tcp_cubic.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /*
  2. * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  3. * Home page:
  4. * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  5. * This is from the implementation of CUBIC TCP in
  6. * Sangtae Ha, Injong Rhee and Lisong Xu,
  7. * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  8. * in ACM SIGOPS Operating System Review, July 2008.
  9. * Available from:
  10. * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  11. *
  12. * CUBIC integrates a new slow start algorithm, called HyStart.
  13. * The details of HyStart are presented in
  14. * Sangtae Ha and Injong Rhee,
  15. * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  16. * Available from:
  17. * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  18. *
  19. * All testing results are available from:
  20. * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  21. *
  22. * Unless CUBIC is enabled and congestion window is large
  23. * this behaves the same as the original Reno.
  24. */
  25. #include <linux/mm.h>
  26. #include <linux/module.h>
  27. #include <linux/math64.h>
  28. #include <net/tcp.h>
  29. #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
  30. * max_cwnd = snd_cwnd * beta
  31. */
  32. #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
  33. /* Two methods of hybrid slow start */
  34. #define HYSTART_ACK_TRAIN 0x1
  35. #define HYSTART_DELAY 0x2
  36. /* Number of delay samples for detecting the increase of delay */
  37. #define HYSTART_MIN_SAMPLES 8
  38. #define HYSTART_DELAY_MIN (4U<<3)
  39. #define HYSTART_DELAY_MAX (16U<<3)
  40. #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  41. static int fast_convergence __read_mostly = 1;
  42. static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
  43. static int initial_ssthresh __read_mostly;
  44. static int bic_scale __read_mostly = 41;
  45. static int tcp_friendliness __read_mostly = 1;
  46. static int hystart __read_mostly = 1;
  47. static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  48. static int hystart_low_window __read_mostly = 16;
  49. static int hystart_ack_delta __read_mostly = 2;
  50. static u32 cube_rtt_scale __read_mostly;
  51. static u32 beta_scale __read_mostly;
  52. static u64 cube_factor __read_mostly;
  53. /* Note parameters that are used for precomputing scale factors are read-only */
  54. module_param(fast_convergence, int, 0644);
  55. MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  56. module_param(beta, int, 0644);
  57. MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  58. module_param(initial_ssthresh, int, 0644);
  59. MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  60. module_param(bic_scale, int, 0444);
  61. MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  62. module_param(tcp_friendliness, int, 0644);
  63. MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  64. module_param(hystart, int, 0644);
  65. MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  66. module_param(hystart_detect, int, 0644);
  67. MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
  68. " 1: packet-train 2: delay 3: both packet-train and delay");
  69. module_param(hystart_low_window, int, 0644);
  70. MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  71. module_param(hystart_ack_delta, int, 0644);
  72. MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
  73. /* BIC TCP Parameters */
  74. struct bictcp {
  75. u32 cnt; /* increase cwnd by 1 after ACKs */
  76. u32 last_max_cwnd; /* last maximum snd_cwnd */
  77. u32 loss_cwnd; /* congestion window at last loss */
  78. u32 last_cwnd; /* the last snd_cwnd */
  79. u32 last_time; /* time when updated last_cwnd */
  80. u32 bic_origin_point;/* origin point of bic function */
  81. u32 bic_K; /* time to origin point
  82. from the beginning of the current epoch */
  83. u32 delay_min; /* min delay (msec << 3) */
  84. u32 epoch_start; /* beginning of an epoch */
  85. u32 ack_cnt; /* number of acks */
  86. u32 tcp_cwnd; /* estimated tcp cwnd */
  87. u16 unused;
  88. u8 sample_cnt; /* number of samples to decide curr_rtt */
  89. u8 found; /* the exit point is found? */
  90. u32 round_start; /* beginning of each round */
  91. u32 end_seq; /* end_seq of the round */
  92. u32 last_ack; /* last time when the ACK spacing is close */
  93. u32 curr_rtt; /* the minimum rtt of current round */
  94. };
  95. static inline void bictcp_reset(struct bictcp *ca)
  96. {
  97. ca->cnt = 0;
  98. ca->last_max_cwnd = 0;
  99. ca->last_cwnd = 0;
  100. ca->last_time = 0;
  101. ca->bic_origin_point = 0;
  102. ca->bic_K = 0;
  103. ca->delay_min = 0;
  104. ca->epoch_start = 0;
  105. ca->ack_cnt = 0;
  106. ca->tcp_cwnd = 0;
  107. ca->found = 0;
  108. }
  109. static inline u32 bictcp_clock(void)
  110. {
  111. #if HZ < 1000
  112. return ktime_to_ms(ktime_get_real());
  113. #else
  114. return jiffies_to_msecs(jiffies);
  115. #endif
  116. }
  117. static inline void bictcp_hystart_reset(struct sock *sk)
  118. {
  119. struct tcp_sock *tp = tcp_sk(sk);
  120. struct bictcp *ca = inet_csk_ca(sk);
  121. ca->round_start = ca->last_ack = bictcp_clock();
  122. ca->end_seq = tp->snd_nxt;
  123. ca->curr_rtt = 0;
  124. ca->sample_cnt = 0;
  125. }
  126. static void bictcp_init(struct sock *sk)
  127. {
  128. struct bictcp *ca = inet_csk_ca(sk);
  129. bictcp_reset(ca);
  130. ca->loss_cwnd = 0;
  131. if (hystart)
  132. bictcp_hystart_reset(sk);
  133. if (!hystart && initial_ssthresh)
  134. tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
  135. }
  136. /* calculate the cubic root of x using a table lookup followed by one
  137. * Newton-Raphson iteration.
