1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030 |
- ;;; calc-comb.el --- combinatoric functions for Calc
- ;; Copyright (C) 1990-1993, 2001-2012 Free Software Foundation, Inc.
- ;; Author: David Gillespie <daveg@synaptics.com>
- ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
- ;; This file is part of GNU Emacs.
- ;; GNU Emacs is free software: you can redistribute it and/or modify
- ;; it under the terms of the GNU General Public License as published by
- ;; the Free Software Foundation, either version 3 of the License, or
- ;; (at your option) any later version.
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
- ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- ;; GNU General Public License for more details.
- ;; You should have received a copy of the GNU General Public License
- ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
- ;;; Commentary:
- ;;; Code:
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
- (require 'calc-macs)
- (defconst math-primes-table
- [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89
- 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181
- 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277
- 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383
- 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487
- 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601
- 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
- 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827
- 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947
- 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049
- 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
- 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249
- 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361
- 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459
- 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559
- 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
- 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759
- 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877
- 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997
- 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089
- 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
- 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311
- 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411
- 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543
- 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663
- 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
- 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851
- 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969
- 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089
- 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221
- 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
- 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461
- 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557
- 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671
- 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779
- 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
- 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013
- 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129
- 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243
- 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363
- 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493
- 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621
- 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729
- 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871
- 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973
- 4987 4993 4999 5003])
- ;; The variable math-prime-factors-finished is set by calcFunc-prfac to
- ;; indicate whether factoring is complete, and used by calcFunc-factors,
- ;; calcFunc-totient and calcFunc-moebius.
- (defvar math-prime-factors-finished)
- ;;; Combinatorics
- (defun calc-gcd (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "gcd" 'calcFunc-gcd arg)))
- (defun calc-lcm (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "lcm" 'calcFunc-lcm arg)))
- (defun calc-extended-gcd ()
- (interactive)
- (calc-slow-wrapper
- (calc-enter-result 2 "egcd" (cons 'calcFunc-egcd (calc-top-list-n 2)))))
- (defun calc-factorial (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "fact" 'calcFunc-fact arg)))
- (defun calc-gamma (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "gmma" 'calcFunc-gamma arg)))
- (defun calc-double-factorial (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "dfac" 'calcFunc-dfact arg)))
