avl-tree.el 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. ;;; avl-tree.el --- balanced binary trees, AVL-trees
  2. ;; Copyright (C) 1995, 2007-2012 Free Software Foundation, Inc.
  3. ;; Author: Per Cederqvist <ceder@lysator.liu.se>
  4. ;; Inge Wallin <inge@lysator.liu.se>
  5. ;; Thomas Bellman <bellman@lysator.liu.se>
  6. ;; Toby Cubitt <toby-predictive@dr-qubit.org>
  7. ;; Maintainer: FSF
  8. ;; Created: 10 May 1991
  9. ;; Keywords: extensions, data structures, AVL, tree
  10. ;; This file is part of GNU Emacs.
  11. ;; GNU Emacs is free software: you can redistribute it and/or modify
  12. ;; it under the terms of the GNU General Public License as published by
  13. ;; the Free Software Foundation, either version 3 of the License, or
  14. ;; (at your option) any later version.
  15. ;; GNU Emacs is distributed in the hope that it will be useful,
  16. ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. ;; GNU General Public License for more details.
  19. ;; You should have received a copy of the GNU General Public License
  20. ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
  21. ;;; Commentary:
  22. ;; An AVL tree is a self-balancing binary tree. As such, inserting,
  23. ;; deleting, and retrieving data from an AVL tree containing n elements
  24. ;; is O(log n). It is somewhat more rigidly balanced than other
  25. ;; self-balancing binary trees (such as red-black trees and AA trees),
  26. ;; making insertion slightly slower, deletion somewhat slower, and
  27. ;; retrieval somewhat faster (the asymptotic scaling is of course the
  28. ;; same for all types). Thus it may be a good choice when the tree will
  29. ;; be relatively static, i.e. data will be retrieved more often than
  30. ;; they are modified.
  31. ;;
  32. ;; Internally, a tree consists of two elements, the root node and the
  33. ;; comparison function. The actual tree has a dummy node as its root
  34. ;; with the real root in the left pointer, which allows the root node to
  35. ;; be treated on a par with all other nodes.
  36. ;;
  37. ;; Each node of the tree consists of one data element, one left
  38. ;; sub-tree, one right sub-tree, and a balance count. The latter is the
  39. ;; difference in depth of the left and right sub-trees.
  40. ;;
  41. ;; The functions with names of the form "avl-tree--" are intended for
  42. ;; internal use only.
  43. ;;; Code:
  44. (eval-when-compile (require 'cl))
  45. ;; ================================================================
  46. ;;; Internal functions and macros for use in the AVL tree package
  47. ;; ----------------------------------------------------------------
  48. ;; Functions and macros handling an AVL tree.
  49. (defstruct (avl-tree-
  50. ;; A tagged list is the pre-defstruct representation.
  51. ;; (:type list)
  52. :named
  53. (:constructor nil)
  54. (:constructor avl-tree--create (cmpfun))
  55. (:predicate avl-tree-p)
  56. (:copier nil))
  57. (dummyroot (avl-tree--node-create nil nil nil 0))
  58. cmpfun)
  59. (defmacro avl-tree--root (tree)
  60. ;; Return the root node for an AVL tree. INTERNAL USE ONLY.
  61. `(avl-tree--node-left (avl-tree--dummyroot ,tree)))
  62. (defsetf avl-tree--root (tree) (node)
  63. `(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
  64. ;; ----------------------------------------------------------------
  65. ;; Functions and macros handling an AVL tree node.
  66. (defstruct (avl-tree--node
  67. ;; We force a representation without tag so it matches the
  68. ;; pre-defstruct representation. Also we use the underlying
  69. ;; representation in the implementation of
  70. ;; avl-tree--node-branch.
  71. (:type vector)
  72. (:constructor nil)
  73. (:constructor avl-tree--node-create (left right data balance))
  74. (:copier nil))
  75. left right data balance)
  76. (defalias 'avl-tree--node-branch 'aref
  77. ;; This implementation is efficient but breaks the defstruct
  78. ;; abstraction. An alternative could be (funcall (aref [avl-tree-left
  79. ;; avl-tree-right avl-tree-data] branch) node)
  80. "Get value of a branch of a node.
