123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- __author__ = "Christian Heider Nielsen"
- __doc__ = r"""
- Created on 22/06/2020
- """
- import os
- from pathlib import Path
- from apppath import AppPath, ensure_existence
- from draugr.tensorboard_utilities import TensorboardEventExporter
- from draugr.tqdm_utilities import progress_bar
- from draugr.writers import (
- TestingCurves,
- TestingScalars,
- TrainingCurves,
- TrainingScalars,
- )
- __all__ = ["extract_scalars_as_csv", "extract_tensors_as_csv", "extract_metrics"]
- EXPORT_RESULTS_PATH = Path.cwd()
- def extract_scalars_as_csv(
- train_path: Path = EXPORT_RESULTS_PATH / "csv" / "training",
- test_path: Path = EXPORT_RESULTS_PATH / "csv" / "testing",
- export_train: bool = True,
- export_test: bool = True,
- verbose: bool = False,
- only_extract_from_latest_event_file: bool = False,
- ) -> None:
- """
- :param train_path:
- :param test_path:
- :param export_train:
- :param export_test:
- :param verbose:
- :param only_extract_from_latest_event_file:
- """
- if only_extract_from_latest_event_file:
- max_load_time = max(
- list(
- AppPath(
- "Adversarial Speech", "Christian Heider Nielsen"
- ).user_log.iterdir()
- ),
- key=os.path.getctime,
- )
- unique_event_files_parents = set(
- [ef.parent for ef in max_load_time.rglob("events.out.tfevents.*")]
- )
- event_files = {max_load_time: unique_event_files_parents}
- else:
- event_files = {
- a: set([ef.parent for ef in a.rglob("events.out.tfevents.*")])
- for a in list(
- AppPath(
- "Adversarial Speech", "Christian Heider Nielsen"
- ).user_log.iterdir()
- )
- }
- for k, v in progress_bar(event_files.items()):
- for e in progress_bar(v):
- relative_path = e.relative_to(k)
- mapping_id, *rest = relative_path.parts
- mappind_id_test = f"{mapping_id}_Test_{relative_path.name}"
- # model_id = relative_path.parent.name can be include but is always the same
- relative_path = Path(*(mappind_id_test, *rest))
- with TensorboardEventExporter(e, save_to_disk=True) as tee:
- if export_test:
- out_tags = []
- for tag in progress_bar(TestingScalars):
- if tag.value in tee.available_scalars:
- out_tags.append(tag.value)
- if len(out_tags):
- tee.scalar_export_csv(
- *out_tags,
- out_dir=ensure_existence(
- test_path / k.name / relative_path,
- force_overwrite=True,
- verbose=verbose,
- ),
- )
- print(e)
- else:
- if verbose:
- print(
- f"{e}, no requested tags found {TestingScalars.__members__.values()}, {tee.available_scalars}"
- )
- if export_train:
- out_tags = []
- for tag in progress_bar(TrainingScalars):
- if tag.value in tee.available_scalars:
- out_tags.append(tag.value)
- if len(out_tags):
- tee.scalar_export_csv(
- *out_tags,
- out_dir=ensure_existence(
- train_path / k.name / relative_path,
- force_overwrite=True,
- verbose=verbose,
- ),
- )
- else:
- if verbose:
- print(
- f"{e}, no requested tags found {TrainingScalars.__members__.values()}, {tee.available_scalars}"
- )
- def extract_tensors_as_csv(
- train_path: Path = EXPORT_RESULTS_PATH / "csv" / "training",
- test_path: Path = EXPORT_RESULTS_PATH / "csv" / "testing",
- export_train: bool = False,
- export_test: bool = True,
- verbose: bool = False,
- only_extract_from_latest_event_file: bool = False,
- ) -> None:
- """
- :param train_path:
- :param test_path:
- :param export_train:
- :param export_test:
- :param verbose:
- :param only_extract_from_latest_event_file:
- :return:
- """
- if only_extract_from_latest_event_file:
- max_load_time = max(
- list(
- AppPath(
- "Adversarial Speech", "Christian Heider Nielsen"
- ).user_log.iterdir()
- ),
- key=os.path.getctime,
- )
- unique_event_files_parents = set(
- [ef.parent for ef in max_load_time.rglob("events.out.tfevents.*")]
- )
- event_files = {max_load_time: unique_event_files_parents}
- else:
- event_files = {
- a: set([ef.parent for ef in a.rglob("events.out.tfevents.*")])
- for a in list(
- AppPath(
- "Adversarial Speech", "Christian Heider Nielsen"
- ).user_log.iterdir()
- )
- }
- for k, v in progress_bar(event_files.items()):
- for e in progress_bar(v):
- relative_path = e.relative_to(k)
- mapping_id, *rest = relative_path.parts
- mapping_id_test = f"{mapping_id}_Test_{relative_path.name}"
- # model_id = relative_path.parent.name can be include but is always the same
- relative_path = Path(*(mapping_id_test, *rest))
- with TensorboardEventExporter(e, save_to_disk=True) as tee:
- if export_test:
- out_tags = []
- for tag in progress_bar(TestingCurves):
- if tag.value in tee.available_tensors:
- out_tags.append(tag.value)
- if len(out_tags):
- tee.pr_curve_export_csv(
- *out_tags,
- out_dir=ensure_existence(
- test_path / k.name / relative_path,
- force_overwrite=True,
- verbose=verbose,
- ),
- )
- else:
- if verbose:
- print(
- f"{e}, no requested tags found {TestingCurves.__members__.values()}, {tee.available_tensors}"
- )
- if export_train: # TODO: OUTPUT for all epoch steps, no support yet
- out_tags = []
- for tag in progress_bar(TrainingCurves):
- if tag.value in tee.available_tensors:
- out_tags.append(tag.value)
- if len(out_tags):
- tee.pr_curve_export_csv(
- *out_tags,
- out_dir=ensure_existence(
- # train_path / max_load_time.name / relative_path, # MAX LOAD TIME HERE?
- train_path
- / k.name
- / relative_path, # MAX LOAD TIME HERE?
- force_overwrite=True,
- verbose=verbose,
- ),
- )
- else:
- if verbose:
- print(
- f"{e}, no requested tags found {TrainingCurves.__members__.values()}, {tee.available_tensors}"
- )
- def extract_metrics(only_extract_latest=False):
- extract_scalars_as_csv(only_extract_from_latest_event_file=only_extract_latest)
- extract_tensors_as_csv(only_extract_from_latest_event_file=only_extract_latest)
- if __name__ == "__main__":
- extract_metrics(only_extract_latest=True)
- # extract_scalars_as_csv(verbose=False,export_train=False)
|