- (defun calc-choose (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "perm" 'calcFunc-perm arg)
- (calc-binary-op "chos" 'calcFunc-choose arg))))
- (defun calc-perm (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-choose arg))
- (defvar calc-last-random-limit '(float 1 0))
- (defun calc-random (n)
- (interactive "P")
- (calc-slow-wrapper
- (if n
- (calc-enter-result 0 "rand" (list 'calcFunc-random
- (calc-get-random-limit
- (prefix-numeric-value n))))
- (calc-enter-result 1 "rand" (list 'calcFunc-random
- (calc-get-random-limit
- (calc-top-n 1)))))))
- (defun calc-get-random-limit (val)
- (if (eq val 0)
- calc-last-random-limit
- (setq calc-last-random-limit val)))
- (defun calc-rrandom ()
- (interactive)
- (calc-slow-wrapper
- (setq calc-last-random-limit '(float 1 0))
- (calc-enter-result 0 "rand" (list 'calcFunc-random '(float 1 0)))))
- (defun calc-random-again (arg)
- (interactive "p")
- (calc-slow-wrapper
- (while (>= (setq arg (1- arg)) 0)
- (calc-enter-result 0 "rand" (list 'calcFunc-random
- calc-last-random-limit)))))
- (defun calc-shuffle (n)
- (interactive "P")
- (calc-slow-wrapper
- (if n
- (calc-enter-result 1 "shuf" (list 'calcFunc-shuffle
- (prefix-numeric-value n)
- (calc-get-random-limit
- (calc-top-n 1))))
- (calc-enter-result 2 "shuf" (list 'calcFunc-shuffle
- (calc-top-n 1)
- (calc-get-random-limit
- (calc-top-n 2)))))))
- (defun calc-report-prime-test (res)
- (cond ((eq (car res) t)
- (calc-record-message "prim" "Prime (guaranteed)"))
- ((eq (car res) nil)
- (if (cdr res)
- (if (eq (nth 1 res) 'unknown)
- (calc-record-message
- "prim" "Non-prime (factors unknown)")
- (calc-record-message
- "prim" "Non-prime (%s is a factor)"
- (math-format-number (nth 1 res))))
- (calc-record-message "prim" "Non-prime")))
- (t
- (calc-record-message
- "prim" "Probably prime (%d iters; %s%% chance of error)"
- (nth 1 res)
- (let ((calc-float-format '(fix 2)))
- (math-format-number (nth 2 res)))))))
- (defun calc-prime-test (iters)
- (interactive "p")
- (calc-slow-wrapper
- (let* ((n (calc-top-n 1))
- (res (math-prime-test n iters)))
- (calc-report-prime-test res))))
- (defvar calc-verbose-nextprime nil)
- (defun calc-next-prime (iters)
- (interactive "p")
- (calc-slow-wrapper
- (let ((calc-verbose-nextprime t))
- (if (calc-is-inverse)
- (calc-enter-result 1 "prvp" (list 'calcFunc-prevprime
- (calc-top-n 1) (math-abs iters)))
- (calc-enter-result 1 "nxtp" (list 'calcFunc-nextprime
- (calc-top-n 1) (math-abs iters)))))))
- (defun calc-prev-prime (iters)
- (interactive "p")
- (calc-invert-func)
- (calc-next-prime iters))
- (defun calc-prime-factors (iters)
- (interactive "p")
- (calc-slow-wrapper
- (let ((res (calcFunc-prfac (calc-top-n 1))))
- (if (not math-prime-factors-finished)
- (calc-record-message "pfac" "Warning: May not be fully factored"))
- (calc-enter-result 1 "pfac" res))))
- (defun calc-totient (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "phi" 'calcFunc-totient arg)))
- (defun calc-moebius (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "mu" 'calcFunc-moebius arg)))
- (defun calcFunc-gcd (a b)
- (if (Math-messy-integerp a)
- (setq a (math-trunc a)))
- (if (Math-messy-integerp b)
- (setq b (math-trunc b)))
- (cond ((and (Math-integerp a) (Math-integerp b))
- (math-gcd a b))
- ((Math-looks-negp a)
- (calcFunc-gcd (math-neg a) b))
- ((Math-looks-negp b)
- (calcFunc-gcd a (math-neg b)))
- ((Math-zerop a) b)
- ((Math-zerop b) a)
- ((and (Math-ratp a)
- (Math-ratp b))
- (math-make-frac (math-gcd (if (eq (car-safe a) 'frac) (nth 1 a) a)
- (if (eq (car-safe b) 'frac) (nth 1 b) b))
- (calcFunc-lcm
- (if (eq (car-safe a) 'frac) (nth 2 a) 1)
- (if (eq (car-safe b) 'frac) (nth 2 b) 1))))
- ((not (Math-integerp a))
- (calc-record-why 'integerp a)
- (list 'calcFunc-gcd a b))
- (t
- (calc-record-why 'integerp b)
- (list 'calcFunc-gcd a b))))
- (defun calcFunc-lcm (a b)
- (let ((g (calcFunc-gcd a b)))
- (if (Math-numberp g)
- (math-div (math-mul a b) g)
- (list 'calcFunc-lcm a b))))
- (defun calcFunc-egcd (a b) ; Knuth section 4.5.2
- (cond
- ((not (Math-integerp a))
- (if (Math-messy-integerp a)
- (calcFunc-egcd (math-trunc a) b)
- (calc-record-why 'integerp a)
- (list 'calcFunc-egcd a b)))
- ((not (Math-integerp b))
- (if (Math-messy-integerp b)
- (calcFunc-egcd a (math-trunc b))
- (calc-record-why 'integerp b)
- (list 'calcFunc-egcd a b)))
- (t
- (let ((u1 1) (u2 0) (u3 a)
- (v1 0) (v2 1) (v3 b)
- t1 t2 q)
- (while (not (eq v3 0))
- (setq q (math-idivmod u3 v3)
- t1 (math-sub u1 (math-mul v1 (car q)))
- t2 (math-sub u2 (math-mul v2 (car q)))
- u1 v1 u2 v2 u3 v3
- v1 t1 v2 t2 v3 (cdr q)))
- (list 'vec u3 u1 u2)))))
- ;;; Factorial and related functions.
