sha512.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
  2. memory blocks according to the NIST specification FIPS-180-2.
  3. Copyright (C) 2005-2006, 2008-2011 Free Software Foundation, Inc.
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  14. /* Written by David Madore, considerably copypasting from
  15. Scott G. Miller's sha1.c
  16. */
  17. #include <config.h>
  18. #include "sha512.h"
  19. #include <stddef.h>
  20. #include <stdlib.h>
  21. #include <string.h>
  22. #if USE_UNLOCKED_IO
  23. # include "unlocked-io.h"
  24. #endif
  25. #ifdef WORDS_BIGENDIAN
  26. # define SWAP(n) (n)
  27. #else
  28. # define SWAP(n) \
  29. u64or (u64or (u64or (u64shl (n, 56), \
  30. u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
  31. u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
  32. u64shl (u64and (n, u64lo (0xff000000)), 8))), \
  33. u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
  34. u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
  35. u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
  36. u64shr (n, 56))))
  37. #endif
  38. #define BLOCKSIZE 32768
  39. #if BLOCKSIZE % 128 != 0
  40. # error "invalid BLOCKSIZE"
  41. #endif
  42. /* This array contains the bytes used to pad the buffer to the next
  43. 128-byte boundary. */
  44. static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
  45. /*
  46. Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
  47. initializes it to the start constants of the SHA512 algorithm. This
  48. must be called before using hash in the call to sha512_hash
  49. */
  50. void
  51. sha512_init_ctx (struct sha512_ctx *ctx)
  52. {
  53. ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
  54. ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
  55. ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
  56. ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
  57. ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
  58. ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
  59. ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
  60. ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
  61. ctx->total[0] = ctx->total[1] = u64lo (0);
  62. ctx->buflen = 0;
  63. }
  64. void
  65. sha384_init_ctx (struct sha512_ctx *ctx)
  66. {
  67. ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
  68. ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
  69. ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
  70. ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
  71. ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
  72. ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
  73. ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
  74. ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
  75. ctx->total[0] = ctx->total[1] = u64lo (0);
  76. ctx->buflen = 0;
  77. }
  78. /* Copy the value from V into the memory location pointed to by *CP,
  79. If your architecture allows unaligned access, this is equivalent to
  80. * (__typeof__ (v) *) cp = v */
  81. static inline void
  82. set_uint64 (char *cp, u64 v)
  83. {
  84. memcpy (cp, &v, sizeof v);
  85. }
  86. /* Put result from CTX in first 64 bytes following RESBUF.
  87. The result must be in little endian byte order. */
  88. void *
  89. sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
  90. {
  91. int i;
  92. char *r = resbuf;
  93. for (i = 0; i < 8; i++)
  94. set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
  95. return resbuf;
  96. }
  97. void *
  98. sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
  99. {
  100. int i;
  101. char *r = resbuf;
  102. for (i = 0; i < 6; i++)
  103. set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
  104. return resbuf;
  105. }
  106. /* Process the remaining bytes in the internal buffer and the usual
  107. prolog according to the standard and write the result to RESBUF. */
  108. static void
  109. sha512_conclude_ctx (struct sha512_ctx *ctx)
  110. {
  111. /* Take yet unprocessed bytes into account. */
  112. size_t bytes = ctx->buflen;
  113. size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
  114. /* Now count remaining bytes. */
  115. ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
  116. if (u64lt (ctx->total[0], u64lo (bytes)))
  117. ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
  118. /* Put the 128-bit file length in *bits* at the end of the buffer.
