ipmr.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  69. #define CONFIG_IP_PIMSM 1
  70. #endif
  71. struct mr_table {
  72. struct list_head list;
  73. possible_net_t net;
  74. u32 id;
  75. struct sock __rcu *mroute_sk;
  76. struct timer_list ipmr_expire_timer;
  77. struct list_head mfc_unres_queue;
  78. struct list_head mfc_cache_array[MFC_LINES];
  79. struct vif_device vif_table[MAXVIFS];
  80. int maxvif;
  81. atomic_t cache_resolve_queue_len;
  82. bool mroute_do_assert;
  83. bool mroute_do_pim;
  84. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  85. int mroute_reg_vif_num;
  86. #endif
  87. };
  88. struct ipmr_rule {
  89. struct fib_rule common;
  90. };
  91. struct ipmr_result {
  92. struct mr_table *mrt;
  93. };
  94. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  95. * Note that the changes are semaphored via rtnl_lock.
  96. */
  97. static DEFINE_RWLOCK(mrt_lock);
  98. /*
  99. * Multicast router control variables
  100. */
  101. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  102. /* Special spinlock for queue of unresolved entries */
  103. static DEFINE_SPINLOCK(mfc_unres_lock);
  104. /* We return to original Alan's scheme. Hash table of resolved
  105. * entries is changed only in process context and protected
  106. * with weak lock mrt_lock. Queue of unresolved entries is protected
  107. * with strong spinlock mfc_unres_lock.
  108. *
  109. * In this case data path is free of exclusive locks at all.
  110. */
  111. static struct kmem_cache *mrt_cachep __read_mostly;
  112. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  113. static void ipmr_free_table(struct mr_table *mrt);
  114. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  115. struct sk_buff *skb, struct mfc_cache *cache,
  116. int local);
  117. static int ipmr_cache_report(struct mr_table *mrt,
  118. struct sk_buff *pkt, vifi_t vifi, int assert);
  119. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  120. struct mfc_cache *c, struct rtmsg *rtm);
  121. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  122. int cmd);
  123. static void mroute_clean_tables(struct mr_table *mrt);
  124. static void ipmr_expire_process(unsigned long arg);
  125. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  126. #define ipmr_for_each_table(mrt, net) \
  127. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  128. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  129. {
  130. struct mr_table *mrt;
  131. ipmr_for_each_table(mrt, net) {
  132. if (mrt->id == id)
  133. return mrt;
  134. }
  135. return NULL;
  136. }
  137. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  138. struct mr_table **mrt)
  139. {
  140. int err;
  141. struct ipmr_result res;
  142. struct fib_lookup_arg arg = {
  143. .result = &res,
  144. .flags = FIB_LOOKUP_NOREF,
  145. };
  146. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  147. flowi4_to_flowi(flp4), 0, &arg);
  148. if (err < 0)
  149. return err;
  150. *mrt = res.mrt;
  151. return 0;
  152. }
  153. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  154. int flags, struct fib_lookup_arg *arg)
  155. {
  156. struct ipmr_result *res = arg->result;
  157. struct mr_table *mrt;
  158. switch (rule->action) {
  159. case FR_ACT_TO_TBL:
  160. break;
  161. case FR_ACT_UNREACHABLE:
  162. return -ENETUNREACH;
  163. case FR_ACT_PROHIBIT:
  164. return -EACCES;
  165. case FR_ACT_BLACKHOLE:
  166. default:
  167. return -EINVAL;
  168. }
  169. mrt = ipmr_get_table(rule->fr_net, rule->table);
  170. if (!mrt)
  171. return -EAGAIN;
  172. res->mrt = mrt;
  173. return 0;
  174. }
  175. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  176. {
  177. return 1;
  178. }
  179. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  180. FRA_GENERIC_POLICY,
  181. };
