protocol.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. /*
  2. * This file is part of the libsigrok project.
  3. *
  4. * Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <string.h>
  21. #include <glib.h>
  22. #include "libsigrok.h"
  23. #include "libsigrok-internal.h"
  24. #include "protocol.h"
  25. extern struct dmm_info udmms[];
  26. /*
  27. * Driver for various UNI-T multimeters (and rebranded ones).
  28. *
  29. * Most UNI-T DMMs can be used with two (three) different PC interface cables:
  30. * - The UT-D04 USB/HID cable, old version with Hoitek HE2325U chip.
  31. * - The UT-D04 USB/HID cable, new version with WCH CH9325 chip.
  32. * - The UT-D02 RS232 cable.
  33. *
  34. * This driver is meant to support all USB/HID cables, and various DMMs that
  35. * can be attached to a PC via these cables. Currently only the UT-D04 cable
  36. * (new version) is supported/tested.
  37. * The UT-D02 RS232 cable is handled by the 'serial-dmm' driver.
  38. *
  39. * The data for one DMM packet (e.g. 14 bytes if the respective DMM uses a
  40. * Fortune Semiconductor FS9922-DMM4 chip) is spread across multiple
  41. * 8-byte chunks.
  42. *
  43. * An 8-byte chunk looks like this:
  44. * - Byte 0: 0xfz, where z is the number of actual data bytes in this chunk.
  45. * - Bytes 1-7: z data bytes, the rest of the bytes should be ignored.
  46. *
  47. * Example:
  48. * f0 00 00 00 00 00 00 00 (no data bytes)
  49. * f2 55 77 00 00 00 00 00 (2 data bytes, 0x55 and 0x77)
  50. * f1 d1 00 00 00 00 00 00 (1 data byte, 0xd1)
  51. */
  52. static void decode_packet(struct sr_dev_inst *sdi, int dmm, const uint8_t *buf,
  53. void *info)
  54. {
  55. struct dev_context *devc;
  56. struct sr_datafeed_packet packet;
  57. struct sr_datafeed_analog analog;
  58. float floatval;
  59. int ret;
  60. devc = sdi->priv;
  61. memset(&analog, 0, sizeof(struct sr_datafeed_analog));
  62. /* Parse the protocol packet. */
  63. ret = udmms[dmm].packet_parse(buf, &floatval, &analog, info);
  64. if (ret != SR_OK) {
  65. sr_dbg("Invalid DMM packet, ignoring.");
  66. return;
  67. }
  68. /* If this DMM needs additional handling, call the resp. function. */
  69. if (udmms[dmm].dmm_details)
  70. udmms[dmm].dmm_details(&analog, info);
  71. /* Send a sample packet with one analog value. */
  72. analog.channels = sdi->channels;
  73. analog.num_samples = 1;
  74. analog.data = &floatval;
  75. packet.type = SR_DF_ANALOG;
  76. packet.payload = &analog;
  77. sr_session_send(devc->cb_data, &packet);
  78. /* Increase sample count. */
  79. devc->num_samples++;
  80. }
  81. static int hid_chip_init(struct sr_dev_inst *sdi, uint16_t baudrate)
  82. {
  83. int ret;
  84. uint8_t buf[5];
  85. struct sr_usb_dev_inst *usb;
  86. usb = sdi->conn;
  87. /* Detach kernel drivers which grabbed this device (if any). */
  88. if (libusb_kernel_driver_active(usb->devhdl, 0) == 1) {
  89. ret = libusb_detach_kernel_driver(usb->devhdl, 0);
  90. if (ret < 0) {
  91. sr_err("Failed to detach kernel driver: %s.",
  92. libusb_error_name(ret));
  93. return SR_ERR;
  94. }
  95. sr_dbg("Successfully detached kernel driver.");
  96. } else {
  97. sr_dbg("No need to detach a kernel driver.");
  98. }
  99. /* Claim interface 0. */
  100. if ((ret = libusb_claim_interface(usb->devhdl, 0)) < 0) {
  101. sr_err("Failed to claim interface 0: %s.",
  102. libusb_error_name(ret));
  103. return SR_ERR;
  104. }
  105. sr_dbg("Successfully claimed interface 0.");
  106. /* Set data for the HID feature report (e.g. baudrate). */