  119. Use set_uint64 rather than a simple assignment, to avoid risk of
  120. unaligned access. */
  121. set_uint64 ((char *) &ctx->buffer[size - 2],
  122. SWAP (u64or (u64shl (ctx->total[1], 3),
  123. u64shr (ctx->total[0], 61))));
  124. set_uint64 ((char *) &ctx->buffer[size - 1],
  125. SWAP (u64shl (ctx->total[0], 3)));
  126. memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
  127. /* Process last bytes. */
  128. sha512_process_block (ctx->buffer, size * 8, ctx);
  129. }
  130. void *
  131. sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
  132. {
  133. sha512_conclude_ctx (ctx);
  134. return sha512_read_ctx (ctx, resbuf);
  135. }
  136. void *
  137. sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
  138. {
  139. sha512_conclude_ctx (ctx);
  140. return sha384_read_ctx (ctx, resbuf);
  141. }
  142. /* Compute SHA512 message digest for bytes read from STREAM. The
  143. resulting message digest number will be written into the 64 bytes
  144. beginning at RESBLOCK. */
  145. int
  146. sha512_stream (FILE *stream, void *resblock)
  147. {
  148. struct sha512_ctx ctx;
  149. size_t sum;
  150. char *buffer = malloc (BLOCKSIZE + 72);
  151. if (!buffer)
  152. return 1;
  153. /* Initialize the computation context. */
  154. sha512_init_ctx (&ctx);
  155. /* Iterate over full file contents. */
  156. while (1)
  157. {
  158. /* We read the file in blocks of BLOCKSIZE bytes. One call of the
  159. computation function processes the whole buffer so that with the
  160. next round of the loop another block can be read. */
  161. size_t n;
  162. sum = 0;
  163. /* Read block. Take care for partial reads. */
  164. while (1)
  165. {
  166. n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
  167. sum += n;
  168. if (sum == BLOCKSIZE)
  169. break;
  170. if (n == 0)
  171. {
  172. /* Check for the error flag IFF N == 0, so that we don't
  173. exit the loop after a partial read due to e.g., EAGAIN
  174. or EWOULDBLOCK. */
  175. if (ferror (stream))
  176. {
  177. free (buffer);
  178. return 1;
  179. }
  180. goto process_partial_block;
  181. }
  182. /* We've read at least one byte, so ignore errors. But always
  183. check for EOF, since feof may be true even though N > 0.
  184. Otherwise, we could end up calling fread after EOF. */
  185. if (feof (stream))
  186. goto process_partial_block;
  187. }
  188. /* Process buffer with BLOCKSIZE bytes. Note that
  189. BLOCKSIZE % 128 == 0
  190. */
  191. sha512_process_block (buffer, BLOCKSIZE, &ctx);
  192. }
  193. process_partial_block:;
  194. /* Process any remaining bytes. */
  195. if (sum > 0)
  196. sha512_process_bytes (buffer, sum, &ctx);
  197. /* Construct result in desired memory. */
  198. sha512_finish_ctx (&ctx, resblock);
  199. free (buffer);
  200. return 0;
  201. }
  202. /* FIXME: Avoid code duplication */
  203. int
  204. sha384_stream (FILE *stream, void *resblock)
  205. {
  206. struct sha512_ctx ctx;
  207. size_t sum;
  208. char *buffer = malloc (BLOCKSIZE + 72);
  209. if (!buffer)
  210. return 1;
  211. /* Initialize the computation context. */
  212. sha384_init_ctx (&ctx);
  213. /* Iterate over full file contents. */
  214. while (1)
  215. {
  216. /* We read the file in blocks of BLOCKSIZE bytes. One call of the
  217. computation function processes the whole buffer so that with the
  218. next round of the loop another block can be read. */
  219. size_t n;
  220. sum = 0;
  221. /* Read block. Take care for partial reads. */
  222. while (1)
  223. {
  224. n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
  225. sum += n;
  226. if (sum == BLOCKSIZE)
  227. break;
  228. if (n == 0)
  229. {
  230. /* Check for the error flag IFF N == 0, so that we don't
  231. exit the loop after a partial read due to e.g., EAGAIN
  232. or EWOULDBLOCK. */
  233. if (ferror (stream))
  234. {
  235. free (buffer);
  236. return 1;
  237. }
  238. goto process_partial_block;
  239. }
  240. /* We've read at least one byte, so ignore errors. But always
  241. check for EOF, since feof may be true even though N > 0.
