1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012 |
- ;;; calc-funcs.el --- well-known functions for Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- (defun calc-inc-gamma (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (if (calc-is-hyperbolic)
- (calc-binary-op "gamG" 'calcFunc-gammaG arg)
- (calc-binary-op "gamQ" 'calcFunc-gammaQ arg))
- (if (calc-is-hyperbolic)
- (calc-binary-op "gamg" 'calcFunc-gammag arg)
- (calc-binary-op "gamP" 'calcFunc-gammaP arg)))))
- (defun calc-erf (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "erfc" 'calcFunc-erfc arg)
- (calc-unary-op "erf" 'calcFunc-erf arg))))
- (defun calc-erfc (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-erf arg))
- (defun calc-beta (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "beta" 'calcFunc-beta arg)))
- (defun calc-inc-beta ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-enter-result 3 "betB" (cons 'calcFunc-betaB (calc-top-list-n 3)))
- (calc-enter-result 3 "betI" (cons 'calcFunc-betaI (calc-top-list-n 3))))))
- (defun calc-bessel-J (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "besJ" 'calcFunc-besJ arg)))
- (defun calc-bessel-Y (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "besY" 'calcFunc-besY arg)))
- (defun calc-bernoulli-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "bern" 'calcFunc-bern arg)
- (calc-unary-op "bern" 'calcFunc-bern arg))))
- (defun calc-euler-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "eulr" 'calcFunc-euler arg)
- (calc-unary-op "eulr" 'calcFunc-euler arg))))
- (defun calc-stirling-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "str2" 'calcFunc-stir2 arg)
- (calc-binary-op "str1" 'calcFunc-stir1 arg))))
- (defun calc-utpb ()
- (interactive)
- (calc-prob-dist "b" 3))
- (defun calc-utpc ()
- (interactive)
- (calc-prob-dist "c" 2))
- (defun calc-utpf ()
- (interactive)
- (calc-prob-dist "f" 3))
- (defun calc-utpn ()
- (interactive)
- (calc-prob-dist "n" 3))
- (defun calc-utpp ()
- (interactive)
- (calc-prob-dist "p" 2))
- (defun calc-utpt ()
- (interactive)
- (calc-prob-dist "t" 2))
- (defun calc-prob-dist (letter nargs)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-enter-result nargs (concat "ltp" letter)
- (append (list (intern (concat "calcFunc-ltp" letter))
- (calc-top-n 1))
- (calc-top-list-n (1- nargs) 2)))
- (calc-enter-result nargs (concat "utp" letter)
- (append (list (intern (concat "calcFunc-utp" letter))
- (calc-top-n 1))
- (calc-top-list-n (1- nargs) 2))))))
- ;;; Sources: Numerical Recipes, Press et al;
- ;;; Handbook of Mathematical Functions, Abramowitz & Stegun.
- ;;; Gamma function.
- (defun calcFunc-gamma (x)
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (calcFunc-fact (math-add x -1)))
- (defun math-gammap1-raw (x &optional fprec nfprec)
- "Compute gamma(1+X) to the appropriate precision."
- (or fprec
- (setq fprec (math-float calc-internal-prec)
- nfprec (math-float (- calc-internal-prec))))
- (cond ((math-lessp-float (calcFunc-re x) fprec)
- (if (math-lessp-float (calcFunc-re x) nfprec)
- (math-neg (math-div
- (math-pi)
- (math-mul (math-gammap1-raw
- (math-add (math-neg x)
- '(float -1 0))
- fprec nfprec)
- (math-sin-raw
- (math-mul (math-pi) x)))))
- (let ((xplus1 (math-add x '(float 1 0))))
- (math-div (math-gammap1-raw xplus1 fprec nfprec) xplus1))))
- ((and (math-realp x)
- (math-lessp-float '(float 736276 0) x))
- (math-overflow))
- (t ; re(x) now >= 10.0
- (let ((xinv (math-div 1 x))
- (lnx (math-ln-raw x)))
- (math-mul (math-sqrt-two-pi)
- (math-exp-raw
- (math-gamma-series
- (math-sub (math-mul (math-add x '(float 5 -1))
- lnx)
- x)
- xinv
- (math-sqr xinv)
- '(float 0 0)
- 2)))))))
- (defun math-gamma-series (sum x xinvsqr oterm n)
- (math-working "gamma" sum)
- (let* ((bn (math-bernoulli-number n))
- (term (math-mul (math-div-float (math-float (nth 1 bn))
- (math-float (* (nth 2 bn)
- (* n (1- n)))))
- x))
- (next (math-add sum term)))
- (if (math-nearly-equal sum next)
- next
- (if (> n (* 2 calc-internal-prec))
- (progn
- ;; Need this because series eventually diverges for large enough n.