  81. NODE is the node, and BRANCH is the branch.
  82. 0 for left pointer, 1 for right pointer and 2 for the data.")
  83. ;; The funcall/aref trick wouldn't work for the setf method, unless we
  84. ;; tried to access the underlying setter function, but this wouldn't be
  85. ;; portable either.
  86. (defsetf avl-tree--node-branch aset)
  87. ;; ----------------------------------------------------------------
  88. ;; Convenience macros
  89. (defmacro avl-tree--switch-dir (dir)
  90. "Return opposite direction to DIR (0 = left, 1 = right)."
  91. `(- 1 ,dir))
  92. (defmacro avl-tree--dir-to-sign (dir)
  93. "Convert direction (0,1) to sign factor (-1,+1)."
  94. `(1- (* 2 ,dir)))
  95. (defmacro avl-tree--sign-to-dir (dir)
  96. "Convert sign factor (-x,+x) to direction (0,1)."
  97. `(if (< ,dir 0) 0 1))
  98. ;; ----------------------------------------------------------------
  99. ;; Deleting data
  100. (defun avl-tree--del-balance (node branch dir)
  101. "Rebalance a tree after deleting a node.
  102. The deletion was done from the left (DIR=0) or right (DIR=1) sub-tree of the
  103. left (BRANCH=0) or right (BRANCH=1) child of NODE.
  104. Return t if the height of the tree has shrunk."
  105. ;; (or is it vice-versa for BRANCH?)
  106. (let ((br (avl-tree--node-branch node branch))
  107. ;; opposite direction: 0,1 -> 1,0
  108. (opp (avl-tree--switch-dir dir))
  109. ;; direction 0,1 -> sign factor -1,+1
  110. (sgn (avl-tree--dir-to-sign dir))
  111. p1 b1 p2 b2)
  112. (cond
  113. ((> (* sgn (avl-tree--node-balance br)) 0)
  114. (setf (avl-tree--node-balance br) 0)
  115. t)
  116. ((= (avl-tree--node-balance br) 0)
  117. (setf (avl-tree--node-balance br) (- sgn))
  118. nil)
  119. (t
  120. ;; Rebalance.
  121. (setq p1 (avl-tree--node-branch br opp)
  122. b1 (avl-tree--node-balance p1))
  123. (if (<= (* sgn b1) 0)
  124. ;; Single rotation.
  125. (progn
  126. (setf (avl-tree--node-branch br opp)
  127. (avl-tree--node-branch p1 dir)
  128. (avl-tree--node-branch p1 dir) br
  129. (avl-tree--node-branch node branch) p1)
  130. (if (= 0 b1)
  131. (progn
  132. (setf (avl-tree--node-balance br) (- sgn)
  133. (avl-tree--node-balance p1) sgn)
  134. nil) ; height hasn't changed
  135. (setf (avl-tree--node-balance br) 0)
  136. (setf (avl-tree--node-balance p1) 0)
  137. t)) ; height has changed
  138. ;; Double rotation.
  139. (setf p2 (avl-tree--node-branch p1 dir)
  140. b2 (avl-tree--node-balance p2)
  141. (avl-tree--node-branch p1 dir)
  142. (avl-tree--node-branch p2 opp)
  143. (avl-tree--node-branch p2 opp) p1
  144. (avl-tree--node-branch br opp)
  145. (avl-tree--node-branch p2 dir)
  146. (avl-tree--node-branch p2 dir) br
  147. (avl-tree--node-balance br)
  148. (if (< (* sgn b2) 0) sgn 0)
  149. (avl-tree--node-balance p1)
  150. (if (> (* sgn b2) 0) (- sgn) 0)
  151. (avl-tree--node-branch node branch) p2
  152. (avl-tree--node-balance p2) 0)
  153. t)))))
  154. (defun avl-tree--do-del-internal (node branch q)
  155. (let ((br (avl-tree--node-branch node branch)))
  156. (if (avl-tree--node-right br)
  157. (if (avl-tree--do-del-internal br 1 q)
  158. (avl-tree--del-balance node branch 1))
  159. (setf (avl-tree--node-data q) (avl-tree--node-data br)
  160. (avl-tree--node-branch node branch)
  161. (avl-tree--node-left br))
  162. t)))
  163. (defun avl-tree--do-delete (cmpfun root branch data test nilflag)
  164. "Delete DATA from BRANCH of node ROOT.