  182. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  183. struct fib_rule_hdr *frh, struct nlattr **tb)
  184. {
  185. return 0;
  186. }
  187. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  188. struct nlattr **tb)
  189. {
  190. return 1;
  191. }
  192. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  193. struct fib_rule_hdr *frh)
  194. {
  195. frh->dst_len = 0;
  196. frh->src_len = 0;
  197. frh->tos = 0;
  198. return 0;
  199. }
  200. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  201. .family = RTNL_FAMILY_IPMR,
  202. .rule_size = sizeof(struct ipmr_rule),
  203. .addr_size = sizeof(u32),
  204. .action = ipmr_rule_action,
  205. .match = ipmr_rule_match,
  206. .configure = ipmr_rule_configure,
  207. .compare = ipmr_rule_compare,
  208. .default_pref = fib_default_rule_pref,
  209. .fill = ipmr_rule_fill,
  210. .nlgroup = RTNLGRP_IPV4_RULE,
  211. .policy = ipmr_rule_policy,
  212. .owner = THIS_MODULE,
  213. };
  214. static int __net_init ipmr_rules_init(struct net *net)
  215. {
  216. struct fib_rules_ops *ops;
  217. struct mr_table *mrt;
  218. int err;
  219. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  220. if (IS_ERR(ops))
  221. return PTR_ERR(ops);
  222. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  223. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  224. if (!mrt) {
  225. err = -ENOMEM;
  226. goto err1;
  227. }
  228. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  229. if (err < 0)
  230. goto err2;
  231. net->ipv4.mr_rules_ops = ops;
  232. return 0;
  233. err2:
  234. ipmr_free_table(mrt);
  235. err1:
  236. fib_rules_unregister(ops);
  237. return err;
  238. }
  239. static void __net_exit ipmr_rules_exit(struct net *net)
  240. {
  241. struct mr_table *mrt, *next;
  242. rtnl_lock();
  243. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  244. list_del(&mrt->list);
  245. ipmr_free_table(mrt);
  246. }
  247. fib_rules_unregister(net->ipv4.mr_rules_ops);
  248. rtnl_unlock();
  249. }
  250. #else
  251. #define ipmr_for_each_table(mrt, net) \
  252. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  253. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  254. {
  255. return net->ipv4.mrt;
  256. }
  257. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  258. struct mr_table **mrt)
  259. {
  260. *mrt = net->ipv4.mrt;
  261. return 0;
  262. }
  263. static int __net_init ipmr_rules_init(struct net *net)
  264. {
  265. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  266. return net->ipv4.mrt ? 0 : -ENOMEM;
  267. }
  268. static void __net_exit ipmr_rules_exit(struct net *net)
  269. {
  270. rtnl_lock();
  271. ipmr_free_table(net->ipv4.mrt);
  272. net->ipv4.mrt = NULL;
  273. rtnl_unlock();
  274. }
  275. #endif
  276. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  277. {
  278. struct mr_table *mrt;
  279. unsigned int i;
  280. mrt = ipmr_get_table(net, id);
  281. if (mrt)
  282. return mrt;
  283. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  284. if (!mrt)
  285. return NULL;
  286. write_pnet(&mrt->net, net);
  287. mrt->id = id;
  288. /* Forwarding cache */
  289. for (i = 0; i < MFC_LINES; i++)
  290. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  291. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  292. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  293. (unsigned long)mrt);
  294. #ifdef CONFIG_IP_PIMSM
  295. mrt->mroute_reg_vif_num = -1;
  296. #endif
  297. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  298. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  299. #endif
  300. return mrt;
  301. }
  302. static void ipmr_free_table(struct mr_table *mrt)
  303. {
  304. del_timer_sync(&mrt->ipmr_expire_timer);
  305. mroute_clean_tables(mrt);
  306. kfree(mrt);
  307. }
