tcp_dctcp.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /* DataCenter TCP (DCTCP) congestion control.
  2. *
  3. * http://simula.stanford.edu/~alizade/Site/DCTCP.html
  4. *
  5. * This is an implementation of DCTCP over Reno, an enhancement to the
  6. * TCP congestion control algorithm designed for data centers. DCTCP
  7. * leverages Explicit Congestion Notification (ECN) in the network to
  8. * provide multi-bit feedback to the end hosts. DCTCP's goal is to meet
  9. * the following three data center transport requirements:
  10. *
  11. * - High burst tolerance (incast due to partition/aggregate)
  12. * - Low latency (short flows, queries)
  13. * - High throughput (continuous data updates, large file transfers)
  14. * with commodity shallow buffered switches
  15. *
  16. * The algorithm is described in detail in the following two papers:
  17. *
  18. * 1) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
  19. * Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan:
  20. * "Data Center TCP (DCTCP)", Data Center Networks session
  21. * Proc. ACM SIGCOMM, New Delhi, 2010.
  22. * http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
  23. *
  24. * 2) Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar:
  25. * "Analysis of DCTCP: Stability, Convergence, and Fairness"
  26. * Proc. ACM SIGMETRICS, San Jose, 2011.
  27. * http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
  28. *
  29. * Initial prototype from Abdul Kabbani, Masato Yasuda and Mohammad Alizadeh.
  30. *
  31. * Authors:
  32. *
  33. * Daniel Borkmann <dborkman@redhat.com>
  34. * Florian Westphal <fw@strlen.de>
  35. * Glenn Judd <glenn.judd@morganstanley.com>
  36. *
  37. * This program is free software; you can redistribute it and/or modify
  38. * it under the terms of the GNU General Public License as published by
  39. * the Free Software Foundation; either version 2 of the License, or (at
  40. * your option) any later version.
  41. */
  42. #include <linux/module.h>
  43. #include <linux/mm.h>
  44. #include <net/tcp.h>
  45. #include <linux/inet_diag.h>
  46. #define DCTCP_MAX_ALPHA 1024U
  47. struct dctcp {
  48. u32 acked_bytes_ecn;
  49. u32 acked_bytes_total;
  50. u32 prior_snd_una;
  51. u32 prior_rcv_nxt;
  52. u32 dctcp_alpha;
  53. u32 next_seq;
  54. u32 ce_state;
  55. u32 delayed_ack_reserved;
  56. };
  57. static unsigned int dctcp_shift_g __read_mostly = 4; /* g = 1/2^4 */
  58. module_param(dctcp_shift_g, uint, 0644);
  59. MODULE_PARM_DESC(dctcp_shift_g, "parameter g for updating dctcp_alpha");
  60. static unsigned int dctcp_alpha_on_init __read_mostly = DCTCP_MAX_ALPHA;
  61. module_param(dctcp_alpha_on_init, uint, 0644);
  62. MODULE_PARM_DESC(dctcp_alpha_on_init, "parameter for initial alpha value");
  63. static unsigned int dctcp_clamp_alpha_on_loss __read_mostly;
  64. module_param(dctcp_clamp_alpha_on_loss, uint, 0644);
  65. MODULE_PARM_DESC(dctcp_clamp_alpha_on_loss,
  66. "parameter for clamping alpha on loss");
  67. static struct tcp_congestion_ops dctcp_reno;
  68. static void dctcp_reset(const struct tcp_sock *tp, struct dctcp *ca)
  69. {
  70. ca->next_seq = tp->snd_nxt;
  71. ca->acked_bytes_ecn = 0;
  72. ca->acked_bytes_total = 0;
  73. }
  74. static void dctcp_init(struct sock *sk)
  75. {
  76. const struct tcp_sock *tp = tcp_sk(sk);
  77. if ((tp->ecn_flags & TCP_ECN_OK) ||
  78. (sk->sk_state == TCP_LISTEN ||
  79. sk->sk_state == TCP_CLOSE)) {
  80. struct dctcp *ca = inet_csk_ca(sk);
  81. ca->prior_snd_una = tp->snd_una;
  82. ca->prior_rcv_nxt = tp->rcv_nxt;
  83. ca->dctcp_alpha = min(dctcp_alpha_on_init, DCTCP_MAX_ALPHA);
  84. ca->delayed_ack_reserved = 0;
  85. ca->ce_state = 0;
  86. dctcp_reset(tp, ca);
  87. return;
  88. }
  89. /* No ECN support? Fall back to Reno. Also need to clear
  90. * ECT from sk since it is set during 3WHS for DCTCP.