  242. Otherwise, we could end up calling fread after EOF. */
  243. if (feof (stream))
  244. goto process_partial_block;
  245. }
  246. /* Process buffer with BLOCKSIZE bytes. Note that
  247. BLOCKSIZE % 128 == 0
  248. */
  249. sha512_process_block (buffer, BLOCKSIZE, &ctx);
  250. }
  251. process_partial_block:;
  252. /* Process any remaining bytes. */
  253. if (sum > 0)
  254. sha512_process_bytes (buffer, sum, &ctx);
  255. /* Construct result in desired memory. */
  256. sha384_finish_ctx (&ctx, resblock);
  257. free (buffer);
  258. return 0;
  259. }
  260. /* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
  261. result is always in little endian byte order, so that a byte-wise
  262. output yields to the wanted ASCII representation of the message
  263. digest. */
  264. void *
  265. sha512_buffer (const char *buffer, size_t len, void *resblock)
  266. {
  267. struct sha512_ctx ctx;
  268. /* Initialize the computation context. */
  269. sha512_init_ctx (&ctx);
  270. /* Process whole buffer but last len % 128 bytes. */
  271. sha512_process_bytes (buffer, len, &ctx);
  272. /* Put result in desired memory area. */
  273. return sha512_finish_ctx (&ctx, resblock);
  274. }
  275. void *
  276. sha384_buffer (const char *buffer, size_t len, void *resblock)
  277. {
  278. struct sha512_ctx ctx;
  279. /* Initialize the computation context. */
  280. sha384_init_ctx (&ctx);
  281. /* Process whole buffer but last len % 128 bytes. */
  282. sha512_process_bytes (buffer, len, &ctx);
  283. /* Put result in desired memory area. */
  284. return sha384_finish_ctx (&ctx, resblock);
  285. }
  286. void
  287. sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
  288. {
  289. /* When we already have some bits in our internal buffer concatenate
  290. both inputs first. */
  291. if (ctx->buflen != 0)
  292. {
  293. size_t left_over = ctx->buflen;
  294. size_t add = 256 - left_over > len ? len : 256 - left_over;
  295. memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
  296. ctx->buflen += add;
  297. if (ctx->buflen > 128)
  298. {
  299. sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
  300. ctx->buflen &= 127;
  301. /* The regions in the following copy operation cannot overlap. */
  302. memcpy (ctx->buffer,
  303. &((char *) ctx->buffer)[(left_over + add) & ~127],
  304. ctx->buflen);
  305. }
  306. buffer = (const char *) buffer + add;
  307. len -= add;
  308. }
  309. /* Process available complete blocks. */
  310. if (len >= 128)
  311. {
  312. #if !_STRING_ARCH_unaligned
  313. # define alignof(type) offsetof (struct { char c; type x; }, x)
  314. # define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0)
  315. if (UNALIGNED_P (buffer))
  316. while (len > 128)
  317. {
  318. sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
  319. buffer = (const char *) buffer + 128;
  320. len -= 128;
  321. }
  322. else
  323. #endif
  324. {
  325. sha512_process_block (buffer, len & ~127, ctx);
  326. buffer = (const char *) buffer + (len & ~127);
  327. len &= 127;
  328. }
  329. }
  330. /* Move remaining bytes in internal buffer. */
  331. if (len > 0)
  332. {
  333. size_t left_over = ctx->buflen;
  334. memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
  335. left_over += len;
  336. if (left_over >= 128)
  337. {
  338. sha512_process_block (ctx->buffer, 128, ctx);
  339. left_over -= 128;
  340. memcpy (ctx->buffer, &ctx->buffer[16], left_over);
  341. }
  342. ctx->buflen = left_over;
  343. }
  344. }
  345. /* --- Code below is the primary difference between sha1.c and sha512.c --- */
  346. /* SHA512 round constants */
  347. #define K(I) sha512_round_constants[I]
  348. static u64 const sha512_round_constants[80] = {
  349. u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
  350. u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
  351. u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
  352. u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
  353. u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
  354. u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
  355. u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
  356. u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
  357. u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
  358. u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
  359. u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
  360. u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
  361. u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
  362. u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
  363. u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
  364. u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
  365. u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
  366. u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
  367. u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
  368. u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
  369. u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
  370. u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
  371. u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
  372. u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
  373. u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
  374. u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
  375. u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
  376. u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
  377. u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
  378. u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
  379. u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
  380. u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
  381. u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
  382. u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
  383. u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
  384. u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
  385. u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
  386. u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
  387. u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
  388. u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
  389. };
  390. /* Round functions. */
  391. #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
  392. #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
  393. /* Process LEN bytes of BUFFER, accumulating context into CTX.