  107. buf[0] = baudrate & 0xff; /* Baudrate, LSB */
  108. buf[1] = (baudrate >> 8) & 0xff; /* Baudrate, MSB */
  109. buf[2] = 0x00; /* Unknown/unused (?) */
  110. buf[3] = 0x00; /* Unknown/unused (?) */
  111. buf[4] = 0x03; /* Unknown, always 0x03. */
  112. /* Send HID feature report to setup the baudrate/chip. */
  113. sr_dbg("Sending initial HID feature report.");
  114. sr_spew("HID init = 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x (%d baud)",
  115. buf[0], buf[1], buf[2], buf[3], buf[4], baudrate);
  116. ret = libusb_control_transfer(
  117. usb->devhdl, /* libusb device handle */
  118. LIBUSB_REQUEST_TYPE_CLASS |
  119. LIBUSB_RECIPIENT_INTERFACE |
  120. LIBUSB_ENDPOINT_OUT,
  121. 9, /* bRequest: HID set_report */
  122. 0x300, /* wValue: HID feature, report number 0 */
  123. 0, /* wIndex: interface 0 */
  124. (unsigned char *)&buf, /* payload buffer */
  125. 5, /* wLength: 5 bytes payload */
  126. 1000 /* timeout (ms) */);
  127. if (ret < 0) {
  128. sr_err("HID feature report error: %s.", libusb_error_name(ret));
  129. return SR_ERR;
  130. }
  131. if (ret != 5) {
  132. /* TODO: Handle better by also sending the remaining bytes. */
  133. sr_err("Short packet: sent %d/5 bytes.", ret);
  134. return SR_ERR;
  135. }
  136. sr_dbg("Successfully sent initial HID feature report.");
  137. return SR_OK;
  138. }
  139. static void log_8byte_chunk(const uint8_t *buf)
  140. {
  141. sr_spew("8-byte chunk: %02x %02x %02x %02x %02x %02x %02x %02x "
  142. "(%d data bytes)", buf[0], buf[1], buf[2], buf[3],
  143. buf[4], buf[5], buf[6], buf[7], (buf[0] & 0x0f));
  144. }
  145. static void log_dmm_packet(const uint8_t *buf)
  146. {
  147. sr_dbg("DMM packet: %02x %02x %02x %02x %02x %02x %02x"
  148. " %02x %02x %02x %02x %02x %02x %02x",
  149. buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
  150. buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
  151. }
  152. static int get_and_handle_data(struct sr_dev_inst *sdi, int dmm, void *info)
  153. {
  154. struct dev_context *devc;
  155. uint8_t buf[CHUNK_SIZE], *pbuf;
  156. int i, ret, len, num_databytes_in_chunk;
  157. struct sr_usb_dev_inst *usb;
  158. devc = sdi->priv;
  159. usb = sdi->conn;
  160. pbuf = devc->protocol_buf;
  161. /* On the first run, we need to init the HID chip. */
  162. if (devc->first_run) {
  163. if ((ret = hid_chip_init(sdi, udmms[dmm].baudrate)) != SR_OK) {
  164. sr_err("HID chip init failed: %d.", ret);
  165. return SR_ERR;
  166. }
  167. memset(pbuf, 0x00, DMM_BUFSIZE);
  168. devc->first_run = FALSE;
  169. }
  170. memset(&buf, 0x00, CHUNK_SIZE);
  171. /* Get data from EP2 using an interrupt transfer. */
  172. ret = libusb_interrupt_transfer(
  173. usb->devhdl, /* libusb device handle */
  174. LIBUSB_ENDPOINT_IN | 2, /* EP2, IN */
  175. (unsigned char *)&buf, /* receive buffer */
  176. CHUNK_SIZE, /* wLength */
  177. &len, /* actually received byte count */
  178. 1000 /* timeout (ms) */);
  179. if (ret < 0) {
  180. sr_err("USB receive error: %s.", libusb_error_name(ret));
  181. return SR_ERR;
  182. }
  183. if (len != CHUNK_SIZE) {
  184. sr_err("Short packet: received %d/%d bytes.", len, CHUNK_SIZE);
  185. /* TODO: Print the bytes? */
  186. return SR_ERR;
  187. }
  188. log_8byte_chunk((const uint8_t *)&buf);
  189. /* If there are no data bytes just return (without error). */
  190. if (buf[0] == 0xf0)
  191. return SR_OK;
  192. devc->bufoffset = 0;
  193. /*
  194. * Append the 1-7 data bytes of this chunk to pbuf.