- (calc-record-why
- "*Gamma computation stopped early, not all digits may be valid")
- next)
- (math-gamma-series next (math-mul x xinvsqr) xinvsqr term (+ n 2))))))
- ;;; Incomplete gamma function.
- (defvar math-current-gamma-value nil)
- (defun calcFunc-gammaP (a x)
- (if (equal x '(var inf var-inf))
- '(float 1 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (if (and (math-num-integerp a)
- (integerp (setq a (math-trunc a)))
- (> a 0) (< a 20))
- (math-sub 1 (calcFunc-gammaQ a x))
- (let ((math-current-gamma-value (calcFunc-gamma a)))
- (math-div (calcFunc-gammag a x) math-current-gamma-value)))))
- (defun calcFunc-gammaQ (a x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (if (and (math-num-integerp a)
- (integerp (setq a (math-trunc a)))
- (> a 0) (< a 20))
- (let ((n 0)
- (sum '(float 1 0))
- (term '(float 1 0)))
- (math-with-extra-prec 1
- (while (< (setq n (1+ n)) a)
- (setq term (math-div (math-mul term x) n)
- sum (math-add sum term))
- (math-working "gamma" sum))
- (math-mul sum (calcFunc-exp (math-neg x)))))
- (let ((math-current-gamma-value (calcFunc-gamma a)))
- (math-div (calcFunc-gammaG a x) math-current-gamma-value)))))
- (defun calcFunc-gammag (a x)
- (if (equal x '(var inf var-inf))
- (calcFunc-gamma a)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (Math-numberp x) (math-reject-arg x 'numberp))
- (math-with-extra-prec 2
- (setq a (math-float a))
- (setq x (math-float x))
- (if (or (math-negp (calcFunc-re a))
- (math-lessp-float (calcFunc-re x)
- (math-add-float (calcFunc-re a)
- '(float 1 0))))
- (math-inc-gamma-series a x)
- (math-sub (or math-current-gamma-value (calcFunc-gamma a))
- (math-inc-gamma-cfrac a x))))))
- (defun calcFunc-gammaG (a x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (Math-numberp x) (math-reject-arg x 'numberp))
- (math-with-extra-prec 2
- (setq a (math-float a))
- (setq x (math-float x))
- (if (or (math-negp (calcFunc-re a))
- (math-lessp-float (calcFunc-re x)
- (math-add-float (math-abs-approx a)
- '(float 1 0))))
- (math-sub (or math-current-gamma-value (calcFunc-gamma a))
- (math-inc-gamma-series a x))
- (math-inc-gamma-cfrac a x)))))
- (defun math-inc-gamma-series (a x)
- (if (Math-zerop x)
- '(float 0 0)
- (math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
- (math-with-extra-prec 2
- (let ((start (math-div '(float 1 0) a)))
- (math-inc-gamma-series-step start start a x))))))
- (defun math-inc-gamma-series-step (sum term a x)
- (math-working "gamma" sum)
- (setq a (math-add a '(float 1 0))
- term (math-div (math-mul term x) a))
- (let ((next (math-add sum term)))
- (if (math-nearly-equal sum next)
- next
- (math-inc-gamma-series-step next term a x))))
- (defun math-inc-gamma-cfrac (a x)
- (if (Math-zerop x)
- (or math-current-gamma-value (calcFunc-gamma a))
- (math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
- (math-inc-gamma-cfrac-step '(float 1 0) x
- '(float 0 0) '(float 1 0)
- '(float 1 0) '(float 1 0) '(float 0 0)
- a x))))
- (defun math-inc-gamma-cfrac-step (a0 a1 b0 b1 n fac g a x)
- (let ((ana (math-sub n a))
- (anf (math-mul n fac)))
- (setq n (math-add n '(float 1 0))
- a0 (math-mul (math-add a1 (math-mul a0 ana)) fac)
- b0 (math-mul (math-add b1 (math-mul b0 ana)) fac)
- a1 (math-add (math-mul x a0) (math-mul anf a1))
- b1 (math-add (math-mul x b0) (math-mul anf b1)))
- (if (math-zerop a1)
- (math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac g a x)
- (setq fac (math-div '(float 1 0) a1))
- (let ((next (math-mul b1 fac)))
- (math-working "gamma" next)
- (if (math-nearly-equal next g)
- next
- (math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac next a x))))))
- ;;; Error function.