  91. */
  92. inet_csk(sk)->icsk_ca_ops = &dctcp_reno;
  93. INET_ECN_dontxmit(sk);
  94. }
  95. static u32 dctcp_ssthresh(struct sock *sk)
  96. {
  97. const struct dctcp *ca = inet_csk_ca(sk);
  98. struct tcp_sock *tp = tcp_sk(sk);
  99. return max(tp->snd_cwnd - ((tp->snd_cwnd * ca->dctcp_alpha) >> 11U), 2U);
  100. }
  101. /* Minimal DCTP CE state machine:
  102. *
  103. * S: 0 <- last pkt was non-CE
  104. * 1 <- last pkt was CE
  105. */
  106. static void dctcp_ce_state_0_to_1(struct sock *sk)
  107. {
  108. struct dctcp *ca = inet_csk_ca(sk);
  109. struct tcp_sock *tp = tcp_sk(sk);
  110. /* State has changed from CE=0 to CE=1 and delayed
  111. * ACK has not sent yet.
  112. */
  113. if (!ca->ce_state && ca->delayed_ack_reserved) {
  114. u32 tmp_rcv_nxt;
  115. /* Save current rcv_nxt. */
  116. tmp_rcv_nxt = tp->rcv_nxt;
  117. /* Generate previous ack with CE=0. */
  118. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  119. tp->rcv_nxt = ca->prior_rcv_nxt;
  120. tcp_send_ack(sk);
  121. /* Recover current rcv_nxt. */
  122. tp->rcv_nxt = tmp_rcv_nxt;
  123. }
  124. ca->prior_rcv_nxt = tp->rcv_nxt;
  125. ca->ce_state = 1;
  126. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  127. }
  128. static void dctcp_ce_state_1_to_0(struct sock *sk)
  129. {
  130. struct dctcp *ca = inet_csk_ca(sk);
  131. struct tcp_sock *tp = tcp_sk(sk);
  132. /* State has changed from CE=1 to CE=0 and delayed
  133. * ACK has not sent yet.
  134. */
  135. if (ca->ce_state && ca->delayed_ack_reserved) {
  136. u32 tmp_rcv_nxt;
  137. /* Save current rcv_nxt. */
  138. tmp_rcv_nxt = tp->rcv_nxt;
  139. /* Generate previous ack with CE=1. */
  140. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  141. tp->rcv_nxt = ca->prior_rcv_nxt;
  142. tcp_send_ack(sk);
  143. /* Recover current rcv_nxt. */
  144. tp->rcv_nxt = tmp_rcv_nxt;
  145. }
  146. ca->prior_rcv_nxt = tp->rcv_nxt;
  147. ca->ce_state = 0;
  148. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  149. }
  150. static void dctcp_update_alpha(struct sock *sk, u32 flags)
  151. {
  152. const struct tcp_sock *tp = tcp_sk(sk);
  153. struct dctcp *ca = inet_csk_ca(sk);
  154. u32 acked_bytes = tp->snd_una - ca->prior_snd_una;
  155. /* If ack did not advance snd_una, count dupack as MSS size.
  156. * If ack did update window, do not count it at all.
  157. */
  158. if (acked_bytes == 0 && !(flags & CA_ACK_WIN_UPDATE))
  159. acked_bytes = inet_csk(sk)->icsk_ack.rcv_mss;
  160. if (acked_bytes) {
  161. ca->acked_bytes_total += acked_bytes;
  162. ca->prior_snd_una = tp->snd_una;
  163. if (flags & CA_ACK_ECE)
  164. ca->acked_bytes_ecn += acked_bytes;
  165. }
  166. /* Expired RTT */
  167. if (!before(tp->snd_una, ca->next_seq)) {
  168. u64 bytes_ecn = ca->acked_bytes_ecn;
  169. u32 alpha = ca->dctcp_alpha;
  170. /* alpha = (1 - g) * alpha + g * F */
  171. alpha -= alpha >> dctcp_shift_g;
  172. if (bytes_ecn) {
  173. /* If dctcp_shift_g == 1, a 32bit value would overflow
  174. * after 8 Mbytes.
  175. */
  176. bytes_ecn <<= (10 - dctcp_shift_g);
  177. do_div(bytes_ecn, max(1U, ca->acked_bytes_total));
  178. alpha = min(alpha + (u32)bytes_ecn, DCTCP_MAX_ALPHA);
  179. }
  180. /* dctcp_alpha can be read from dctcp_get_info() without
  181. * synchro, so we ask compiler to not use dctcp_alpha
  182. * as a temporary variable in prior operations.
