1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- __author__ = "Christian Heider Nielsen"
- __doc__ = r"""
- Created on 08-12-2020
- """
- import time
- import numpy
- import torch
- from draugr import WorkerSession, batched_recycle
- from draugr.torch_utilities import to_tensor_generator
- def test_d3():
- channels_in = 3
- channels_out = 3
- samples = 10
- device = "cuda"
- batches = 3
- batch_size = 32
- data_shape = (batches * batch_size, channels_in, 512, 512)
- model = torch.nn.Sequential(
- torch.nn.Conv2d(channels_in, channels_out, (3, 3)),
- torch.nn.ReLU(),
- torch.nn.Conv2d(channels_out, channels_out, (3, 3)),
- torch.nn.ReLU(),
- torch.nn.Conv2d(channels_out, channels_out, (3, 3)),
- torch.nn.ReLU(),
- ).to(device)
- generator = to_tensor_generator(
- batched_recycle(numpy.random.sample(data_shape), batch_size), device=device
- )
- with WorkerSession(0.3) as num_workers:
- dataloader = torch.utils.data.DataLoader(
- numpy.random.sample(data_shape),
- batch_size=batch_size,
- shuffle=True,
- num_workers=num_workers,
- pin_memory=True,
- )
- for _ in range(samples):
- s1 = time.time()
- for _, a in zip(range(batches), dataloader):
- model(a.to(device, dtype=torch.float))
- s2 = time.time()
- for _, a in zip(range(batches), generator):
- model(a)
- s3 = time.time()
- print(f"dataloader: {s2 - s1}")
- print(f"generator: {s3 - s2}")
- if __name__ == "__main__":
- test_d3()
|