- (defun calcFunc-erf (x)
- (if (equal x '(var inf var-inf))
- '(float 1 0)
- (if (equal x '(neg (var inf var-inf)))
- '(float -1 0)
- (if (Math-zerop x)
- x
- (let ((math-current-gamma-value (math-sqrt-pi)))
- (math-to-same-complex-quad
- (math-div (calcFunc-gammag '(float 5 -1)
- (math-sqr (math-to-complex-quad-one x)))
- math-current-gamma-value)
- x))))))
- (defun calcFunc-erfc (x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (if (math-posp x)
- (let ((math-current-gamma-value (math-sqrt-pi)))
- (math-div (calcFunc-gammaG '(float 5 -1) (math-sqr x))
- math-current-gamma-value))
- (math-sub 1 (calcFunc-erf x)))))
- (defun math-to-complex-quad-one (x)
- (if (eq (car-safe x) 'polar) (setq x (math-complex x)))
- (if (eq (car-safe x) 'cplx)
- (list 'cplx (math-abs (nth 1 x)) (math-abs (nth 2 x)))
- x))
- (defun math-to-same-complex-quad (x y)
- (if (eq (car-safe y) 'cplx)
- (if (eq (car-safe x) 'cplx)
- (list 'cplx
- (if (math-negp (nth 1 y)) (math-neg (nth 1 x)) (nth 1 x))
- (if (math-negp (nth 2 y)) (math-neg (nth 2 x)) (nth 2 x)))
- (if (math-negp (nth 1 y)) (math-neg x) x))
- (if (math-negp y)
- (if (eq (car-safe x) 'cplx)
- (list 'cplx (math-neg (nth 1 x)) (nth 2 x))
- (math-neg x))
- x)))
- ;;; Beta function.
- (defun calcFunc-beta (a b)
- (if (math-num-integerp a)
- (let ((am (math-add a -1)))
- (or (math-numberp b) (math-reject-arg b 'numberp))
- (math-div 1 (math-mul b (calcFunc-choose (math-add b am) am))))
- (if (math-num-integerp b)
- (calcFunc-beta b a)
- (math-div (math-mul (calcFunc-gamma a) (calcFunc-gamma b))
- (calcFunc-gamma (math-add a b))))))
- ;;; Incomplete beta function.
- (defvar math-current-beta-value nil)
- (defun calcFunc-betaI (x a b)
- (cond ((math-zerop x)
- '(float 0 0))
- ((math-equal-int x 1)
- '(float 1 0))
- ((or (math-zerop a)
- (and (math-num-integerp a)
- (math-negp a)))
- (if (or (math-zerop b)
- (and (math-num-integerp b)
- (math-negp b)))
- (math-reject-arg b 'range)
- '(float 1 0)))
- ((or (math-zerop b)
- (and (math-num-integerp b)
- (math-negp b)))
- '(float 0 0))
- ((not (math-numberp a)) (math-reject-arg a 'numberp))
- ((not (math-numberp b)) (math-reject-arg b 'numberp))
- ((math-inexact-result))
- (t (let ((math-current-beta-value (calcFunc-beta a b)))
- (math-div (calcFunc-betaB x a b) math-current-beta-value)))))
- (defun calcFunc-betaB (x a b)
- (cond
- ((math-zerop x)
- '(float 0 0))
- ((math-equal-int x 1)
- (calcFunc-beta a b))
- ((not (math-numberp x)) (math-reject-arg x 'numberp))
- ((not (math-numberp a)) (math-reject-arg a 'numberp))
- ((not (math-numberp b)) (math-reject-arg b 'numberp))
- ((math-zerop a) (math-reject-arg a 'nonzerop))
- ((math-zerop b) (math-reject-arg b 'nonzerop))
- ((and (math-num-integerp b)
- (if (math-negp b)
- (math-reject-arg b 'range)
- (Math-natnum-lessp (setq b (math-trunc b)) 20)))
- (and calc-symbolic-mode (or (math-floatp a) (math-floatp b))
- (math-inexact-result))
- (math-mul
- (math-with-extra-prec 2
- (let* ((i 0)
- (term 1)
- (sum (math-div term a)))
- (while (< (setq i (1+ i)) b)
- (setq term (math-mul (math-div (math-mul term (- i b)) i) x)
- sum (math-add sum (math-div term (math-add a i))))
- (math-working "beta" sum))
- sum))
- (math-pow x a)))
- ((and (math-num-integerp a)
- (if (math-negp a)
- (math-reject-arg a 'range)
- (Math-natnum-lessp (setq a (math-trunc a)) 20)))
- (math-sub (or math-current-beta-value (calcFunc-beta a b))