  165. \(See `avl-tree-delete' for TEST and NILFLAG).
  166. Return cons cell (SHRUNK . DATA), where SHRUNK is t if the
  167. height of the tree has shrunk and nil otherwise, and DATA is
  168. the related data."
  169. (let ((br (avl-tree--node-branch root branch)))
  170. (cond
  171. ;; DATA not in tree.
  172. ((null br)
  173. (cons nil nilflag))
  174. ((funcall cmpfun data (avl-tree--node-data br))
  175. (let ((ret (avl-tree--do-delete cmpfun br 0 data test nilflag)))
  176. (cons (if (car ret) (avl-tree--del-balance root branch 0))
  177. (cdr ret))))
  178. ((funcall cmpfun (avl-tree--node-data br) data)
  179. (let ((ret (avl-tree--do-delete cmpfun br 1 data test nilflag)))
  180. (cons (if (car ret) (avl-tree--del-balance root branch 1))
  181. (cdr ret))))
  182. (t ; Found it.
  183. ;; if it fails TEST, do nothing
  184. (if (and test (not (funcall test (avl-tree--node-data br))))
  185. (cons nil nilflag)
  186. (cond
  187. ((null (avl-tree--node-right br))
  188. (setf (avl-tree--node-branch root branch)
  189. (avl-tree--node-left br))
  190. (cons t (avl-tree--node-data br)))
  191. ((null (avl-tree--node-left br))
  192. (setf (avl-tree--node-branch root branch)
  193. (avl-tree--node-right br))
  194. (cons t (avl-tree--node-data br)))
  195. (t
  196. (if (avl-tree--do-del-internal br 0 br)
  197. (cons (avl-tree--del-balance root branch 0)
  198. (avl-tree--node-data br))
  199. (cons nil (avl-tree--node-data br))))
  200. ))))))
  201. ;; ----------------------------------------------------------------
  202. ;; Entering data
  203. (defun avl-tree--enter-balance (node branch dir)
  204. "Rebalance tree after an insertion
  205. into the left (DIR=0) or right (DIR=1) sub-tree of the
  206. left (BRANCH=0) or right (BRANCH=1) child of NODE.
  207. Return t if the height of the tree has grown."
  208. (let ((br (avl-tree--node-branch node branch))
  209. ;; opposite direction: 0,1 -> 1,0
  210. (opp (avl-tree--switch-dir dir))
  211. ;; direction 0,1 -> sign factor -1,+1
  212. (sgn (avl-tree--dir-to-sign dir))
  213. p1 p2 b2 result)
  214. (cond
  215. ((< (* sgn (avl-tree--node-balance br)) 0)
  216. (setf (avl-tree--node-balance br) 0)
  217. nil)
  218. ((= (avl-tree--node-balance br) 0)
  219. (setf (avl-tree--node-balance br) sgn)
  220. t)
  221. (t
  222. ;; Tree has grown => Rebalance.
  223. (setq p1 (avl-tree--node-branch br dir))
  224. (if (> (* sgn (avl-tree--node-balance p1)) 0)
  225. ;; Single rotation.
  226. (progn
  227. (setf (avl-tree--node-branch br dir)
  228. (avl-tree--node-branch p1 opp))
  229. (setf (avl-tree--node-branch p1 opp) br)
  230. (setf (avl-tree--node-balance br) 0)
  231. (setf (avl-tree--node-branch node branch) p1))
  232. ;; Double rotation.