  138. * Avg err ~= 0.195%
  139. */
  140. static u32 cubic_root(u64 a)
  141. {
  142. u32 x, b, shift;
  143. /*
  144. * cbrt(x) MSB values for x MSB values in [0..63].
  145. * Precomputed then refined by hand - Willy Tarreau
  146. *
  147. * For x in [0..63],
  148. * v = cbrt(x << 18) - 1
  149. * cbrt(x) = (v[x] + 10) >> 6
  150. */
  151. static const u8 v[] = {
  152. /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
  153. /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
  154. /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
  155. /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
  156. /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
  157. /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
  158. /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
  159. /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
  160. };
  161. b = fls64(a);
  162. if (b < 7) {
  163. /* a in [0..63] */
  164. return ((u32)v[(u32)a] + 35) >> 6;
  165. }
  166. b = ((b * 84) >> 8) - 1;
  167. shift = (a >> (b * 3));
  168. x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
  169. /*
  170. * Newton-Raphson iteration
  171. * 2
  172. * x = ( 2 * x + a / x ) / 3
  173. * k+1 k k
  174. */
  175. x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
  176. x = ((x * 341) >> 10);
  177. return x;
  178. }
  179. /*
  180. * Compute congestion window to use.
  181. */
  182. static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
  183. {
  184. u32 delta, bic_target, max_cnt;
  185. u64 offs, t;
  186. ca->ack_cnt += acked; /* count the number of ACKed packets */
  187. if (ca->last_cwnd == cwnd &&
  188. (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
  189. return;
  190. /* The CUBIC function can update ca->cnt at most once per jiffy.
  191. * On all cwnd reduction events, ca->epoch_start is set to 0,
  192. * which will force a recalculation of ca->cnt.
  193. */
  194. if (ca->epoch_start && tcp_time_stamp == ca->last_time)
  195. goto tcp_friendliness;
  196. ca->last_cwnd = cwnd;
  197. ca->last_time = tcp_time_stamp;
  198. if (ca->epoch_start == 0) {
  199. ca->epoch_start = tcp_time_stamp; /* record beginning */
  200. ca->ack_cnt = acked; /* start counting */
  201. ca->tcp_cwnd = cwnd; /* syn with cubic */
  202. if (ca->last_max_cwnd <= cwnd) {
  203. ca->bic_K = 0;
  204. ca->bic_origin_point = cwnd;
  205. } else {
  206. /* Compute new K based on
  207. * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
  208. */
  209. ca->bic_K = cubic_root(cube_factor
  210. * (ca->last_max_cwnd - cwnd));
  211. ca->bic_origin_point = ca->last_max_cwnd;
  212. }
  213. }
  214. /* cubic function - calc*/
  215. /* calculate c * time^3 / rtt,
  216. * while considering overflow in calculation of time^3
  217. * (so time^3 is done by using 64 bit)
  218. * and without the support of division of 64bit numbers
  219. * (so all divisions are done by using 32 bit)
  220. * also NOTE the unit of those veriables
  221. * time = (t - K) / 2^bictcp_HZ
  222. * c = bic_scale >> 10
  223. * rtt = (srtt >> 3) / HZ
  224. * !!! The following code does not have overflow problems,
  225. * if the cwnd < 1 million packets !!!