- (calcFunc-betaB (math-sub 1 x) b a)))
- (t
- (math-inexact-result)
- (math-with-extra-prec 2
- (setq x (math-float x))
- (setq a (math-float a))
- (setq b (math-float b))
- (let ((bt (math-exp-raw (math-add (math-mul a (math-ln-raw x))
- (math-mul b (math-ln-raw
- (math-sub '(float 1 0)
- x)))))))
- (if (Math-lessp x (math-div (math-add a '(float 1 0))
- (math-add (math-add a b) '(float 2 0))))
- (math-div (math-mul bt (math-beta-cfrac a b x)) a)
- (math-sub (or math-current-beta-value (calcFunc-beta a b))
- (math-div (math-mul bt
- (math-beta-cfrac b a (math-sub 1 x)))
- b))))))))
- (defun math-beta-cfrac (a b x)
- (let ((qab (math-add a b))
- (qap (math-add a '(float 1 0)))
- (qam (math-add a '(float -1 0))))
- (math-beta-cfrac-step '(float 1 0)
- (math-sub '(float 1 0)
- (math-div (math-mul qab x) qap))
- '(float 1 0) '(float 1 0)
- '(float 1 0)
- qab qap qam a b x)))
- (defun math-beta-cfrac-step (az bz am bm m qab qap qam a b x)
- (let* ((two-m (math-mul m '(float 2 0)))
- (d (math-div (math-mul (math-mul (math-sub b m) m) x)
- (math-mul (math-add qam two-m) (math-add a two-m))))
- (ap (math-add az (math-mul d am)))
- (bp (math-add bz (math-mul d bm)))
- (d2 (math-neg
- (math-div (math-mul (math-mul (math-add a m) (math-add qab m)) x)
- (math-mul (math-add qap two-m) (math-add a two-m)))))
- (app (math-add ap (math-mul d2 az)))
- (bpp (math-add bp (math-mul d2 bz)))
- (next (math-div app bpp)))
- (math-working "beta" next)
- (if (math-nearly-equal next az)
- next
- (math-beta-cfrac-step next '(float 1 0)
- (math-div ap bpp) (math-div bp bpp)
- (math-add m '(float 1 0))
- qab qap qam a b x))))
- ;;; Bessel functions.
- ;;; Should generalize this to handle arbitrary precision!
- (defun calcFunc-besJ (v x)
- (or (math-numberp v) (math-reject-arg v 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (let ((calc-internal-prec (min 8 calc-internal-prec)))
- (math-with-extra-prec 3
- (setq x (math-float (math-normalize x)))
- (setq v (math-float (math-normalize v)))
- (cond ((math-zerop x)
- (if (math-zerop v)
- '(float 1 0)
- '(float 0 0)))
- ((math-inexact-result))
- ((not (math-num-integerp v))
- (let ((start (math-div 1 (calcFunc-fact v))))
- (math-mul (math-besJ-series start start
- 0
- (math-mul '(float -25 -2)
- (math-sqr x))
- v)
- (math-pow (math-div x 2) v))))
- ((math-negp (setq v (math-trunc v)))
- (if (math-oddp v)
- (math-neg (calcFunc-besJ (math-neg v) x))
- (calcFunc-besJ (math-neg v) x)))
- ((eq v 0)
- (math-besJ0 x))
- ((eq v 1)
- (math-besJ1 x))
- ((Math-lessp v (math-abs-approx x))
- (let ((j 0)
- (bjm (math-besJ0 x))
- (bj (math-besJ1 x))
- (two-over-x (math-div 2 x))
- bjp)
- (while (< (setq j (1+ j)) v)
- (setq bjp (math-sub (math-mul (math-mul j two-over-x) bj)
- bjm)
- bjm bj
- bj bjp))
- bj))
- (t
- (if (Math-lessp 100 v) (math-reject-arg v 'range))
- (let* ((j (logior (+ v (math-isqrt-small (* 40 v))) 1))
- (two-over-x (math-div 2 x))
- (jsum nil)
- (bjp '(float 0 0))
- (sum '(float 0 0))
- (bj '(float 1 0))
- bjm ans)
- (while (> (setq j (1- j)) 0)
- (setq bjm (math-sub (math-mul (math-mul j two-over-x) bj)
- bjp)
- bjp bj
- bj bjm)
- (if (> (nth 2 (math-abs-approx bj)) 10)
- (setq bj (math-mul bj '(float 1 -10))
- bjp (math-mul bjp '(float 1 -10))
- ans (and ans (math-mul ans '(float 1 -10)))
- sum (math-mul sum '(float 1 -10))))
- (or (setq jsum (not jsum))
- (setq sum (math-add sum bj)))
- (if (= j v)
- (setq ans bjp)))