  233. (setf p2 (avl-tree--node-branch p1 opp)
  234. b2 (avl-tree--node-balance p2)
  235. (avl-tree--node-branch p1 opp)
  236. (avl-tree--node-branch p2 dir)
  237. (avl-tree--node-branch p2 dir) p1
  238. (avl-tree--node-branch br dir)
  239. (avl-tree--node-branch p2 opp)
  240. (avl-tree--node-branch p2 opp) br
  241. (avl-tree--node-balance br)
  242. (if (> (* sgn b2) 0) (- sgn) 0)
  243. (avl-tree--node-balance p1)
  244. (if (< (* sgn b2) 0) sgn 0)
  245. (avl-tree--node-branch node branch) p2))
  246. (setf (avl-tree--node-balance
  247. (avl-tree--node-branch node branch)) 0)
  248. nil))))
  249. (defun avl-tree--do-enter (cmpfun root branch data &optional updatefun)
  250. "Enter DATA in BRANCH of ROOT node.
  251. \(See `avl-tree-enter' for UPDATEFUN).
  252. Return cons cell (GREW . DATA), where GREW is t if height
  253. of tree ROOT has grown and nil otherwise, and DATA is the
  254. inserted data."
  255. (let ((br (avl-tree--node-branch root branch)))
  256. (cond
  257. ((null br)
  258. ;; Data not in tree, insert it.
  259. (setf (avl-tree--node-branch root branch)
  260. (avl-tree--node-create nil nil data 0))
  261. (cons t data))
  262. ((funcall cmpfun data (avl-tree--node-data br))
  263. (let ((ret (avl-tree--do-enter cmpfun br 0 data updatefun)))
  264. (cons (and (car ret) (avl-tree--enter-balance root branch 0))
  265. (cdr ret))))
  266. ((funcall cmpfun (avl-tree--node-data br) data)
  267. (let ((ret (avl-tree--do-enter cmpfun br 1 data updatefun)))
  268. (cons (and (car ret) (avl-tree--enter-balance root branch 1))
  269. (cdr ret))))
  270. ;; Data already in tree, update it.
  271. (t
  272. (let ((newdata
  273. (if updatefun
  274. (funcall updatefun data (avl-tree--node-data br))
  275. data)))
  276. (if (or (funcall cmpfun newdata data)
  277. (funcall cmpfun data newdata))
  278. (error "avl-tree-enter:\
  279. updated data does not match existing data"))
  280. (setf (avl-tree--node-data br) newdata)
  281. (cons nil newdata)) ; return value
  282. ))))
  283. (defun avl-tree--check (tree)
  284. "Check the tree's balance."
  285. (avl-tree--check-node (avl-tree--root tree)))
  286. (defun avl-tree--check-node (node)
  287. (if (null node) 0
  288. (let ((dl (avl-tree--check-node (avl-tree--node-left node)))
  289. (dr (avl-tree--check-node (avl-tree--node-right node))))
  290. (assert (= (- dr dl) (avl-tree--node-balance node)))
  291. (1+ (max dl dr)))))
  292. ;; ----------------------------------------------------------------
  293. ;;; INTERNAL USE ONLY
  294. (defun avl-tree--mapc (map-function root dir)
  295. "Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
  296. The function is applied in-order, either ascending (DIR=0) or
  297. descending (DIR=1).
  298. Note: MAP-FUNCTION is applied to the node and not to the data
  299. itself."
  300. (let ((node root)
  301. (stack nil)
  302. (go-dir t))
  303. (push nil stack)
  304. (while node
  305. (if (and go-dir
  306. (avl-tree--node-branch node dir))
  307. ;; Do the DIR subtree first.
  308. (progn
  309. (push node stack)
  310. (setq node (avl-tree--node-branch node dir)))
  311. ;; Apply the function...
  312. (funcall map-function node)
  313. ;; and do the opposite subtree.