  394. It is assumed that LEN % 128 == 0.
  395. Most of this code comes from GnuPG's cipher/sha1.c. */
  396. void
  397. sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
  398. {
  399. u64 const *words = buffer;
  400. u64 const *endp = words + len / sizeof (u64);
  401. u64 x[16];
  402. u64 a = ctx->state[0];
  403. u64 b = ctx->state[1];
  404. u64 c = ctx->state[2];
  405. u64 d = ctx->state[3];
  406. u64 e = ctx->state[4];
  407. u64 f = ctx->state[5];
  408. u64 g = ctx->state[6];
  409. u64 h = ctx->state[7];
  410. /* First increment the byte count. FIPS PUB 180-2 specifies the possible
  411. length of the file up to 2^128 bits. Here we only compute the
  412. number of bytes. Do a double word increment. */
  413. ctx->total[0] = u64plus (ctx->total[0], u64lo (len));
  414. if (u64lt (ctx->total[0], u64lo (len)))
  415. ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
  416. #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
  417. #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
  418. #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
  419. #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
  420. #define M(I) (x[(I) & 15] \
  421. = u64plus (x[(I) & 15], \
  422. u64plus (S1 (x[((I) - 2) & 15]), \
  423. u64plus (x[((I) - 7) & 15], \
  424. S0 (x[((I) - 15) & 15])))))
  425. #define R(A, B, C, D, E, F, G, H, K, M) \
  426. do \
  427. { \
  428. u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
  429. u64 t1 = \
  430. u64plus (H, u64plus (SS1 (E), \
  431. u64plus (F1 (E, F, G), u64plus (K, M)))); \
  432. D = u64plus (D, t1); \
  433. H = u64plus (t0, t1); \
  434. } \
  435. while (0)
  436. while (words < endp)
  437. {
  438. int t;
  439. /* FIXME: see sha1.c for a better implementation. */
  440. for (t = 0; t < 16; t++)
  441. {
  442. x[t] = SWAP (*words);
  443. words++;
  444. }
  445. R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
  446. R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
  447. R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
  448. R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
  449. R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
  450. R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
  451. R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
  452. R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
  453. R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
  454. R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
  455. R( g, h, a, b, c, d, e, f, K(10), x[10] );
  456. R( f, g, h, a, b, c, d, e, K(11), x[11] );
  457. R( e, f, g, h, a, b, c, d, K(12), x[12] );
  458. R( d, e, f, g, h, a, b, c, K(13), x[13] );
  459. R( c, d, e, f, g, h, a, b, K(14), x[14] );
  460. R( b, c, d, e, f, g, h, a, K(15), x[15] );
  461. R( a, b, c, d, e, f, g, h, K(16), M(16) );
  462. R( h, a, b, c, d, e, f, g, K(17), M(17) );
  463. R( g, h, a, b, c, d, e, f, K(18), M(18) );
  464. R( f, g, h, a, b, c, d, e, K(19), M(19) );
  465. R( e, f, g, h, a, b, c, d, K(20), M(20) );
  466. R( d, e, f, g, h, a, b, c, K(21), M(21) );
  467. R( c, d, e, f, g, h, a, b, K(22), M(22) );
  468. R( b, c, d, e, f, g, h, a, K(23), M(23) );
  469. R( a, b, c, d, e, f, g, h, K(24), M(24) );