- (math-div ans (math-sub (math-mul 2 sum) bj))))))))
- (defun math-besJ-series (sum term k zz vk)
- (math-working "besJ" sum)
- (setq k (1+ k)
- vk (math-add 1 vk)
- term (math-div (math-mul term zz) (math-mul k vk)))
- (let ((next (math-add sum term)))
- (if (math-nearly-equal next sum)
- next
- (math-besJ-series next term k zz vk))))
- (defun math-besJ0 (x &optional yflag)
- (cond ((and (not yflag) (math-negp (calcFunc-re x)))
- (math-besJ0 (math-neg x)))
- ((Math-lessp '(float 8 0) (math-abs-approx x))
- (let* ((z (math-div '(float 8 0) x))
- (y (math-sqr z))
- (xx (math-add x
- (math-read-number-simple "-0.785398164")))
- (a1 (math-poly-eval y
- (list
- (math-read-number-simple "0.0000002093887211")
- (math-read-number-simple "-0.000002073370639")
- (math-read-number-simple "0.00002734510407")
- (math-read-number-simple "-0.001098628627")
- '(float 1 0))))
- (a2 (math-poly-eval y
- (list
- (math-read-number-simple "-0.0000000934935152")
- (math-read-number-simple "0.0000007621095161")
- (math-read-number-simple "-0.000006911147651")
- (math-read-number-simple "0.0001430488765")
- (math-read-number-simple "-0.01562499995"))))
- (sc (math-sin-cos-raw xx)))
- (if yflag
- (setq sc (cons (math-neg (cdr sc)) (car sc))))
- (math-mul (math-sqrt
- (math-div (math-read-number-simple "0.636619722")
- x))
- (math-sub (math-mul (cdr sc) a1)
- (math-mul (car sc) (math-mul z a2))))))
- (t
- (let ((y (math-sqr x)))
- (math-div (math-poly-eval y
- (list
- (math-read-number-simple "-184.9052456")
- (math-read-number-simple "77392.33017")
- (math-read-number-simple "-11214424.18")
- (math-read-number-simple "651619640.7")
- (math-read-number-simple "-13362590354.0")
- (math-read-number-simple "57568490574.0")))
- (math-poly-eval y
- (list
- '(float 1 0)
- (math-read-number-simple "267.8532712")
- (math-read-number-simple "59272.64853")
- (math-read-number-simple "9494680.718")
- (math-read-number-simple "1029532985.0")
- (math-read-number-simple "57568490411.0"))))))))
- (defun math-besJ1 (x &optional yflag)
- (cond ((and (math-negp (calcFunc-re x)) (not yflag))
- (math-neg (math-besJ1 (math-neg x))))
- ((Math-lessp '(float 8 0) (math-abs-approx x))
- (let* ((z (math-div '(float 8 0) x))
- (y (math-sqr z))
- (xx (math-add x (math-read-number-simple "-2.356194491")))
- (a1 (math-poly-eval y
- (list
- (math-read-number-simple "-0.000000240337019")
- (math-read-number-simple "0.000002457520174")
- (math-read-number-simple "-0.00003516396496")
- '(float 183105 -8)
- '(float 1 0))))
- (a2 (math-poly-eval y
- (list
- (math-read-number-simple "0.000000105787412")
- (math-read-number-simple "-0.00000088228987")
- (math-read-number-simple "0.000008449199096")
- (math-read-number-simple "-0.0002002690873")
- (math-read-number-simple "0.04687499995"))))
- (sc (math-sin-cos-raw xx)))
- (if yflag
- (setq sc (cons (math-neg (cdr sc)) (car sc)))
- (if (math-negp x)
- (setq sc (cons (math-neg (car sc)) (math-neg (cdr sc))))))
- (math-mul (math-sqrt (math-div
- (math-read-number-simple "0.636619722")
- x))
- (math-sub (math-mul (cdr sc) a1)
- (math-mul (car sc) (math-mul z a2))))))
- (t
- (let ((y (math-sqr x)))
- (math-mul
- x
- (math-div (math-poly-eval y
- (list
- (math-read-number-simple "-30.16036606")
- (math-read-number-simple "15704.4826")
- (math-read-number-simple "-2972611.439")
- (math-read-number-simple "242396853.1")
- (math-read-number-simple "-7895059235.0")
