123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- ;;; calc-frac.el --- fraction functions for Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- (defun calc-fdiv (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op ":" 'calcFunc-fdiv arg 1)))
- (defun calc-fraction (arg)
- (interactive "P")
- (calc-slow-wrapper
- (let ((func (if (calc-is-hyperbolic) 'calcFunc-frac 'calcFunc-pfrac)))
- (if (eq arg 0)
- (calc-enter-result 2 "frac" (list func
- (calc-top-n 2)
- (calc-top-n 1)))
- (calc-enter-result 1 "frac" (list func
- (calc-top-n 1)
- (prefix-numeric-value (or arg 0))))))))
- (defun calc-over-notation (fmt)
- (interactive "sFraction separator: ")
- (calc-wrapper
- (if (string-match "\\`\\([^ 0-9][^ 0-9]?\\)[0-9]*\\'" fmt)
- (let ((n nil))
- (if (/= (match-end 0) (match-end 1))
- (setq n (string-to-number (substring fmt (match-end 1)))
- fmt (math-match-substring fmt 1)))
- (if (eq n 0) (error "Bad denominator"))
- (calc-change-mode 'calc-frac-format (list fmt n) t))
- (error "Bad fraction separator format"))))
- (defun calc-slash-notation (n)
- (interactive "P")
- (calc-wrapper
- (calc-change-mode 'calc-frac-format (if n '("//" nil) '("/" nil)) t)))
- (defun calc-frac-mode (n)
- (interactive "P")
- (calc-wrapper
- (calc-change-mode 'calc-prefer-frac n nil t)
- (message (if calc-prefer-frac
- "Integer division will now generate fractions"
- "Integer division will now generate floating-point results"))))
- ;;;; Fractions.
- ;;; Build a normalized fraction. [R I I]
- ;;; (This could probably be implemented more efficiently than using
- ;;; the plain gcd algorithm.)
- (defun math-make-frac (num den)
- (if (Math-integer-negp den)
- (setq num (math-neg num)
- den (math-neg den)))
- (let ((gcd (math-gcd num den)))
- (if (eq gcd 1)
- (if (eq den 1)
- num
- (list 'frac num den))
- (if (equal gcd den)
- (math-quotient num gcd)
- (list 'frac (math-quotient num gcd) (math-quotient den gcd))))))
- (defun calc-add-fractions (a b)
- (if (eq (car-safe a) 'frac)
- (if (eq (car-safe b) 'frac)
- (math-make-frac (math-add (math-mul (nth 1 a) (nth 2 b))
- (math-mul (nth 2 a) (nth 1 b)))
- (math-mul (nth 2 a) (nth 2 b)))
- (math-make-frac (math-add (nth 1 a)
- (math-mul (nth 2 a) b))
- (nth 2 a)))
- (math-make-frac (math-add (math-mul a (nth 2 b))
- (nth 1 b))
- (nth 2 b))))
- (defun calc-mul-fractions (a b)
- (if (eq (car-safe a) 'frac)
- (if (eq (car-safe b) 'frac)
- (math-make-frac (math-mul (nth 1 a) (nth 1 b))
- (math-mul (nth 2 a) (nth 2 b)))
- (math-make-frac (math-mul (nth 1 a) b)
- (nth 2 a)))
- (math-make-frac (math-mul a (nth 1 b))
- (nth 2 b))))
- (defun calc-div-fractions (a b)
- (if (eq (car-safe a) 'frac)
- (if (eq (car-safe b) 'frac)
- (math-make-frac (math-mul (nth 1 a) (nth 2 b))
- (math-mul (nth 2 a) (nth 1 b)))
- (math-make-frac (nth 1 a)
- (math-mul (nth 2 a) b)))
- (math-make-frac (math-mul a (nth 2 b))
- (nth 1 b))))
- ;;; Convert a real value to fractional form. [T R I; T R F] [Public]
- (defun calcFunc-frac (a &optional tol)
- (or tol (setq tol 0))
- (cond ((Math-ratp a)
- a)
- ((memq (car a) '(cplx polar vec hms date sdev intv mod))
- (cons (car a) (mapcar (function
- (lambda (x)
- (calcFunc-frac x tol)))
- (cdr a))))
- ((Math-messy-integerp a)
- (math-trunc a))
- ((Math-negp a)
- (math-neg (calcFunc-frac (math-neg a) tol)))
- ((not (eq (car a) 'float))
- (if (math-infinitep a)
- a
- (if (math-provably-integerp a)
- a
- (math-reject-arg a 'numberp))))
- ((integerp tol)
- (if (<= tol 0)
- (setq tol (+ tol calc-internal-prec)))
- (calcFunc-frac a (list 'float 5
- (- (+ (math-numdigs (nth 1 a))
- (nth 2 a))
- (1+ tol)))))
- ((not (eq (car tol) 'float))
- (if (Math-realp tol)
- (calcFunc-frac a (math-float tol))
- (math-reject-arg tol 'realp)))
- ((Math-negp tol)
- (calcFunc-frac a (math-neg tol)))
- ((Math-zerop tol)
- (calcFunc-frac a 0))
- ((not (math-lessp-float tol '(float 1 0)))
- (math-trunc a))
- ((Math-zerop a)
- 0)
- (t
- (let ((cfrac (math-continued-fraction a tol))
- (calc-prefer-frac t))
- (math-eval-continued-fraction cfrac)))))
- (defun math-continued-fraction (a tol)
- (let ((calc-internal-prec (+ calc-internal-prec 2)))
- (let ((cfrac nil)
- (aa a)
- (calc-prefer-frac nil)
- int)
- (while (or (null cfrac)
- (and (not (Math-zerop aa))
- (not (math-lessp-float
- (math-abs
- (math-sub a
- (let ((f (math-eval-continued-fraction
- cfrac)))
- (math-working "Fractionalize" f)
- f)))
- tol))))
- (setq int (math-trunc aa)
- aa (math-sub aa int)
- cfrac (cons int cfrac))
- (or (Math-zerop aa)
- (setq aa (math-div 1 aa))))
- cfrac)))
- (defun math-eval-continued-fraction (cf)
- (let ((n (car cf))
- (d 1)
- temp)
- (while (setq cf (cdr cf))
- (setq temp (math-add (math-mul (car cf) n) d)
- d n
- n temp))
- (math-div n d)))
- (defun calcFunc-fdiv (a b) ; [R I I] [Public]
- (cond
- ((Math-num-integerp a)
- (cond
- ((Math-num-integerp b)
- (if (Math-zerop b)
- (math-reject-arg a "*Division by zero")
- (math-make-frac (math-trunc a) (math-trunc b))))
- ((eq (car-safe b) 'frac)
- (if (Math-zerop (nth 1 b))
- (math-reject-arg a "*Division by zero")
- (math-make-frac (math-mul (math-trunc a) (nth 2 b)) (nth 1 b))))
- (t (math-reject-arg b 'integerp))))
- ((eq (car-safe a) 'frac)
- (cond
- ((Math-num-integerp b)
- (if (Math-zerop b)
- (math-reject-arg a "*Division by zero")
- (math-make-frac (cadr a) (math-mul (nth 2 a) (math-trunc b)))))
- ((eq (car-safe b) 'frac)
- (if (Math-zerop (nth 1 b))
- (math-reject-arg a "*Division by zero")
- (math-make-frac (math-mul (nth 1 a) (nth 2 b)) (math-mul (nth 2 a) (nth 1 b)))))
- (t (math-reject-arg b 'integerp))))
- (t
- (math-reject-arg a 'integerp))))
- (provide 'calc-frac)
- ;;; calc-frac.el ends here
|