- (defconst math-small-factorial-table
- (vector 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800
- (math-read-number-simple "479001600")
- (math-read-number-simple "6227020800")
- (math-read-number-simple "87178291200")
- (math-read-number-simple "1307674368000")
- (math-read-number-simple "20922789888000")
- (math-read-number-simple "355687428096000")
- (math-read-number-simple "6402373705728000")
- (math-read-number-simple "121645100408832000")
- (math-read-number-simple "2432902008176640000")))
- (defun calcFunc-fact (n) ; [I I] [F F] [Public]
- (let (temp)
- (cond ((Math-integer-negp n)
- (if calc-infinite-mode
- '(var uinf var-uinf)
- (math-reject-arg n 'range)))
- ((integerp n)
- (if (<= n 20)
- (aref math-small-factorial-table n)
- (math-factorial-iter (1- n) 2 1)))
- ((and (math-messy-integerp n)
- (Math-lessp n 100))
- (math-inexact-result)
- (setq temp (math-trunc n))
- (if (>= temp 0)
- (if (<= temp 20)
- (math-float (calcFunc-fact temp))
- (math-with-extra-prec 1
- (math-factorial-iter (1- temp) 2 '(float 1 0))))
- (math-reject-arg n 'range)))
- ((math-numberp n)
- (let* ((q (math-quarter-integer n))
- (tn (and q (Math-lessp n 1000) (Math-lessp -1000 n)
- (1+ (math-floor n)))))
- (cond ((and tn (= q 2)
- (or calc-symbolic-mode (< (math-abs tn) 20)))
- (let ((q (if (< tn 0)
- (math-div
- (math-pow -2 (- tn))
- (math-double-factorial-iter (* -2 tn) 3 1 2))
- (math-div
- (math-double-factorial-iter (* 2 tn) 3 1 2)
- (math-pow 2 tn)))))
- (math-mul q (if calc-symbolic-mode
- (list 'calcFunc-sqrt '(var pi var-pi))
- (math-sqrt-pi)))))
- ((and tn (>= tn 0) (< tn 20)
- (memq q '(1 3)))
- (math-inexact-result)
- (math-div
- (math-mul (math-double-factorial-iter (* 4 tn) q 1 4)
- (if (= q 1) (math-gamma-1q) (math-gamma-3q)))
- (math-pow 4 tn)))
- (t
- (math-inexact-result)
- (math-with-extra-prec 3
- (math-gammap1-raw (math-float n)))))))
- ((equal n '(var inf var-inf)) n)
- (t (calc-record-why 'numberp n)
- (list 'calcFunc-fact n)))))
- (math-defcache math-gamma-1q nil
- (math-with-extra-prec 3
- (math-gammap1-raw '(float -75 -2))))
- (math-defcache math-gamma-3q nil
- (math-with-extra-prec 3
- (math-gammap1-raw '(float -25 -2))))
- (defun math-factorial-iter (count n f)
- (if (= (% n 5) 1)
- (math-working (format "factorial(%d)" (1- n)) f))
- (if (> count 0)
- (math-factorial-iter (1- count) (1+ n) (math-mul n f))
- f))
- (defun calcFunc-dfact (n) ; [I I] [F F] [Public]
- (cond ((Math-integer-negp n)
- (if (math-oddp n)
- (if (eq n -1)
- 1
- (math-div (if (eq (math-mod n 4) 3) 1 -1)
- (calcFunc-dfact (math-sub -2 n))))
- (list 'calcFunc-dfact n)))
- ((Math-zerop n) 1)
- ((integerp n) (math-double-factorial-iter n (+ 2 (% n 2)) 1 2))
- ((math-messy-integerp n)
- (let ((temp (math-trunc n)))
- (math-inexact-result)
- (if (natnump temp)
- (if (Math-lessp temp 200)
- (math-with-extra-prec 1
- (math-double-factorial-iter temp (+ 2 (% temp 2))
- '(float 1 0) 2))
- (let* ((half (math-div2 temp))
- (even (math-mul (math-pow 2 half)
- (calcFunc-fact (math-float half)))))
- (if (math-evenp temp)
- even
- (math-div (calcFunc-fact n) even))))
- (list 'calcFunc-dfact n))))
- ((equal n '(var inf var-inf)) n)
- (t (calc-record-why 'natnump n)
- (list 'calcFunc-dfact n))))
- (defun math-double-factorial-iter (max n f step)
- (if (< (% n 12) step)
- (math-working (format "dfact(%d)" (- n step)) f))
- (if (<= n max)
- (math-double-factorial-iter max (+ n step) (math-mul n f) step)
- f))
- (defun calcFunc-perm (n m) ; [I I I] [F F F] [Public]
- (cond ((and (integerp n) (integerp m) (<= m n) (>= m 0))
- (math-factorial-iter m (1+ (- n m)) 1))
- ((or (not (math-num-integerp n))
- (and (math-messy-integerp n) (Math-lessp 100 n))
- (not (math-num-integerp m))
- (and (math-messy-integerp m) (Math-lessp 100 m)))
- (or (math-realp n) (equal n '(var inf var-inf))
- (math-reject-arg n 'realp))
- (or (math-realp m) (equal m '(var inf var-inf))
- (math-reject-arg m 'realp))
- (and (math-num-integerp n) (math-negp n) (math-reject-arg n 'range))
- (and (math-num-integerp m) (math-negp m) (math-reject-arg m 'range))