- (math-read-number-simple "72362614232.0")))
- (math-poly-eval y
- (list
- '(float 1 0)
- (math-read-number-simple "376.9991397")
- (math-read-number-simple "99447.43394")
- (math-read-number-simple "18583304.74")
- (math-read-number-simple "2300535178.0")
- (math-read-number-simple "144725228442.0")))))))))
- (defun calcFunc-besY (v x)
- (math-inexact-result)
- (or (math-numberp v) (math-reject-arg v 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (let ((calc-internal-prec (min 8 calc-internal-prec)))
- (math-with-extra-prec 3
- (setq x (math-float (math-normalize x)))
- (setq v (math-float (math-normalize v)))
- (cond ((not (math-num-integerp v))
- (let ((sc (math-sin-cos-raw (math-mul v (math-pi)))))
- (math-div (math-sub (math-mul (calcFunc-besJ v x) (cdr sc))
- (calcFunc-besJ (math-neg v) x))
- (car sc))))
- ((math-negp (setq v (math-trunc v)))
- (if (math-oddp v)
- (math-neg (calcFunc-besY (math-neg v) x))
- (calcFunc-besY (math-neg v) x)))
- ((eq v 0)
- (math-besY0 x))
- ((eq v 1)
- (math-besY1 x))
- (t
- (let ((j 0)
- (bym (math-besY0 x))
- (by (math-besY1 x))
- (two-over-x (math-div 2 x))
- byp)
- (while (< (setq j (1+ j)) v)
- (setq byp (math-sub (math-mul (math-mul j two-over-x) by)
- bym)
- bym by
- by byp))
- by))))))
- (defun math-besY0 (x)
- (cond ((Math-lessp (math-abs-approx x) '(float 8 0))
- (let ((y (math-sqr x)))
- (math-add
- (math-div (math-poly-eval y
- (list
- (math-read-number-simple "228.4622733")
- (math-read-number-simple "-86327.92757")
- (math-read-number-simple "10879881.29")
- (math-read-number-simple "-512359803.6")
- (math-read-number-simple "7062834065.0")
- (math-read-number-simple "-2957821389.0")))
- (math-poly-eval y
- (list
- '(float 1 0)
- (math-read-number-simple "226.1030244")
- (math-read-number-simple "47447.2647")
- (math-read-number-simple "7189466.438")
- (math-read-number-simple "745249964.8")
- (math-read-number-simple "40076544269.0"))))
- (math-mul (math-read-number-simple "0.636619772")
- (math-mul (math-besJ0 x) (math-ln-raw x))))))
- ((math-negp (calcFunc-re x))
- (math-add (math-besJ0 (math-neg x) t)
- (math-mul '(cplx 0 2)
- (math-besJ0 (math-neg x)))))
- (t
- (math-besJ0 x t))))
- (defun math-besY1 (x)
- (cond ((Math-lessp (math-abs-approx x) '(float 8 0))
- (let ((y (math-sqr x)))
- (math-add
- (math-mul
- x
- (math-div (math-poly-eval y
- (list
- (math-read-number-simple "8511.937935")
- (math-read-number-simple "-4237922.726")
- (math-read-number-simple "734926455.1")
- (math-read-number-simple "-51534381390.0")
- (math-read-number-simple "1275274390000.0")
- (math-read-number-simple "-4900604943000.0")))
- (math-poly-eval y
- (list
- '(float 1 0)
- (math-read-number-simple "354.9632885")
- (math-read-number-simple "102042.605")
- (math-read-number-simple "22459040.02")
- (math-read-number-simple "3733650367.0")
- (math-read-number-simple "424441966400.0")
- (math-read-number-simple "24995805700000.0")))))
- (math-mul (math-read-number-simple "0.636619772")
- (math-sub (math-mul (math-besJ1 x) (math-ln-raw x))
- (math-div 1 x))))))
- ((math-negp (calcFunc-re x))
- (math-neg
- (math-add (math-besJ1 (math-neg x) t)
- (math-mul '(cplx 0 2)
- (math-besJ1 (math-neg x))))))
- (t
- (math-besJ1 x t))))
- (defun math-poly-eval (x coefs)
- (let ((accum (car coefs)))
- (while (setq coefs (cdr coefs))
- (setq accum (math-add (car coefs) (math-mul accum x))))
- accum))
- ;;;; Bernoulli and Euler polynomials and numbers.
