((equal expr math-expr-subst-old) math-expr-subst-new)
- ((Math-primp expr) expr)
- ((memq (car expr) '(calcFunc-deriv
- calcFunc-tderiv))
- (if (= (length expr) 2)
- (if (equal (nth 1 expr) math-expr-subst-old)
- (append expr (list math-expr-subst-new))
- expr)
- (list (car expr) (nth 1 expr)
- (math-expr-subst-rec (nth 2 expr)))))
- (t
- (cons (car expr)
- (mapcar 'math-expr-subst-rec (cdr expr))))))
- ;;; Various measures of the size of an expression.
- (defun math-expr-weight (expr)
- (if (Math-primp expr)
- 1
- (let ((w 1))
- (while (setq expr (cdr expr))
- (setq w (+ w (math-expr-weight (car expr)))))
- w)))
- (defun math-expr-height (expr)
- (if (Math-primp expr)
- 0
- (let ((h 0))
- (while (setq expr (cdr expr))
- (setq h (max h (math-expr-height (car expr)))))
- (1+ h))))
- ;;; Polynomial operations (to support the integrator and solve-for).
- (defun calcFunc-collect (expr base)
- (let ((p (math-is-polynomial expr base 50 t)))
- (if (cdr p)
- (math-build-polynomial-expr (mapcar 'math-normalize p) base)
- (car p))))
- ;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
- ;;; else return nil if not in polynomial form. If "loose" (math-is-poly-loose),
- ;;; coefficients may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
- ;; These variables are local to math-is-polynomial, but are used by
- ;; math-is-poly-rec.
- (defvar math-is-poly-degree)
- (defvar math-is-poly-loose)
- (defvar math-var)
- (defun math-is-polynomial (expr math-var &optional math-is-poly-degree math-is-poly-loose)
- (let* ((math-poly-base-variable (if math-is-poly-loose
- (if (eq math-is-poly-loose 'gen) math-var '(var XXX XXX))
- math-poly-base-variable))
- (poly (math-is-poly-rec expr math-poly-neg-powers)))
- (and (or (null math-is-poly-degree)
- (<= (length poly) (1+ math-is-poly-degree)))
- poly)))
- (defun math-is-poly-rec (expr negpow)
- (math-poly-simplify
- (or (cond ((or (equal expr math-var)
- (eq (car-safe expr) '^))
- (let ((pow 1)
- (expr expr))
- (or (equal expr math-var)
- (setq pow (nth 2 expr)
- expr (nth 1 expr)))
- (or (eq math-poly-mult-powers 1)
- (setq pow (let ((m (math-is-multiple pow 1)))
- (and (eq (car-safe (car m)) 'cplx)
- (Math-zerop (nth 1 (car m)))
- (setq m (list (nth 2 (car m))
- (math-mul (nth 1 m)
- '(var i var-i)))))
- (and (if math-poly-mult-powers
- (equal math-poly-mult-powers
- (nth 1 m))
- (setq math-poly-mult-powers (nth 1 m)))
- (or (equal expr math-var)
- (eq math-poly-mult-powers 1))
- (car m)))))
- (if (consp pow)
- (progn
- (setq pow (math-to-simple-fraction pow))
- (and (eq (car-safe pow) 'frac)
- math-poly-frac-powers
- (equal expr math-var)
- (setq math-poly-frac-powers
- (calcFunc-lcm math-poly-frac-powers
- (nth 2 pow))))))
- (or (memq math-poly-frac-powers '(1 nil))
- (setq pow (math-mul pow math-poly-frac-powers)))
- (if (integerp pow)
- (if (and (= pow 1)
- (equal expr math-var))
- (list 0 1)
- (if (natnump pow)
- (let ((p1 (if (equal expr math-var)
- (list 0 1)
- (math-is-poly-rec expr nil)))
- (n pow)
- (accum (list 1)))
- (and p1
- (or (null math-is-poly-degree)
- (<= (* (1- (length p1)) n) math-is-poly-degree))