- (math-div (calcFunc-fact n) (calcFunc-fact (math-sub n m))))
- (t
- (let ((tn (math-trunc n))
- (tm (math-trunc m)))
- (math-inexact-result)
- (or (integerp tn) (math-reject-arg tn 'fixnump))
- (or (integerp tm) (math-reject-arg tm 'fixnump))
- (or (and (<= tm tn) (>= tm 0)) (math-reject-arg tm 'range))
- (math-with-extra-prec 1
- (math-factorial-iter tm (1+ (- tn tm)) '(float 1 0)))))))
- (defun calcFunc-choose (n m) ; [I I I] [F F F] [Public]
- (cond ((and (integerp n) (integerp m) (<= m n) (>= m 0))
- (if (> m (/ n 2))
- (math-choose-iter (- n m) n 1 1)
- (math-choose-iter m n 1 1)))
- ((not (math-realp n))
- (math-reject-arg n 'realp))
- ((not (math-realp m))
- (math-reject-arg m 'realp))
- ((not (math-num-integerp m))
- (if (and (math-num-integerp n) (math-negp n))
- (list 'calcFunc-choose n m)
- (math-div (calcFunc-fact (math-float n))
- (math-mul (calcFunc-fact m)
- (calcFunc-fact (math-sub n m))))))
- ((math-negp m) 0)
- ((math-negp n)
- (let ((val (calcFunc-choose (math-add (math-add n m) -1) m)))
- (if (math-evenp (math-trunc m))
- val
- (math-neg val))))
- ((and (math-num-integerp n)
- (Math-lessp n m))
- 0)
- (t
- (math-inexact-result)
- (let ((tm (math-trunc m)))
- (or (integerp tm) (math-reject-arg tm 'fixnump))
- (if (> tm 100)
- (math-div (calcFunc-fact (math-float n))
- (math-mul (calcFunc-fact (math-float m))
- (calcFunc-fact (math-float
- (math-sub n m)))))
- (math-with-extra-prec 1
- (math-choose-float-iter tm n 1 1)))))))
- (defun math-choose-iter (m n i c)
- (if (and (= (% i 5) 1) (> i 5))
- (math-working (format "choose(%d)" (1- i)) c))
- (if (<= i m)
- (math-choose-iter m (1- n) (1+ i)
- (math-quotient (math-mul c n) i))
- c))
- (defun math-choose-float-iter (count n i c)
- (if (= (% i 5) 1)
- (math-working (format "choose(%d)" (1- i)) c))
- (if (> count 0)
- (math-choose-float-iter (1- count) (math-sub n 1) (1+ i)
- (math-div (math-mul c n) i))
- c))
- ;;; Stirling numbers.
- (defun calcFunc-stir1 (n m)
- (math-stirling-number n m 1))
- (defun calcFunc-stir2 (n m)
- (math-stirling-number n m 0))
- (defvar math-stirling-cache (vector [[1]] [[1]]))
- ;; The variable math-stirling-local-cache is local to
- ;; math-stirling-number, but is used by math-stirling-1
- ;; and math-stirling-2, which are called by math-stirling-number.
- (defvar math-stirling-local-cache)
- (defun math-stirling-number (n m k)
- (or (math-num-natnump n) (math-reject-arg n 'natnump))
- (or (math-num-natnump m) (math-reject-arg m 'natnump))
- (if (consp n) (setq n (math-trunc n)))
- (or (integerp n) (math-reject-arg n 'fixnump))
- (if (consp m) (setq m (math-trunc m)))
- (or (integerp m) (math-reject-arg m 'fixnump))
- (if (< n m)
- 0
- (let ((math-stirling-local-cache (aref math-stirling-cache k)))
- (while (<= (length math-stirling-local-cache) n)
- (let ((i (1- (length math-stirling-local-cache)))
- row)
- (setq math-stirling-local-cache
- (vconcat math-stirling-local-cache
- (make-vector (length math-stirling-local-cache) nil)))
- (aset math-stirling-cache k math-stirling-local-cache)
- (while (< (setq i (1+ i)) (length math-stirling-local-cache))
- (aset math-stirling-local-cache i (setq row (make-vector (1+ i) nil)))
- (aset row 0 0)
- (aset row i 1))))
- (if (= k 1)
- (math-stirling-1 n m)
- (math-stirling-2 n m)))))
- (defun math-stirling-1 (n m)
- (or (aref (aref math-stirling-local-cache n) m)
- (aset (aref math-stirling-local-cache n) m
- (math-add (math-stirling-1 (1- n) (1- m))
- (math-mul (- 1 n) (math-stirling-1 (1- n) m))))))
- (defun math-stirling-2 (n m)
- (or (aref (aref math-stirling-local-cache n) m)
- (aset (aref math-stirling-local-cache n) m
- (math-add (math-stirling-2 (1- n) (1- m))
- (math-mul m (math-stirling-2 (1- n) m))))))
- (defvar math-random-table nil)
- (defvar math-last-RandSeed nil)
- (defvar math-random-ptr1 nil)
- (defvar math-random-ptr2 nil)
- (defvar math-random-shift nil)
- ;;; Produce a random 10-bit integer, with (random) if no seed provided,
- ;;; or else with Numerical Recipes algorithm ran3 / Knuth 3.2.2-A.