- (defun calcFunc-bern (n &optional x)
- (if (and x (not (math-zerop x)))
- (if (and calc-symbolic-mode (math-floatp x))
- (math-inexact-result)
- (math-build-polynomial-expr (math-bernoulli-coefs n) x))
- (or (math-num-natnump n) (math-reject-arg n 'natnump))
- (if (consp n)
- (progn
- (math-inexact-result)
- (math-float (math-bernoulli-number (math-trunc n))))
- (math-bernoulli-number n))))
- (defun calcFunc-euler (n &optional x)
- (or (math-num-natnump n) (math-reject-arg n 'natnump))
- (if x
- (let* ((n1 (math-add n 1))
- (coefs (math-bernoulli-coefs n1))
- (fac (math-div (math-pow 2 n1) n1))
- (k -1)
- (x1 (math-div (math-add x 1) 2))
- (x2 (math-div x 2)))
- (if (math-numberp x)
- (if (and calc-symbolic-mode (math-floatp x))
- (math-inexact-result)
- (math-mul fac
- (math-sub (math-build-polynomial-expr coefs x1)
- (math-build-polynomial-expr coefs x2))))
- (calcFunc-collect
- (math-reduce-vec
- 'math-add
- (cons 'vec
- (mapcar (function
- (lambda (c)
- (setq k (1+ k))
- (math-mul (math-mul fac c)
- (math-sub (math-pow x1 k)
- (math-pow x2 k)))))
- coefs)))
- x)))
- (math-mul (math-pow 2 n)
- (if (consp n)
- (progn
- (math-inexact-result)
- (calcFunc-euler n '(float 5 -1)))
- (calcFunc-euler n '(frac 1 2))))))
- (defvar math-bernoulli-b-cache
- (list
- (list 'frac
- -174611
- (math-read-number-simple "802857662698291200000"))
- (list 'frac
- 43867
- (math-read-number-simple "5109094217170944000"))
- (list 'frac
- -3617
- (math-read-number-simple "10670622842880000"))
- (list 'frac
- 1
- (math-read-number-simple "74724249600"))
- (list 'frac
- -691
- (math-read-number-simple "1307674368000"))
- (list 'frac
- 1
- (math-read-number-simple "47900160"))
- (list 'frac
- -1
- (math-read-number-simple "1209600"))
- (list 'frac
- 1
- 30240)
- (list 'frac
- -1
- 720)
- (list 'frac
- 1
- 12)
- 1 ))
- (defvar math-bernoulli-B-cache
- '((frac -174611 330) (frac 43867 798)
- (frac -3617 510) (frac 7 6) (frac -691 2730)
- (frac 5 66) (frac -1 30) (frac 1 42)
- (frac -1 30) (frac 1 6) 1 ))
- (defvar math-bernoulli-cache-size 11)
- (defun math-bernoulli-coefs (n)
- (let* ((coefs (list (calcFunc-bern n)))
- (nn (math-trunc n))
- (k nn)
- (term nn)
- coef
- (calc-prefer-frac (or (integerp n) calc-prefer-frac)))
- (while (>= (setq k (1- k)) 0)
- (setq term (math-div term (- nn k))
- coef (math-mul term (math-bernoulli-number k))
- coefs (cons (if (consp n) (math-float coef) coef) coefs)
- term (math-mul term k)))
- (nreverse coefs)))
- (defun math-bernoulli-number (n)
- (if (= (% n 2) 1)
- (if (= n 1)
- '(frac -1 2)
- 0)
- (setq n (/ n 2))
- (while (>= n math-bernoulli-cache-size)
- (let* ((sum 0)
- (nk 1) ; nk = n-k+1
- (fact 1) ; fact = (n-k+1)!