  470. R( h, a, b, c, d, e, f, g, K(25), M(25) );
  471. R( g, h, a, b, c, d, e, f, K(26), M(26) );
  472. R( f, g, h, a, b, c, d, e, K(27), M(27) );
  473. R( e, f, g, h, a, b, c, d, K(28), M(28) );
  474. R( d, e, f, g, h, a, b, c, K(29), M(29) );
  475. R( c, d, e, f, g, h, a, b, K(30), M(30) );
  476. R( b, c, d, e, f, g, h, a, K(31), M(31) );
  477. R( a, b, c, d, e, f, g, h, K(32), M(32) );
  478. R( h, a, b, c, d, e, f, g, K(33), M(33) );
  479. R( g, h, a, b, c, d, e, f, K(34), M(34) );
  480. R( f, g, h, a, b, c, d, e, K(35), M(35) );
  481. R( e, f, g, h, a, b, c, d, K(36), M(36) );
  482. R( d, e, f, g, h, a, b, c, K(37), M(37) );
  483. R( c, d, e, f, g, h, a, b, K(38), M(38) );
  484. R( b, c, d, e, f, g, h, a, K(39), M(39) );
  485. R( a, b, c, d, e, f, g, h, K(40), M(40) );
  486. R( h, a, b, c, d, e, f, g, K(41), M(41) );
  487. R( g, h, a, b, c, d, e, f, K(42), M(42) );
  488. R( f, g, h, a, b, c, d, e, K(43), M(43) );
  489. R( e, f, g, h, a, b, c, d, K(44), M(44) );
  490. R( d, e, f, g, h, a, b, c, K(45), M(45) );
  491. R( c, d, e, f, g, h, a, b, K(46), M(46) );
  492. R( b, c, d, e, f, g, h, a, K(47), M(47) );
  493. R( a, b, c, d, e, f, g, h, K(48), M(48) );
  494. R( h, a, b, c, d, e, f, g, K(49), M(49) );
  495. R( g, h, a, b, c, d, e, f, K(50), M(50) );
  496. R( f, g, h, a, b, c, d, e, K(51), M(51) );
  497. R( e, f, g, h, a, b, c, d, K(52), M(52) );
  498. R( d, e, f, g, h, a, b, c, K(53), M(53) );
  499. R( c, d, e, f, g, h, a, b, K(54), M(54) );
  500. R( b, c, d, e, f, g, h, a, K(55), M(55) );
  501. R( a, b, c, d, e, f, g, h, K(56), M(56) );
  502. R( h, a, b, c, d, e, f, g, K(57), M(57) );
  503. R( g, h, a, b, c, d, e, f, K(58), M(58) );
  504. R( f, g, h, a, b, c, d, e, K(59), M(59) );
  505. R( e, f, g, h, a, b, c, d, K(60), M(60) );
  506. R( d, e, f, g, h, a, b, c, K(61), M(61) );
  507. R( c, d, e, f, g, h, a, b, K(62), M(62) );
  508. R( b, c, d, e, f, g, h, a, K(63), M(63) );
  509. R( a, b, c, d, e, f, g, h, K(64), M(64) );
  510. R( h, a, b, c, d, e, f, g, K(65), M(65) );
  511. R( g, h, a, b, c, d, e, f, K(66), M(66) );
  512. R( f, g, h, a, b, c, d, e, K(67), M(67) );
  513. R( e, f, g, h, a, b, c, d, K(68), M(68) );
  514. R( d, e, f, g, h, a, b, c, K(69), M(69) );
  515. R( c, d, e, f, g, h, a, b, K(70), M(70) );
  516. R( b, c, d, e, f, g, h, a, K(71), M(71) );
  517. R( a, b, c, d, e, f, g, h, K(72), M(72) );
  518. R( h, a, b, c, d, e, f, g, K(73), M(73) );
  519. R( g, h, a, b, c, d, e, f, K(74), M(74) );
  520. R( f, g, h, a, b, c, d, e, K(75), M(75) );
  521. R( e, f, g, h, a, b, c, d, K(76), M(76) );
  522. R( d, e, f, g, h, a, b, c, K(77), M(77) );
  523. R( c, d, e, f, g, h, a, b, K(78), M(78) );
  524. R( b, c, d, e, f, g, h, a, K(79), M(79) );
  525. a = ctx->state[0] = u64plus (ctx->state[0], a);
  526. b = ctx->state[1] = u64plus (ctx->state[1], b);
  527. c = ctx->state[2] = u64plus (ctx->state[2], c);
  528. d = ctx->state[3] = u64plus (ctx->state[3], d);
  529. e = ctx->state[4] = u64plus (ctx->state[4], e);
  530. f = ctx->state[5] = u64plus (ctx->state[5], f);
  531. g = ctx->state[6] = u64plus (ctx->state[6], g);
  532. h = ctx->state[7] = u64plus (ctx->state[7], h);
  533. }
  534. }