- (defvar var-RandSeed)
- (defvar math-random-cache nil)
- (defvar math-gaussian-cache nil)
- (defun math-init-random-base ()
- (if (and (boundp 'var-RandSeed) var-RandSeed)
- (if (eq (car-safe var-RandSeed) 'vec)
- nil
- (if (Math-integerp var-RandSeed)
- (let* ((seed (math-sub 161803 var-RandSeed))
- (mj (1+ (math-mod seed 1000000)))
- (mk (1+ (math-mod (math-quotient seed 1000000)
- 1000000)))
- (i 0))
- (setq math-random-table (cons 'vec (make-list 55 mj)))
- (while (<= (setq i (1+ i)) 54)
- (let* ((ii (% (* i 21) 55))
- (p (nthcdr ii math-random-table)))
- (setcar p mk)
- (setq mk (- mj mk)
- mj (car p)))))
- (math-reject-arg var-RandSeed "*RandSeed must be an integer"))
- (setq var-RandSeed (list 'vec var-RandSeed)
- math-random-ptr1 math-random-table
- math-random-cache nil
- math-random-ptr2 (nthcdr 31 math-random-table))
- (let ((i 200))
- (while (> (setq i (1- i)) 0)
- (math-random-base))))
- (random t)
- (setq var-RandSeed nil
- math-random-cache nil
- math-random-shift -4) ; assume RAND_MAX >= 16383
- ;; This exercises the random number generator and also helps
- ;; deduce a better value for RAND_MAX.
- (let ((i 0))
- (while (< (setq i (1+ i)) 30)
- (if (> (lsh (math-abs (random)) math-random-shift) 4095)
- (setq math-random-shift (1- math-random-shift))))))
- (setq math-last-RandSeed var-RandSeed
- math-gaussian-cache nil))
- (defun math-random-base ()
- (if var-RandSeed
- (progn
- (setq math-random-ptr1 (or (cdr math-random-ptr1)
- (cdr math-random-table))
- math-random-ptr2 (or (cdr math-random-ptr2)
- (cdr math-random-table)))
- (logand (lsh (setcar math-random-ptr1
- (logand (- (car math-random-ptr1)
- (car math-random-ptr2)) 524287))
- -6) 1023))
- (logand (lsh (random) math-random-shift) 1023)))
- ;;; Produce a random digit in the range 0..999.
- ;;; Avoid various pitfalls that may lurk in the built-in (random) function!
- ;;; Shuffling algorithm from Numerical Recipes, section 7.1.
- (defvar math-random-last)
- (defun math-random-three-digit-number ()
- "Return a random three digit number."
- (let (i)
- (or (and (boundp 'var-RandSeed) (eq var-RandSeed math-last-RandSeed))
- (math-init-random-base))
- (or math-random-cache
- (progn
- (setq math-random-last (math-random-base)
- math-random-cache (make-vector 13 nil)
- i -1)
- (while (< (setq i (1+ i)) 13)
- (aset math-random-cache i (math-random-base)))))
- (while (progn
- (setq i (/ math-random-last 79) ; 0 <= i < 13
- math-random-last (aref math-random-cache i))
- (aset math-random-cache i (math-random-base))
- (>= math-random-last 1000)))
- math-random-last))
- ;;; Produce an N-digit random integer.
- (defun math-random-digits (n)
- "Produce a random N digit integer."
- (let* ((slop (% (- 3 (% n 3)) 3))
- (i (/ (+ n slop) 3))
- (rnum 0))
- (while (> i 0)
- (setq rnum
- (math-add
- (math-random-three-digit-number)
- (math-mul rnum 1000)))
- (setq i (1- i)))
- (math-normalize (math-scale-right rnum slop))))
- ;;; Produce a uniformly-distributed random float 0 <= N < 1.
- (defun math-random-float ()
- (math-make-float (math-random-digits calc-internal-prec)
- (- calc-internal-prec)))
- ;;; Produce a Gaussian-distributed random float with mean=0, sigma=1.
- (defun math-gaussian-float ()
- (math-with-extra-prec 2
- (if (and math-gaussian-cache
- (= (car math-gaussian-cache) calc-internal-prec))
- (prog1
- (cdr math-gaussian-cache)
- (setq math-gaussian-cache nil))
- (let* ((v1 (math-add (math-mul (math-random-float) 2) -1))
- (v2 (math-add (math-mul (math-random-float) 2) -1))
- (r (math-add (math-sqr v1) (math-sqr v2))))
- (while (or (not (Math-lessp r 1)) (math-zerop r))
- (setq v1 (math-add (math-mul (math-random-float) 2) -1)
- v2 (math-add (math-mul (math-random-float) 2) -1)
- r (math-add (math-sqr v1) (math-sqr v2))))
- (let ((fac (math-sqrt (math-mul (math-div (calcFunc-ln r) r) -2))))
- (setq math-gaussian-cache (cons calc-internal-prec
- (math-mul v1 fac)))
- (math-mul v2 fac))))))
- ;;; Produce a random integer or real 0 <= N < MAX.