- (progn
- (while (>= n 1)
- (setq accum (math-poly-mul accum p1)
- n (1- n)))
- accum)))
- (and negpow
- (math-is-poly-rec expr nil)
- (setq math-poly-neg-powers
- (cons (math-pow expr (- pow))
- math-poly-neg-powers))
- (list (list '^ expr pow))))))))
- ((Math-objectp expr)
- (list expr))
- ((memq (car expr) '(+ -))
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (and p1
- (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
- (and p2
- (math-poly-mix p1 1 p2
- (if (eq (car expr) '+) 1 -1)))))))
- ((eq (car expr) 'neg)
- (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow)))
- ((eq (car expr) '*)
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (and p1
- (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
- (and p2
- (or (null math-is-poly-degree)
- (<= (- (+ (length p1) (length p2)) 2)
- math-is-poly-degree))
- (math-poly-mul p1 p2))))))
- ((eq (car expr) '/)
- (and (or (not (math-poly-depends (nth 2 expr) math-var))
- (and negpow
- (math-is-poly-rec (nth 2 expr) nil)
- (setq math-poly-neg-powers
- (cons (nth 2 expr) math-poly-neg-powers))))
- (not (Math-zerop (nth 2 expr)))
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (mapcar (function (lambda (x) (math-div x (nth 2 expr))))
- p1))))
- ((and (eq (car expr) 'calcFunc-exp)
- (equal math-var '(var e var-e)))
- (math-is-poly-rec (list '^ math-var (nth 1 expr)) negpow))
- ((and (eq (car expr) 'calcFunc-sqrt)
- math-poly-frac-powers)
- (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
- (t nil))
- (and (or (not (math-poly-depends expr math-var))
- math-is-poly-loose)
- (not (eq (car expr) 'vec))
- (list expr)))))
- ;;; Check if expr is a polynomial in var; if so, return its degree.
- (defun math-polynomial-p (expr var)
- (cond ((equal expr var) 1)
- ((Math-primp expr) 0)
- ((memq (car expr) '(+ -))
- (let ((p1 (math-polynomial-p (nth 1 expr) var))
- p2)
- (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
- (max p1 p2))))
- ((eq (car expr) '*)
- (let ((p1 (math-polynomial-p (nth 1 expr) var))
- p2)
- (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
- (+ p1 p2))))
- ((eq (car expr) 'neg)
- (math-polynomial-p (nth 1 expr) var))
- ((and (eq (car expr) '/)
- (not (math-poly-depends (nth 2 expr) var)))
- (math-polynomial-p (nth 1 expr) var))
- ((and (eq (car expr) '^)
- (natnump (nth 2 expr)))
- (let ((p1 (math-polynomial-p (nth 1 expr) var)))
- (and p1 (* p1 (nth 2 expr)))))
- ((math-poly-depends expr var) nil)
- (t 0)))
- (defun math-poly-depends (expr var)
- (if math-poly-base-variable
- (math-expr-contains expr math-poly-base-variable)
- (math-expr-depends expr var)))
- ;;; Find the variable (or sub-expression) which is the base of polynomial expr.
- ;; The variables math-poly-base-const-ok and math-poly-base-pred are
- ;; local to math-polynomial-base, but are used by math-polynomial-base-rec.
- (defvar math-poly-base-const-ok)
- (defvar math-poly-base-pred)
- ;; The variable math-poly-base-top-expr is local to math-polynomial-base,
- ;; but is used by math-polynomial-p1 in calc-poly.el, which is called
- ;; by math-polynomial-base.