  195. *
  196. * Special case:
  197. * DMMs with Cyrustek ES51922 chip need serial settings of
  198. * 19230/7o1. The WCH CH9325 UART to USB/HID chip used in (some
  199. * versions of) the UNI-T UT-D04 cable however, will also send
  200. * the parity bit to the host in the 8-byte data chunks. This bit
  201. * is encoded in bit 7 of each of the 1-7 data bytes and must thus
  202. * be removed in order for the actual ES51922 protocol parser to
  203. * work properly.
  204. */
  205. num_databytes_in_chunk = buf[0] & 0x0f;
  206. for (i = 0; i < num_databytes_in_chunk; i++, devc->buflen++) {
  207. pbuf[devc->buflen] = buf[1 + i];
  208. if (udmms[dmm].packet_parse == sr_es519xx_19200_14b_parse)
  209. pbuf[devc->buflen] &= ~(1 << 7);
  210. }
  211. /* Now look for packets in that data. */
  212. while ((devc->buflen - devc->bufoffset) >= udmms[dmm].packet_size) {
  213. if (udmms[dmm].packet_valid(pbuf + devc->bufoffset)) {
  214. log_dmm_packet(pbuf + devc->bufoffset);
  215. decode_packet(sdi, dmm, pbuf + devc->bufoffset, info);
  216. devc->bufoffset += udmms[dmm].packet_size;
  217. } else {
  218. devc->bufoffset++;
  219. }
  220. }
  221. /* Move remaining bytes to beginning of buffer. */
  222. for (i = 0; i < devc->buflen - devc->bufoffset; i++)
  223. pbuf[i] = pbuf[devc->bufoffset + i];
  224. devc->buflen -= devc->bufoffset;
  225. return SR_OK;
  226. }
  227. static int receive_data(int fd, int revents, int dmm, void *info, void *cb_data)
  228. {
  229. int ret;
  230. struct sr_dev_inst *sdi;
  231. struct dev_context *devc;
  232. int64_t time_ms;
  233. (void)fd;
  234. (void)revents;
  235. sdi = cb_data;
  236. devc = sdi->priv;
  237. if ((ret = get_and_handle_data(sdi, dmm, info)) != SR_OK)
  238. return FALSE;
  239. /* Abort acquisition if we acquired enough samples. */
  240. if (devc->limit_samples && devc->num_samples >= devc->limit_samples) {
  241. sr_info("Requested number of samples reached.");
  242. sdi->driver->dev_acquisition_stop(sdi, cb_data);
  243. }
  244. if (devc->limit_msec) {
  245. time_ms = (g_get_monotonic_time() - devc->starttime) / 1000;
  246. if (time_ms > (int64_t)devc->limit_msec) {
  247. sr_info("Requested time limit reached.");
  248. sdi->driver->dev_acquisition_stop(sdi, cb_data);
  249. return TRUE;
  250. }
  251. }
  252. return TRUE;
  253. }
  254. #define RECEIVE_DATA(ID_UPPER, DMM_DRIVER) \
  255. SR_PRIV int receive_data_##ID_UPPER(int fd, int revents, void *cb_data) { \
  256. struct DMM_DRIVER##_info info; \
  257. return receive_data(fd, revents, ID_UPPER, &info, cb_data); }
  258. /* Driver-specific receive_data() wrappers */
  259. RECEIVE_DATA(TECPEL_DMM_8061, fs9721)
  260. RECEIVE_DATA(UNI_T_UT60A, fs9721)
  261. RECEIVE_DATA(UNI_T_UT60E, fs9721)
  262. RECEIVE_DATA(UNI_T_UT60G, es519xx)
  263. RECEIVE_DATA(UNI_T_UT61B, fs9922)
  264. RECEIVE_DATA(UNI_T_UT61C, fs9922)
  265. RECEIVE_DATA(UNI_T_UT61D, fs9922)
  266. RECEIVE_DATA(UNI_T_UT61E, es519xx)
  267. RECEIVE_DATA(VOLTCRAFT_VC820, fs9721)
  268. RECEIVE_DATA(VOLTCRAFT_VC830, fs9922)
  269. RECEIVE_DATA(VOLTCRAFT_VC840, fs9721)
  270. RECEIVE_DATA(TENMA_72_7745, es519xx)
  271. RECEIVE_DATA(TENMA_72_7750, es519xx)