- (defun calcFunc-random (max)
- (cond ((Math-zerop max)
- (math-gaussian-float))
- ((Math-integerp max)
- (let* ((digs (math-numdigs max))
- (r (math-random-digits (+ digs 3))))
- (math-mod r max)))
- ((Math-realp max)
- (math-mul (math-random-float) max))
- ((and (eq (car max) 'intv) (math-constp max)
- (Math-lessp (nth 2 max) (nth 3 max)))
- (if (math-floatp max)
- (let ((val (math-add (math-mul (math-random-float)
- (math-sub (nth 3 max) (nth 2 max)))
- (nth 2 max))))
- (if (or (and (memq (nth 1 max) '(0 1)) ; almost not worth
- (Math-equal val (nth 2 max))) ; checking!
- (and (memq (nth 1 max) '(0 2))
- (Math-equal val (nth 3 max))))
- (calcFunc-random max)
- val))
- (let ((lo (if (memq (nth 1 max) '(0 1))
- (math-add (nth 2 max) 1) (nth 2 max)))
- (hi (if (memq (nth 1 max) '(1 3))
- (math-add (nth 3 max) 1) (nth 3 max))))
- (if (Math-lessp lo hi)
- (math-add (calcFunc-random (math-sub hi lo)) lo)
- (math-reject-arg max "*Empty interval")))))
- ((eq (car max) 'vec)
- (if (cdr max)
- (nth (1+ (calcFunc-random (1- (length max)))) max)
- (math-reject-arg max "*Empty list")))
- ((and (eq (car max) 'sdev) (math-constp max) (Math-realp (nth 1 max)))
- (math-add (math-mul (math-gaussian-float) (nth 2 max)) (nth 1 max)))
- (t (math-reject-arg max 'realp))))
- ;;; Choose N objects at random from the set MAX without duplicates.
- (defun calcFunc-shuffle (n &optional max)
- (or max (setq max n n -1))
- (or (and (Math-num-integerp n)
- (or (natnump (setq n (math-trunc n))) (eq n -1)))
- (math-reject-arg n 'integerp))
- (cond ((or (math-zerop max)
- (math-floatp max)
- (eq (car-safe max) 'sdev))
- (if (< n 0)
- (math-reject-arg n 'natnump)
- (math-simple-shuffle n max)))
- ((and (<= n 1) (>= n 0))
- (math-simple-shuffle n max))
- ((and (eq (car-safe max) 'intv) (math-constp max))
- (let ((num (math-add (math-sub (nth 3 max) (nth 2 max))
- (cdr (assq (nth 1 max)
- '((0 . -1) (1 . 0)
- (2 . 0) (3 . 1))))))
- (min (math-add (nth 2 max) (if (memq (nth 1 max) '(0 1))
- 1 0))))
- (if (< n 0) (setq n num))
- (or (math-posp num) (math-reject-arg max 'range))
- (and (Math-lessp num n) (math-reject-arg n 'range))
- (if (Math-lessp n (math-quotient num 3))
- (math-simple-shuffle n max)
- (if (> (* n 4) (* num 3))
- (math-add (math-sub min 1)
- (math-shuffle-list n num (calcFunc-index num)))
- (let ((tot 0)
- (m 0)
- (vec nil))
- (while (< m n)
- (if (< (calcFunc-random (- num tot)) (- n m))
- (setq vec (cons (math-add min tot) vec)
- m (1+ m)))
- (setq tot (1+ tot)))
- (math-shuffle-list n n (cons 'vec vec)))))))
- ((eq (car-safe max) 'vec)
- (let ((size (1- (length max))))
- (if (< n 0) (setq n size))
- (if (and (> n (/ size 2)) (<= n size))
- (math-shuffle-list n size (copy-sequence max))
- (let* ((vals (calcFunc-shuffle
- n (list 'intv 3 1 (1- (length max)))))
- (p vals))
- (while (setq p (cdr p))
- (setcar p (nth (car p) max)))
- vals))))
- ((math-integerp max)
- (if (math-posp max)
- (calcFunc-shuffle n (list 'intv 2 0 max))
- (calcFunc-shuffle n (list 'intv 1 max 0))))
- (t (math-reject-arg max 'realp))))
- (defun math-simple-shuffle (n max)
- (let ((vec nil)
- val)
- (while (>= (setq n (1- n)) 0)
- (while (math-member (setq val (calcFunc-random max)) vec))
- (setq vec (cons val vec)))
- (cons 'vec vec)))
- (defun math-shuffle-list (n size vec)
- (let ((j size)
- k temp
- (p vec))
- (while (cdr (setq p (cdr p)))
- (setq k (calcFunc-random j)
- j (1- j)