  226. */
  227. t = (s32)(tcp_time_stamp - ca->epoch_start);
  228. t += msecs_to_jiffies(ca->delay_min >> 3);
  229. /* change the unit from HZ to bictcp_HZ */
  230. t <<= BICTCP_HZ;
  231. do_div(t, HZ);
  232. if (t < ca->bic_K) /* t - K */
  233. offs = ca->bic_K - t;
  234. else
  235. offs = t - ca->bic_K;
  236. /* c/rtt * (t-K)^3 */
  237. delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
  238. if (t < ca->bic_K) /* below origin*/
  239. bic_target = ca->bic_origin_point - delta;
  240. else /* above origin*/
  241. bic_target = ca->bic_origin_point + delta;
  242. /* cubic function - calc bictcp_cnt*/
  243. if (bic_target > cwnd) {
  244. ca->cnt = cwnd / (bic_target - cwnd);
  245. } else {
  246. ca->cnt = 100 * cwnd; /* very small increment*/
  247. }
  248. /*
  249. * The initial growth of cubic function may be too conservative
  250. * when the available bandwidth is still unknown.
  251. */
  252. if (ca->last_max_cwnd == 0 && ca->cnt > 20)
  253. ca->cnt = 20; /* increase cwnd 5% per RTT */
  254. tcp_friendliness:
  255. /* TCP Friendly */
  256. if (tcp_friendliness) {
  257. u32 scale = beta_scale;
  258. delta = (cwnd * scale) >> 3;
  259. while (ca->ack_cnt > delta) { /* update tcp cwnd */
  260. ca->ack_cnt -= delta;
  261. ca->tcp_cwnd++;
  262. }
  263. if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
  264. delta = ca->tcp_cwnd - cwnd;
  265. max_cnt = cwnd / delta;
  266. if (ca->cnt > max_cnt)
  267. ca->cnt = max_cnt;
  268. }
  269. }
  270. /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
  271. * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
  272. */
  273. ca->cnt = max(ca->cnt, 2U);
  274. }
  275. static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  276. {
  277. struct tcp_sock *tp = tcp_sk(sk);
  278. struct bictcp *ca = inet_csk_ca(sk);
  279. if (!tcp_is_cwnd_limited(sk))
  280. return;
  281. if (tp->snd_cwnd <= tp->snd_ssthresh) {
  282. if (hystart && after(ack, ca->end_seq))
  283. bictcp_hystart_reset(sk);
  284. acked = tcp_slow_start(tp, acked);
  285. if (!acked)
  286. return;
  287. }
  288. bictcp_update(ca, tp->snd_cwnd, acked);
  289. tcp_cong_avoid_ai(tp, ca->cnt, acked);
  290. }
  291. static u32 bictcp_recalc_ssthresh(struct sock *sk)
  292. {
  293. const struct tcp_sock *tp = tcp_sk(sk);
  294. struct bictcp *ca = inet_csk_ca(sk);
  295. ca->epoch_start = 0; /* end of epoch */
  296. /* Wmax and fast convergence */
  297. if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
  298. ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
  299. / (2 * BICTCP_BETA_SCALE);
  300. else
  301. ca->last_max_cwnd = tp->snd_cwnd;
  302. ca->loss_cwnd = tp->snd_cwnd;
  303. return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
  304. }
  305. static u32 bictcp_undo_cwnd(struct sock *sk)
  306. {
  307. struct bictcp *ca = inet_csk_ca(sk);
  308. return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
  309. }
  310. static void bictcp_state(struct sock *sk, u8 new_state)
  311. {
  312. if (new_state == TCP_CA_Loss) {
  313. bictcp_reset(inet_csk_ca(sk));
  314. bictcp_hystart_reset(sk);
  315. }
  316. }
  317. static void hystart_update(struct sock *sk, u32 delay)
  318. {
  319. struct tcp_sock *tp = tcp_sk(sk);
  320. struct bictcp *ca = inet_csk_ca(sk);
  321. if (ca->found & hystart_detect)
  322. return;
  323. if (hystart_detect & HYSTART_ACK_TRAIN) {
  324. u32 now = bictcp_clock();
  325. /* first detection parameter - ack-train detection */
  326. if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
  327. ca->last_ack = now;
  328. if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
  329. ca->found |= HYSTART_ACK_TRAIN;