- (defun math-polynomial-base (math-poly-base-top-expr &optional math-poly-base-pred)
- (or math-poly-base-pred
- (setq math-poly-base-pred (function (lambda (base) (math-polynomial-p
- math-poly-base-top-expr base)))))
- (or (let ((math-poly-base-const-ok nil))
- (math-polynomial-base-rec math-poly-base-top-expr))
- (let ((math-poly-base-const-ok t))
- (math-polynomial-base-rec math-poly-base-top-expr))))
- (defun math-polynomial-base-rec (mpb-expr)
- (and (not (Math-objvecp mpb-expr))
- (or (and (memq (car mpb-expr) '(+ - *))
- (or (math-polynomial-base-rec (nth 1 mpb-expr))
- (math-polynomial-base-rec (nth 2 mpb-expr))))
- (and (memq (car mpb-expr) '(/ neg))
- (math-polynomial-base-rec (nth 1 mpb-expr)))
- (and (eq (car mpb-expr) '^)
- (math-polynomial-base-rec (nth 1 mpb-expr)))
- (and (eq (car mpb-expr) 'calcFunc-exp)
- (math-polynomial-base-rec '(var e var-e)))
- (and (or math-poly-base-const-ok (math-expr-contains-vars mpb-expr))
- (funcall math-poly-base-pred mpb-expr)
- mpb-expr))))
- ;;; Return non-nil if expr refers to any variables.
- (defun math-expr-contains-vars (expr)
- (or (eq (car-safe expr) 'var)
- (and (not (Math-primp expr))
- (progn
- (while (and (setq expr (cdr expr))
- (not (math-expr-contains-vars (car expr)))))
- expr))))
- ;;; Simplify a polynomial in list form by stripping off high-end zeros.
- ;;; This always leaves the constant part, i.e., nil->nil and non-nil->non-nil.
- (defun math-poly-simplify (p)
- (and p
- (if (Math-zerop (nth (1- (length p)) p))
- (let ((pp (copy-sequence p)))
- (while (and (cdr pp)
- (Math-zerop (nth (1- (length pp)) pp)))
- (setcdr (nthcdr (- (length pp) 2) pp) nil))
- pp)
- p)))
- ;;; Compute ac*a + bc*b for polynomials in list form a, b and
- ;;; coefficients ac, bc. Result may be unsimplified.
- (defun math-poly-mix (a ac b bc)
- (and (or a b)
- (cons (math-add (math-mul (or (car a) 0) ac)
- (math-mul (or (car b) 0) bc))
- (math-poly-mix (cdr a) ac (cdr b) bc))))
- (defun math-poly-zerop (a)
- (or (null a)
- (and (null (cdr a)) (Math-zerop (car a)))))
- ;;; Multiply two polynomials in list form.
- (defun math-poly-mul (a b)
- (and a b
- (math-poly-mix b (car a)
- (math-poly-mul (cdr a) (cons 0 b)) 1)))
- ;;; Build an expression from a polynomial list.
- (defun math-build-polynomial-expr (p var)
- (if p
- (if (Math-numberp var)
- (math-with-extra-prec 1
- (let* ((rp (reverse p))
- (accum (car rp)))
- (while (setq rp (cdr rp))
- (setq accum (math-add (car rp) (math-mul accum var))))
- accum))
- (let* ((rp (reverse p))
- (n (1- (length rp)))
- (accum (math-mul (car rp) (math-pow var n)))
- term)
- (while (setq rp (cdr rp))
- (setq n (1- n))
- (or (math-zerop (car rp))
- (setq accum (list (if (math-looks-negp (car rp)) '- '+)
- accum
- (math-mul (if (math-looks-negp (car rp))
- (math-neg (car rp))
- (car rp))
- (math-pow var n))))))
- accum))
- 0))
- (defun math-to-simple-fraction (f)
- (or (and (eq (car-safe f) 'float)
- (or (and (>= (nth 2 f) 0)
- (math-scale-int (nth 1 f) (nth 2 f)))
- (and (integerp (nth 1 f))
- (> (nth 1 f) -1000)
- (< (nth 1 f) 1000)
- (math-make-frac (nth 1 f)
- (math-scale-int 1 (- (nth 2 f)))))))
- f))
- (provide 'calc-alg)
- ;;; calc-alg.el ends here
|