- temp (nth k p))
- (setcar (nthcdr k p) (car p))
- (setcar p temp))
- (cons 'vec (nthcdr (- size n -1) vec))))
- (defun math-member (x list)
- (while (and list (not (equal x (car list))))
- (setq list (cdr list)))
- list)
- ;;; Check if the integer N is prime. [X I]
- ;;; Return (nil) if non-prime,
- ;;; (nil N) if non-prime with known factor N,
- ;;; (nil unknown) if non-prime with no known factors,
- ;;; (t) if prime,
- ;;; (maybe N P) if probably prime (after N iters with probability P%)
- (defvar math-prime-test-cache '(-1))
- (defvar math-prime-test-cache-k)
- (defvar math-prime-test-cache-q)
- (defvar math-prime-test-cache-nm1)
- (defun math-prime-test (n iters)
- (if (and (Math-vectorp n) (cdr n))
- (setq n (nth (1- (length n)) n)))
- (if (Math-messy-integerp n)
- (setq n (math-trunc n)))
- (let ((res))
- (while (> iters 0)
- (setq res
- (cond ((and (integerp n) (<= n 5003))
- (list (= (math-next-small-prime n) n)))
- ((not (Math-integerp n))
- (error "Argument must be an integer"))
- ((Math-integer-negp n)
- '(nil))
- ((Math-natnum-lessp n 8000000)
- (setq n (math-fixnum n))
- (let ((i -1) v)
- (while (and (> (% n (setq v (aref math-primes-table
- (setq i (1+ i)))))
- 0)
- (< (* v v) n)))
- (if (= (% n v) 0)
- (list nil v)
- '(t))))
- ((not (equal n (car math-prime-test-cache)))
- (cond ((= (% (nth 1 n) 2) 0) '(nil 2))
- ((= (% (nth 1 n) 5) 0) '(nil 5))
- (t (let ((q n) (sum 0))
- (while (not (eq q 0))
- (setq sum (%
- (+
- sum
- (calcFunc-mod
- q 1000000))
- 111111))
- (setq q
- (math-quotient
- q 1000000)))
- (cond ((= (% sum 3) 0) '(nil 3))
- ((= (% sum 7) 0) '(nil 7))
- ((= (% sum 11) 0) '(nil 11))
- ((= (% sum 13) 0) '(nil 13))
- ((= (% sum 37) 0) '(nil 37))
- (t
- (setq math-prime-test-cache-k 1
- math-prime-test-cache-q
- (math-div2 n)
- math-prime-test-cache-nm1
- (math-add n -1))
- (while (math-evenp
- math-prime-test-cache-q)
- (setq math-prime-test-cache-k
- (1+ math-prime-test-cache-k)
- math-prime-test-cache-q
- (math-div2
- math-prime-test-cache-q)))
- (setq iters (1+ iters))
- (list 'maybe
- 0
- (math-sub
- 100
- (math-div
- '(float 232 0)
- (math-numdigs n))))))))))
- ((not (eq (car (nth 1 math-prime-test-cache)) 'maybe))
- (nth 1 math-prime-test-cache))
- (t ; Fermat step
- (let* ((x (math-add (calcFunc-random (math-add n -2)) 2))
- (y (math-pow-mod x math-prime-test-cache-q n))
- (j 0))
- (while (and (not (eq y 1))
- (not (equal y math-prime-test-cache-nm1))
- (< (setq j (1+ j)) math-prime-test-cache-k))
- (setq y (math-mod (math-mul y y) n)))
- (if (or (equal y math-prime-test-cache-nm1)
- (and (eq y 1) (eq j 0)))
- (list 'maybe
- (1+ (nth 1 (nth 1 math-prime-test-cache)))
- (math-mul (nth 2 (nth 1 math-prime-test-cache))
- '(float 25 -2)))
- '(nil unknown))))))
- (setq math-prime-test-cache (list n res)
- iters (if (eq (car res) 'maybe)
- (1- iters)
- 0)))
- res))
- (defun calcFunc-prime (n &optional iters)
- (or (math-num-integerp n) (math-reject-arg n 'integerp))
- (or (not iters) (math-num-integerp iters) (math-reject-arg iters 'integerp))
- (if (car (math-prime-test (math-trunc n) (math-trunc (or iters 1))))
- 1
- 0))
- ;;; Theory: summing base-10^6 digits modulo 111111 is "casting out 999999s".
- ;;; Initial probability that N is prime is 1/ln(N) = log10(e)/log10(N).
- ;;; After culling [2,3,5,7,11,13,37], probability of primality is 5.36 x more.
- ;;; Initial reported probability of non-primality is thus 100% - this.