  314. (setq node (if (setq go-dir (avl-tree--node-branch
  315. node (avl-tree--switch-dir dir)))
  316. (avl-tree--node-branch
  317. node (avl-tree--switch-dir dir))
  318. (pop stack)))))))
  319. ;;; INTERNAL USE ONLY
  320. (defun avl-tree--do-copy (root)
  321. "Copy the AVL tree with ROOT as root. Highly recursive."
  322. (if (null root)
  323. nil
  324. (avl-tree--node-create
  325. (avl-tree--do-copy (avl-tree--node-left root))
  326. (avl-tree--do-copy (avl-tree--node-right root))
  327. (avl-tree--node-data root)
  328. (avl-tree--node-balance root))))
  329. (defstruct (avl-tree--stack
  330. (:constructor nil)
  331. (:constructor avl-tree--stack-create
  332. (tree &optional reverse
  333. &aux
  334. (store
  335. (if (avl-tree-empty tree)
  336. nil
  337. (list (avl-tree--root tree))))))
  338. (:copier nil))
  339. reverse store)
  340. (defalias 'avl-tree-stack-p 'avl-tree--stack-p
  341. "Return t if argument is an avl-tree-stack, nil otherwise.")
  342. (defun avl-tree--stack-repopulate (stack)
  343. ;; Recursively push children of the node at the head of STACK onto the
  344. ;; front of the STACK, until a leaf is reached.
  345. (let ((node (car (avl-tree--stack-store stack)))
  346. (dir (if (avl-tree--stack-reverse stack) 1 0)))
  347. (when node ; check for empty stack
  348. (while (setq node (avl-tree--node-branch node dir))
  349. (push node (avl-tree--stack-store stack))))))
  350. ;; ================================================================
  351. ;;; The public functions which operate on AVL trees.
  352. ;; define public alias for constructors so that we can set docstring
  353. (defalias 'avl-tree-create 'avl-tree--create
  354. "Create an empty AVL tree.
  355. COMPARE-FUNCTION is a function which takes two arguments, A and B,
  356. and returns non-nil if A is less than B, and nil otherwise.")
  357. (defalias 'avl-tree-compare-function 'avl-tree--cmpfun
  358. "Return the comparison function for the AVL tree TREE.
  359. \(fn TREE)")
  360. (defun avl-tree-empty (tree)
  361. "Return t if AVL tree TREE is empty, otherwise return nil."
  362. (null (avl-tree--root tree)))
  363. (defun avl-tree-enter (tree data &optional updatefun)
  364. "Insert DATA into the AVL tree TREE.
  365. If an element that matches DATA (according to the tree's
  366. comparison function, see `avl-tree-create') already exists in
  367. TREE, it will be replaced by DATA by default.
  368. If UPDATEFUN is supplied and an element matching DATA already
  369. exists in TREE, UPDATEFUN is called with two arguments: DATA, and
  370. the matching element. Its return value replaces the existing
  371. element. This value *must* itself match DATA (and hence the
  372. pre-existing data), or an error will occur.
  373. Returns the new data."
  374. (cdr (avl-tree--do-enter (avl-tree--cmpfun tree)
  375. (avl-tree--dummyroot tree)
  376. 0 data updatefun)))
  377. (defun avl-tree-delete (tree data &optional test nilflag)
  378. "Delete the element matching DATA from the AVL tree TREE.
  379. Matching uses the comparison function previously specified in
  380. `avl-tree-create' when TREE was created.
  381. Returns the deleted element, or nil if no matching element was
  382. found.
  383. Optional argument NILFLAG specifies a value to return instead of
  384. nil if nothing was deleted, so that this case can be
  385. distinguished from the case of a successfully deleted null
  386. element.
  387. If supplied, TEST specifies a test that a matching element must
  388. pass before it is deleted. If a matching element is found, it is
  389. passed as an argument to TEST, and is deleted only if the return
  390. value is non-nil."
  391. (cdr (avl-tree--do-delete (avl-tree--cmpfun tree)
  392. (avl-tree--dummyroot tree)
  393. 0 data test nilflag)))
  394. (defun avl-tree-member (tree data &optional nilflag)
  395. "Return the element in the AVL tree TREE which matches DATA.