  308. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  309. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  310. {
  311. struct net *net = dev_net(dev);
  312. dev_close(dev);
  313. dev = __dev_get_by_name(net, "tunl0");
  314. if (dev) {
  315. const struct net_device_ops *ops = dev->netdev_ops;
  316. struct ifreq ifr;
  317. struct ip_tunnel_parm p;
  318. memset(&p, 0, sizeof(p));
  319. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  320. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  321. p.iph.version = 4;
  322. p.iph.ihl = 5;
  323. p.iph.protocol = IPPROTO_IPIP;
  324. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  325. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  326. if (ops->ndo_do_ioctl) {
  327. mm_segment_t oldfs = get_fs();
  328. set_fs(KERNEL_DS);
  329. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  330. set_fs(oldfs);
  331. }
  332. }
  333. }
  334. static
  335. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  336. {
  337. struct net_device *dev;
  338. dev = __dev_get_by_name(net, "tunl0");
  339. if (dev) {
  340. const struct net_device_ops *ops = dev->netdev_ops;
  341. int err;
  342. struct ifreq ifr;
  343. struct ip_tunnel_parm p;
  344. struct in_device *in_dev;
  345. memset(&p, 0, sizeof(p));
  346. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  347. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  348. p.iph.version = 4;
  349. p.iph.ihl = 5;
  350. p.iph.protocol = IPPROTO_IPIP;
  351. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  352. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  353. if (ops->ndo_do_ioctl) {
  354. mm_segment_t oldfs = get_fs();
  355. set_fs(KERNEL_DS);
  356. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  357. set_fs(oldfs);
  358. } else {
  359. err = -EOPNOTSUPP;
  360. }
  361. dev = NULL;
  362. if (err == 0 &&
  363. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  364. dev->flags |= IFF_MULTICAST;
  365. in_dev = __in_dev_get_rtnl(dev);
  366. if (!in_dev)
  367. goto failure;
  368. ipv4_devconf_setall(in_dev);
  369. neigh_parms_data_state_setall(in_dev->arp_parms);
  370. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  371. if (dev_open(dev))
  372. goto failure;
  373. dev_hold(dev);
  374. }
  375. }
  376. return dev;
  377. failure:
  378. /* allow the register to be completed before unregistering. */
  379. rtnl_unlock();
  380. rtnl_lock();
  381. unregister_netdevice(dev);
  382. return NULL;
  383. }
  384. #ifdef CONFIG_IP_PIMSM
  385. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  386. {
  387. struct net *net = dev_net(dev);
  388. struct mr_table *mrt;
  389. struct flowi4 fl4 = {
  390. .flowi4_oif = dev->ifindex,
  391. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  392. .flowi4_mark = skb->mark,
  393. };
  394. int err;
  395. err = ipmr_fib_lookup(net, &fl4, &mrt);
  396. if (err < 0) {
  397. kfree_skb(skb);
  398. return err;
  399. }
  400. read_lock(&mrt_lock);
  401. dev->stats.tx_bytes += skb->len;
  402. dev->stats.tx_packets++;
  403. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  404. read_unlock(&mrt_lock);
  405. kfree_skb(skb);
  406. return NETDEV_TX_OK;
  407. }
  408. static int reg_vif_get_iflink(const struct net_device *dev)
  409. {
  410. return 0;
  411. }
  412. static const struct net_device_ops reg_vif_netdev_ops = {
  413. .ndo_start_xmit = reg_vif_xmit,
  414. .ndo_get_iflink = reg_vif_get_iflink,
  415. };
  416. static void reg_vif_setup(struct net_device *dev)
  417. {
  418. dev->type = ARPHRD_PIMREG;
  419. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  420. dev->flags = IFF_NOARP;
  421. dev->netdev_ops = &reg_vif_netdev_ops;
  422. dev->destructor = free_netdev;
  423. dev->features |= NETIF_F_NETNS_LOCAL;
  424. }
  425. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  426. {
  427. struct net_device *dev;