- ;;; Each Fermat step multiplies this probability by 25%.
- ;;; The Fermat step is algorithm P from Knuth section 4.5.4.
- (defun calcFunc-prfac (n)
- (setq math-prime-factors-finished t)
- (if (Math-messy-integerp n)
- (setq n (math-trunc n)))
- (if (Math-natnump n)
- (if (Math-natnum-lessp 2 n)
- (let (factors res p (i 0))
- (while (and (not (eq n 1))
- (< i (length math-primes-table)))
- (setq p (aref math-primes-table i))
- (while (eq (cdr (setq res (cond ((eq n p) (cons 1 0))
- ((eq n 1) (cons 0 1))
- ((consp n) (math-idivmod n p))
- (t (cons (/ n p) (% n p))))))
- 0)
- (math-working "factor" p)
- (setq factors (nconc factors (list p))
- n (car res)))
- (or (eq n 1)
- (Math-natnum-lessp p (car res))
- (setq factors (nconc factors (list n))
- n 1))
- (setq i (1+ i)))
- (or (setq math-prime-factors-finished (eq n 1))
- (setq factors (nconc factors (list n))))
- (cons 'vec factors))
- (list 'vec n))
- (if (Math-integerp n)
- (if (eq n -1)
- (list 'vec n)
- (cons 'vec (cons -1 (cdr (calcFunc-prfac (math-neg n))))))
- (calc-record-why 'integerp n)
- (list 'calcFunc-prfac n))))
- (defun calcFunc-totient (n)
- (if (Math-messy-integerp n)
- (setq n (math-trunc n)))
- (if (Math-natnump n)
- (if (Math-natnum-lessp n 2)
- (if (Math-negp n)
- (calcFunc-totient (math-abs n))
- n)
- (let ((factors (cdr (calcFunc-prfac n)))
- p)
- (if math-prime-factors-finished
- (progn
- (while factors
- (setq p (car factors)
- n (math-mul (math-div n p) (math-add p -1)))
- (while (equal p (car factors))
- (setq factors (cdr factors))))
- n)
- (calc-record-why "*Number too big to factor" n)
- (list 'calcFunc-totient n))))
- (calc-record-why 'natnump n)
- (list 'calcFunc-totient n)))
- (defun calcFunc-moebius (n)
- (if (Math-messy-integerp n)
- (setq n (math-trunc n)))
- (if (and (Math-natnump n) (not (eq n 0)))
- (if (Math-natnum-lessp n 2)
- (if (Math-negp n)
- (calcFunc-moebius (math-abs n))
- 1)
- (let ((factors (cdr (calcFunc-prfac n)))
- (mu 1))
- (if math-prime-factors-finished
- (progn
- (while factors
- (setq mu (if (equal (car factors) (nth 1 factors))
- 0 (math-neg mu))
- factors (cdr factors)))
- mu)
- (calc-record-why "Number too big to factor" n)
- (list 'calcFunc-moebius n))))
- (calc-record-why 'posintp n)
- (list 'calcFunc-moebius n)))
- (defun calcFunc-nextprime (n &optional iters)
- (if (Math-integerp n)
- (if (Math-integer-negp n)
- 2
- (if (and (integerp n) (< n 5003))
- (math-next-small-prime (1+ n))
- (if (math-evenp n)
- (setq n (math-add n -1)))
- (let (res)
- (while (not (car (setq res (math-prime-test
- (setq n (math-add n 2))
- (or iters 1))))))
- (if (and calc-verbose-nextprime
- (eq (car res) 'maybe))
- (calc-report-prime-test res)))
- n))
- (if (Math-realp n)
- (calcFunc-nextprime (math-trunc n) iters)
- (math-reject-arg n 'integerp))))
- (defun calcFunc-prevprime (n &optional iters)
- (if (Math-integerp n)
- (if (Math-lessp n 4)
- 2
- (if (math-evenp n)
- (setq n (math-add n 1)))
- (let (res)
- (while (not (car (setq res (math-prime-test
- (setq n (math-add n -2))
- (or iters 1))))))
- (if (and calc-verbose-nextprime
- (eq (car res) 'maybe))
- (calc-report-prime-test res)))
- n)
- (if (Math-realp n)
- (calcFunc-prevprime (math-ceiling n) iters)
- (math-reject-arg n 'integerp))))
- (defun math-next-small-prime (n)
- (if (and (integerp n) (> n 2))
- (let ((lo -1)
- (hi (length math-primes-table))
- mid)
- (while (> (- hi lo) 1)
- (if (> n (aref math-primes-table
- (setq mid (ash (+ lo hi) -1))))
- (setq lo mid)
- (setq hi mid)))
- (aref math-primes-table hi))
- 2))
- (provide 'calc-comb)
- ;;; calc-comb.el ends here
|