  183. */
  184. WRITE_ONCE(ca->dctcp_alpha, alpha);
  185. dctcp_reset(tp, ca);
  186. }
  187. }
  188. static void dctcp_state(struct sock *sk, u8 new_state)
  189. {
  190. if (dctcp_clamp_alpha_on_loss && new_state == TCP_CA_Loss) {
  191. struct dctcp *ca = inet_csk_ca(sk);
  192. /* If this extension is enabled, we clamp dctcp_alpha to
  193. * max on packet loss; the motivation is that dctcp_alpha
  194. * is an indicator to the extend of congestion and packet
  195. * loss is an indicator of extreme congestion; setting
  196. * this in practice turned out to be beneficial, and
  197. * effectively assumes total congestion which reduces the
  198. * window by half.
  199. */
  200. ca->dctcp_alpha = DCTCP_MAX_ALPHA;
  201. }
  202. }
  203. static void dctcp_update_ack_reserved(struct sock *sk, enum tcp_ca_event ev)
  204. {
  205. struct dctcp *ca = inet_csk_ca(sk);
  206. switch (ev) {
  207. case CA_EVENT_DELAYED_ACK:
  208. if (!ca->delayed_ack_reserved)
  209. ca->delayed_ack_reserved = 1;
  210. break;
  211. case CA_EVENT_NON_DELAYED_ACK:
  212. if (ca->delayed_ack_reserved)
  213. ca->delayed_ack_reserved = 0;
  214. break;
  215. default:
  216. /* Don't care for the rest. */
  217. break;
  218. }
  219. }
  220. static void dctcp_cwnd_event(struct sock *sk, enum tcp_ca_event ev)
  221. {
  222. switch (ev) {
  223. case CA_EVENT_ECN_IS_CE:
  224. dctcp_ce_state_0_to_1(sk);
  225. break;
  226. case CA_EVENT_ECN_NO_CE:
  227. dctcp_ce_state_1_to_0(sk);
  228. break;
  229. case CA_EVENT_DELAYED_ACK:
  230. case CA_EVENT_NON_DELAYED_ACK:
  231. dctcp_update_ack_reserved(sk, ev);
  232. break;
  233. default:
  234. /* Don't care for the rest. */
  235. break;
  236. }
  237. }
  238. static size_t dctcp_get_info(struct sock *sk, u32 ext, int *attr,
  239. union tcp_cc_info *info)
  240. {
  241. const struct dctcp *ca = inet_csk_ca(sk);
  242. /* Fill it also in case of VEGASINFO due to req struct limits.
  243. * We can still correctly retrieve it later.
  244. */
  245. if (ext & (1 << (INET_DIAG_DCTCPINFO - 1)) ||
  246. ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
  247. memset(info, 0, sizeof(struct tcp_dctcp_info));
  248. if (inet_csk(sk)->icsk_ca_ops != &dctcp_reno) {
  249. info->dctcp.dctcp_enabled = 1;
  250. info->dctcp.dctcp_ce_state = (u16) ca->ce_state;
  251. info->dctcp.dctcp_alpha = ca->dctcp_alpha;
  252. info->dctcp.dctcp_ab_ecn = ca->acked_bytes_ecn;
  253. info->dctcp.dctcp_ab_tot = ca->acked_bytes_total;
  254. }
  255. *attr = INET_DIAG_DCTCPINFO;
  256. return sizeof(*info);
  257. }
  258. return 0;
  259. }
  260. static struct tcp_congestion_ops dctcp __read_mostly = {
  261. .init = dctcp_init,
  262. .in_ack_event = dctcp_update_alpha,
  263. .cwnd_event = dctcp_cwnd_event,
  264. .ssthresh = dctcp_ssthresh,
  265. .cong_avoid = tcp_reno_cong_avoid,
  266. .set_state = dctcp_state,
  267. .get_info = dctcp_get_info,
  268. .flags = TCP_CONG_NEEDS_ECN,
  269. .owner = THIS_MODULE,
  270. .name = "dctcp",
  271. };
  272. static struct tcp_congestion_ops dctcp_reno __read_mostly = {
  273. .ssthresh = tcp_reno_ssthresh,
  274. .cong_avoid = tcp_reno_cong_avoid,
  275. .get_info = dctcp_get_info,
  276. .owner = THIS_MODULE,
  277. .name = "dctcp-reno",
  278. };
  279. static int __init dctcp_register(void)
  280. {
  281. BUILD_BUG_ON(sizeof(struct dctcp) > ICSK_CA_PRIV_SIZE);
  282. return tcp_register_congestion_control(&dctcp);
  283. }
  284. static void __exit dctcp_unregister(void)
  285. {
  286. tcp_unregister_congestion_control(&dctcp);
  287. }
  288. module_init(dctcp_register);
  289. module_exit(dctcp_unregister);
  290. MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>");
  291. MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
  292. MODULE_AUTHOR("Glenn Judd <glenn.judd@morganstanley.com>");
  293. MODULE_LICENSE("GPL v2");
  294. MODULE_DESCRIPTION("DataCenter TCP (DCTCP)");