- ofact
- (p math-bernoulli-b-cache)
- (calc-prefer-frac t))
- (math-working "bernoulli B" (* 2 math-bernoulli-cache-size))
- (while p
- (setq nk (+ nk 2)
- ofact fact
- fact (math-mul fact (* nk (1- nk)))
- sum (math-add sum (math-div (car p) fact))
- p (cdr p)))
- (setq ofact (math-mul ofact (1- nk))
- sum (math-sub (math-div '(frac 1 2) ofact) sum)
- math-bernoulli-b-cache (cons sum math-bernoulli-b-cache)
- math-bernoulli-B-cache (cons (math-mul sum ofact)
- math-bernoulli-B-cache)
- math-bernoulli-cache-size (1+ math-bernoulli-cache-size))))
- (nth (- math-bernoulli-cache-size n 1) math-bernoulli-B-cache)))
- ;;; Bn = n! bn
- ;;; bn = - sum_k=0^n-1 bk / (n-k+1)!
- ;;; A faster method would be to use "tangent numbers", c.f., Concrete
- ;;; Mathematics pg. 273.
- ;;; Probability distributions.
- ;;; Binomial.
- (defun calcFunc-utpb (x n p)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI p x (list '+ (list '- n x) 1)))
- (calcFunc-betaI p x (math-add (math-sub n x) 1))))
- (put 'calcFunc-utpb 'math-expandable t)
- (defun calcFunc-ltpb (x n p)
- (math-sub 1 (calcFunc-utpb x n p)))
- (put 'calcFunc-ltpb 'math-expandable t)
- ;;; Chi-square.
- (defun calcFunc-utpc (chisq v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaQ (list '/ v 2) (list '/ chisq 2)))
- (calcFunc-gammaQ (math-div v 2) (math-div chisq 2))))
- (put 'calcFunc-utpc 'math-expandable t)
- (defun calcFunc-ltpc (chisq v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaP (list '/ v 2) (list '/ chisq 2)))
- (calcFunc-gammaP (math-div v 2) (math-div chisq 2))))
- (put 'calcFunc-ltpc 'math-expandable t)
- ;;; F-distribution.
- (defun calcFunc-utpf (f v1 v2)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI
- (list '/ v2 (list '+ v2 (list '* v1 f)))
- (list '/ v2 2)
- (list '/ v1 2)))
- (calcFunc-betaI (math-div v2 (math-add v2 (math-mul v1 f)))
- (math-div v2 2)
- (math-div v1 2))))
- (put 'calcFunc-utpf 'math-expandable t)
- (defun calcFunc-ltpf (f v1 v2)
- (math-sub 1 (calcFunc-utpf f v1 v2)))
- (put 'calcFunc-ltpf 'math-expandable t)
- ;;; Normal.
- (defun calcFunc-utpn (x mean sdev)
- (if math-expand-formulas
- (math-normalize
- (list '/
- (list '+ 1
- (list 'calcFunc-erf
- (list '/ (list '- mean x)
- (list '* sdev (list 'calcFunc-sqrt 2)))))
- 2))
- (math-mul (math-add '(float 1 0)
- (calcFunc-erf
- (math-div (math-sub mean x)
- (math-mul sdev (math-sqrt-2)))))
- '(float 5 -1))))
- (put 'calcFunc-utpn 'math-expandable t)
- (defun calcFunc-ltpn (x mean sdev)
- (if math-expand-formulas
- (math-normalize
- (list '/
- (list '+ 1
- (list 'calcFunc-erf
- (list '/ (list '- x mean)
- (list '* sdev (list 'calcFunc-sqrt 2)))))
- 2))
- (math-mul (math-add '(float 1 0)
- (calcFunc-erf
- (math-div (math-sub x mean)
- (math-mul sdev (math-sqrt-2)))))
- '(float 5 -1))))
- (put 'calcFunc-ltpn 'math-expandable t)
- ;;; Poisson.
- (defun calcFunc-utpp (n x)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaP x n))
- (calcFunc-gammaP x n)))
- (put 'calcFunc-utpp 'math-expandable t)
- (defun calcFunc-ltpp (n x)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaQ x n))
- (calcFunc-gammaQ x n)))
- (put 'calcFunc-ltpp 'math-expandable t)
- ;;; Student's t. (As defined in Abramowitz & Stegun and Numerical Recipes.)
- (defun calcFunc-utpt (tt v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI
- (list '/ v (list '+ v (list '^ tt 2)))
- (list '/ v 2)
- '(float 5 -1)))
- (calcFunc-betaI (math-div v (math-add v (math-sqr tt)))
- (math-div v 2)
- '(float 5 -1))))
- (put 'calcFunc-utpt 'math-expandable t)
- (defun calcFunc-ltpt (tt v)
- (math-sub 1 (calcFunc-utpt tt v)))
- (put 'calcFunc-ltpt 'math-expandable t)
- (provide 'calc-funcs)
- ;;; calc-funcs.el ends here
|