  396. Matching uses the comparison function previously specified in
  397. `avl-tree-create' when TREE was created.
  398. If there is no such element in the tree, nil is
  399. returned. Optional argument NILFLAG specifies a value to return
  400. instead of nil in this case. This allows non-existent elements to
  401. be distinguished from a null element. (See also
  402. `avl-tree-member-p', which does this for you.)"
  403. (let ((node (avl-tree--root tree))
  404. (compare-function (avl-tree--cmpfun tree)))
  405. (catch 'found
  406. (while node
  407. (cond
  408. ((funcall compare-function data (avl-tree--node-data node))
  409. (setq node (avl-tree--node-left node)))
  410. ((funcall compare-function (avl-tree--node-data node) data)
  411. (setq node (avl-tree--node-right node)))
  412. (t (throw 'found (avl-tree--node-data node)))))
  413. nilflag)))
  414. (defun avl-tree-member-p (tree data)
  415. "Return t if an element matching DATA exists in the AVL tree TREE.
  416. Otherwise return nil. Matching uses the comparison function
  417. previously specified in `avl-tree-create' when TREE was created."
  418. (let ((flag '(nil)))
  419. (not (eq (avl-tree-member tree data flag) flag))))
  420. (defun avl-tree-map (__map-function__ tree &optional reverse)
  421. "Modify all elements in the AVL tree TREE by applying FUNCTION.
  422. Each element is replaced by the return value of FUNCTION applied
  423. to that element.
  424. FUNCTION is applied to the elements in ascending order, or
  425. descending order if REVERSE is non-nil."
  426. (avl-tree--mapc
  427. (lambda (node)
  428. (setf (avl-tree--node-data node)
  429. (funcall __map-function__ (avl-tree--node-data node))))
  430. (avl-tree--root tree)
  431. (if reverse 1 0)))
  432. (defun avl-tree-mapc (__map-function__ tree &optional reverse)
  433. "Apply FUNCTION to all elements in AVL tree TREE,
  434. for side-effect only.
  435. FUNCTION is applied to the elements in ascending order, or
  436. descending order if REVERSE is non-nil."
  437. (avl-tree--mapc
  438. (lambda (node)
  439. (funcall __map-function__ (avl-tree--node-data node)))
  440. (avl-tree--root tree)
  441. (if reverse 1 0)))
  442. (defun avl-tree-mapf
  443. (__map-function__ combinator tree &optional reverse)
  444. "Apply FUNCTION to all elements in AVL tree TREE,
  445. and combine the results using COMBINATOR.
  446. The FUNCTION is applied and the results are combined in ascending
  447. order, or descending order if REVERSE is non-nil."
  448. (let (avl-tree-mapf--accumulate)
  449. (avl-tree--mapc
  450. (lambda (node)
  451. (setq avl-tree-mapf--accumulate
  452. (funcall combinator
  453. (funcall __map-function__
  454. (avl-tree--node-data node))
  455. avl-tree-mapf--accumulate)))
  456. (avl-tree--root tree)
  457. (if reverse 0 1))
  458. (nreverse avl-tree-mapf--accumulate)))
  459. (defun avl-tree-mapcar (__map-function__ tree &optional reverse)
  460. "Apply FUNCTION to all elements in AVL tree TREE,
  461. and make a list of the results.
  462. The FUNCTION is applied and the list constructed in ascending
  463. order, or descending order if REVERSE is non-nil.
  464. Note that if you don't care about the order in which FUNCTION is
  465. applied, just that the resulting list is in the correct order,
  466. then
  467. (avl-tree-mapf function 'cons tree (not reverse))
  468. is more efficient."
  469. (nreverse (avl-tree-mapf __map-function__ 'cons tree reverse)))
  470. (defun avl-tree-first (tree)
  471. "Return the first element in TREE, or nil if TREE is empty."