  330. NET_INC_STATS_BH(sock_net(sk),
  331. LINUX_MIB_TCPHYSTARTTRAINDETECT);
  332. NET_ADD_STATS_BH(sock_net(sk),
  333. LINUX_MIB_TCPHYSTARTTRAINCWND,
  334. tp->snd_cwnd);
  335. tp->snd_ssthresh = tp->snd_cwnd;
  336. }
  337. }
  338. }
  339. if (hystart_detect & HYSTART_DELAY) {
  340. /* obtain the minimum delay of more than sampling packets */
  341. if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
  342. if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
  343. ca->curr_rtt = delay;
  344. ca->sample_cnt++;
  345. } else {
  346. if (ca->curr_rtt > ca->delay_min +
  347. HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
  348. ca->found |= HYSTART_DELAY;
  349. NET_INC_STATS_BH(sock_net(sk),
  350. LINUX_MIB_TCPHYSTARTDELAYDETECT);
  351. NET_ADD_STATS_BH(sock_net(sk),
  352. LINUX_MIB_TCPHYSTARTDELAYCWND,
  353. tp->snd_cwnd);
  354. tp->snd_ssthresh = tp->snd_cwnd;
  355. }
  356. }
  357. }
  358. }
  359. /* Track delayed acknowledgment ratio using sliding window
  360. * ratio = (15*ratio + sample) / 16
  361. */
  362. static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
  363. {
  364. const struct tcp_sock *tp = tcp_sk(sk);
  365. struct bictcp *ca = inet_csk_ca(sk);
  366. u32 delay;
  367. /* Some calls are for duplicates without timetamps */
  368. if (rtt_us < 0)
  369. return;
  370. /* Discard delay samples right after fast recovery */
  371. if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
  372. return;
  373. delay = (rtt_us << 3) / USEC_PER_MSEC;
  374. if (delay == 0)
  375. delay = 1;
  376. /* first time call or link delay decreases */
  377. if (ca->delay_min == 0 || ca->delay_min > delay)
  378. ca->delay_min = delay;
  379. /* hystart triggers when cwnd is larger than some threshold */
  380. if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
  381. tp->snd_cwnd >= hystart_low_window)
  382. hystart_update(sk, delay);
  383. }
  384. static struct tcp_congestion_ops cubictcp __read_mostly = {
  385. .init = bictcp_init,
  386. .ssthresh = bictcp_recalc_ssthresh,
  387. .cong_avoid = bictcp_cong_avoid,
  388. .set_state = bictcp_state,
  389. .undo_cwnd = bictcp_undo_cwnd,
  390. .pkts_acked = bictcp_acked,
  391. .owner = THIS_MODULE,
  392. .name = "cubic",
  393. };
  394. static int __init cubictcp_register(void)
  395. {
  396. BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
  397. /* Precompute a bunch of the scaling factors that are used per-packet
  398. * based on SRTT of 100ms
  399. */
  400. beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
  401. / (BICTCP_BETA_SCALE - beta);
  402. cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
  403. /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
  404. * so K = cubic_root( (wmax-cwnd)*rtt/c )
  405. * the unit of K is bictcp_HZ=2^10, not HZ
  406. *
  407. * c = bic_scale >> 10
  408. * rtt = 100ms
  409. *
  410. * the following code has been designed and tested for
  411. * cwnd < 1 million packets
  412. * RTT < 100 seconds
  413. * HZ < 1,000,00 (corresponding to 10 nano-second)
  414. */
  415. /* 1/c * 2^2*bictcp_HZ * srtt */
  416. cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
  417. /* divide by bic_scale and by constant Srtt (100ms) */
  418. do_div(cube_factor, bic_scale * 10);
  419. return tcp_register_congestion_control(&cubictcp);
  420. }
  421. static void __exit cubictcp_unregister(void)
  422. {
  423. tcp_unregister_congestion_control(&cubictcp);
  424. }
  425. module_init(cubictcp_register);
  426. module_exit(cubictcp_unregister);
  427. MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
  428. MODULE_LICENSE("GPL");
  429. MODULE_DESCRIPTION("CUBIC TCP");
  430. MODULE_VERSION("2.3");