  428. struct in_device *in_dev;
  429. char name[IFNAMSIZ];
  430. if (mrt->id == RT_TABLE_DEFAULT)
  431. sprintf(name, "pimreg");
  432. else
  433. sprintf(name, "pimreg%u", mrt->id);
  434. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  435. if (!dev)
  436. return NULL;
  437. dev_net_set(dev, net);
  438. if (register_netdevice(dev)) {
  439. free_netdev(dev);
  440. return NULL;
  441. }
  442. rcu_read_lock();
  443. in_dev = __in_dev_get_rcu(dev);
  444. if (!in_dev) {
  445. rcu_read_unlock();
  446. goto failure;
  447. }
  448. ipv4_devconf_setall(in_dev);
  449. neigh_parms_data_state_setall(in_dev->arp_parms);
  450. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  451. rcu_read_unlock();
  452. if (dev_open(dev))
  453. goto failure;
  454. dev_hold(dev);
  455. return dev;
  456. failure:
  457. /* allow the register to be completed before unregistering. */
  458. rtnl_unlock();
  459. rtnl_lock();
  460. unregister_netdevice(dev);
  461. return NULL;
  462. }
  463. #endif
  464. /**
  465. * vif_delete - Delete a VIF entry
  466. * @notify: Set to 1, if the caller is a notifier_call
  467. */
  468. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  469. struct list_head *head)
  470. {
  471. struct vif_device *v;
  472. struct net_device *dev;
  473. struct in_device *in_dev;
  474. if (vifi < 0 || vifi >= mrt->maxvif)
  475. return -EADDRNOTAVAIL;
  476. v = &mrt->vif_table[vifi];
  477. write_lock_bh(&mrt_lock);
  478. dev = v->dev;
  479. v->dev = NULL;
  480. if (!dev) {
  481. write_unlock_bh(&mrt_lock);
  482. return -EADDRNOTAVAIL;
  483. }
  484. #ifdef CONFIG_IP_PIMSM
  485. if (vifi == mrt->mroute_reg_vif_num)
  486. mrt->mroute_reg_vif_num = -1;
  487. #endif
  488. if (vifi + 1 == mrt->maxvif) {
  489. int tmp;
  490. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  491. if (VIF_EXISTS(mrt, tmp))
  492. break;
  493. }
  494. mrt->maxvif = tmp+1;
  495. }
  496. write_unlock_bh(&mrt_lock);
  497. dev_set_allmulti(dev, -1);
  498. in_dev = __in_dev_get_rtnl(dev);
  499. if (in_dev) {
  500. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  501. inet_netconf_notify_devconf(dev_net(dev),
  502. NETCONFA_MC_FORWARDING,
  503. dev->ifindex, &in_dev->cnf);
  504. ip_rt_multicast_event(in_dev);
  505. }
  506. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  507. unregister_netdevice_queue(dev, head);
  508. dev_put(dev);
  509. return 0;
  510. }
  511. static void ipmr_cache_free_rcu(struct rcu_head *head)
  512. {
  513. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  514. kmem_cache_free(mrt_cachep, c);
  515. }
  516. static inline void ipmr_cache_free(struct mfc_cache *c)
  517. {
  518. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  519. }
  520. /* Destroy an unresolved cache entry, killing queued skbs
  521. * and reporting error to netlink readers.
  522. */
  523. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  524. {
  525. struct net *net = read_pnet(&mrt->net);
  526. struct sk_buff *skb;
  527. struct nlmsgerr *e;
  528. atomic_dec(&mrt->cache_resolve_queue_len);
  529. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  530. if (ip_hdr(skb)->version == 0) {
  531. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  532. nlh->nlmsg_type = NLMSG_ERROR;
  533. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  534. skb_trim(skb, nlh->nlmsg_len);
  535. e = nlmsg_data(nlh);
  536. e->error = -ETIMEDOUT;
  537. memset(&e->msg, 0, sizeof(e->msg));
  538. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  539. } else {
  540. kfree_skb(skb);
  541. }
  542. }
  543. ipmr_cache_free(c);
  544. }
  545. /* Timer process for the unresolved queue. */
  546. static void ipmr_expire_process(unsigned long arg)
  547. {
  548. struct mr_table *mrt = (struct mr_table *)arg;
  549. unsigned long now;