  472. (let ((node (avl-tree--root tree)))
  473. (when node
  474. (while (avl-tree--node-left node)
  475. (setq node (avl-tree--node-left node)))
  476. (avl-tree--node-data node))))
  477. (defun avl-tree-last (tree)
  478. "Return the last element in TREE, or nil if TREE is empty."
  479. (let ((node (avl-tree--root tree)))
  480. (when node
  481. (while (avl-tree--node-right node)
  482. (setq node (avl-tree--node-right node)))
  483. (avl-tree--node-data node))))
  484. (defun avl-tree-copy (tree)
  485. "Return a copy of the AVL tree TREE."
  486. (let ((new-tree (avl-tree-create (avl-tree--cmpfun tree))))
  487. (setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree)))
  488. new-tree))
  489. (defun avl-tree-flatten (tree)
  490. "Return a sorted list containing all elements of TREE."
  491. (let ((treelist nil))
  492. (avl-tree--mapc
  493. (lambda (node) (push (avl-tree--node-data node) treelist))
  494. (avl-tree--root tree) 1)
  495. treelist))
  496. (defun avl-tree-size (tree)
  497. "Return the number of elements in TREE."
  498. (let ((treesize 0))
  499. (avl-tree--mapc
  500. (lambda (data) (setq treesize (1+ treesize)))
  501. (avl-tree--root tree) 0)
  502. treesize))
  503. (defun avl-tree-clear (tree)
  504. "Clear the AVL tree TREE."
  505. (setf (avl-tree--root tree) nil))
  506. (defun avl-tree-stack (tree &optional reverse)
  507. "Return an object that behaves like a sorted stack
  508. of all elements of TREE.
  509. If REVERSE is non-nil, the stack is sorted in reverse order.
  510. \(See also `avl-tree-stack-pop'\).
  511. Note that any modification to TREE *immediately* invalidates all
  512. avl-tree-stacks created before the modification (in particular,
  513. calling `avl-tree-stack-pop' will give unpredictable results).
  514. Operations on these objects are significantly more efficient than
  515. constructing a real stack with `avl-tree-flatten' and using
  516. standard stack functions. As such, they can be useful in
  517. implementing efficient algorithms of AVL trees. However, in cases
  518. where mapping functions `avl-tree-mapc', `avl-tree-mapcar' or
  519. `avl-tree-mapf' would be sufficient, it is better to use one of
  520. those instead."
  521. (let ((stack (avl-tree--stack-create tree reverse)))
  522. (avl-tree--stack-repopulate stack)
  523. stack))
  524. (defun avl-tree-stack-pop (avl-tree-stack &optional nilflag)
  525. "Pop the first element from AVL-TREE-STACK.
  526. \(See also `avl-tree-stack').
  527. Returns nil if the stack is empty, or NILFLAG if specified.
  528. \(The latter allows an empty stack to be distinguished from
  529. a null element stored in the AVL tree.)"
  530. (let (node next)
  531. (if (not (setq node (pop (avl-tree--stack-store avl-tree-stack))))
  532. nilflag
  533. (when (setq next
  534. (avl-tree--node-branch
  535. node
  536. (if (avl-tree--stack-reverse avl-tree-stack) 0 1)))
  537. (push next (avl-tree--stack-store avl-tree-stack))
  538. (avl-tree--stack-repopulate avl-tree-stack))
  539. (avl-tree--node-data node))))
  540. (defun avl-tree-stack-first (avl-tree-stack &optional nilflag)
  541. "Return the first element of AVL-TREE-STACK, without removing it
  542. from the stack.
  543. Returns nil if the stack is empty, or NILFLAG if specified.
  544. \(The latter allows an empty stack to be distinguished from
  545. a null element stored in the AVL tree.)"
  546. (or (car (avl-tree--stack-store avl-tree-stack))
  547. nilflag))
  548. (defun avl-tree-stack-empty-p (avl-tree-stack)
  549. "Return t if AVL-TREE-STACK is empty, nil otherwise."
  550. (null (avl-tree--stack-store avl-tree-stack)))
  551. (provide 'avl-tree)
  552. ;;; avl-tree.el ends here