  550. unsigned long expires;
  551. struct mfc_cache *c, *next;
  552. if (!spin_trylock(&mfc_unres_lock)) {
  553. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  554. return;
  555. }
  556. if (list_empty(&mrt->mfc_unres_queue))
  557. goto out;
  558. now = jiffies;
  559. expires = 10*HZ;
  560. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  561. if (time_after(c->mfc_un.unres.expires, now)) {
  562. unsigned long interval = c->mfc_un.unres.expires - now;
  563. if (interval < expires)
  564. expires = interval;
  565. continue;
  566. }
  567. list_del(&c->list);
  568. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  569. ipmr_destroy_unres(mrt, c);
  570. }
  571. if (!list_empty(&mrt->mfc_unres_queue))
  572. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  573. out:
  574. spin_unlock(&mfc_unres_lock);
  575. }
  576. /* Fill oifs list. It is called under write locked mrt_lock. */
  577. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  578. unsigned char *ttls)
  579. {
  580. int vifi;
  581. cache->mfc_un.res.minvif = MAXVIFS;
  582. cache->mfc_un.res.maxvif = 0;
  583. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  584. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  585. if (VIF_EXISTS(mrt, vifi) &&
  586. ttls[vifi] && ttls[vifi] < 255) {
  587. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  588. if (cache->mfc_un.res.minvif > vifi)
  589. cache->mfc_un.res.minvif = vifi;
  590. if (cache->mfc_un.res.maxvif <= vifi)
  591. cache->mfc_un.res.maxvif = vifi + 1;
  592. }
  593. }
  594. }
  595. static int vif_add(struct net *net, struct mr_table *mrt,
  596. struct vifctl *vifc, int mrtsock)
  597. {
  598. int vifi = vifc->vifc_vifi;
  599. struct vif_device *v = &mrt->vif_table[vifi];
  600. struct net_device *dev;
  601. struct in_device *in_dev;
  602. int err;
  603. /* Is vif busy ? */
  604. if (VIF_EXISTS(mrt, vifi))
  605. return -EADDRINUSE;
  606. switch (vifc->vifc_flags) {
  607. #ifdef CONFIG_IP_PIMSM
  608. case VIFF_REGISTER:
  609. /*
  610. * Special Purpose VIF in PIM
  611. * All the packets will be sent to the daemon
  612. */
  613. if (mrt->mroute_reg_vif_num >= 0)
  614. return -EADDRINUSE;
  615. dev = ipmr_reg_vif(net, mrt);
  616. if (!dev)
  617. return -ENOBUFS;
  618. err = dev_set_allmulti(dev, 1);
  619. if (err) {
  620. unregister_netdevice(dev);
  621. dev_put(dev);
  622. return err;
  623. }
  624. break;
  625. #endif
  626. case VIFF_TUNNEL:
  627. dev = ipmr_new_tunnel(net, vifc);
  628. if (!dev)
  629. return -ENOBUFS;
  630. err = dev_set_allmulti(dev, 1);
  631. if (err) {
  632. ipmr_del_tunnel(dev, vifc);
  633. dev_put(dev);
  634. return err;
  635. }
  636. break;
  637. case VIFF_USE_IFINDEX:
  638. case 0:
  639. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  640. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  641. if (dev && !__in_dev_get_rtnl(dev)) {
  642. dev_put(dev);
  643. return -EADDRNOTAVAIL;
  644. }
  645. } else {
  646. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  647. }
  648. if (!dev)
  649. return -EADDRNOTAVAIL;
  650. err = dev_set_allmulti(dev, 1);
  651. if (err) {
  652. dev_put(dev);
  653. return err;
  654. }
  655. break;
  656. default:
  657. return -EINVAL;
  658. }
  659. in_dev = __in_dev_get_rtnl(dev);
  660. if (!in_dev) {
  661. dev_put(dev);
  662. return -EADDRNOTAVAIL;
  663. }
  664. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  665. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  666. &in_dev->cnf);
  667. ip_rt_multicast_event(in_dev);
  668. /* Fill in the VIF structures */
  669. v->rate_limit = vifc->vifc_rate_limit;
  670. v->local = vifc->vifc_lcl_addr.s_addr;
  671. v->remote = vifc->vifc_rmt_addr.s_addr;
  672. v->flags = vifc->vifc_flags;
  673. if (!mrtsock)
  674. v->flags |= VIFF_STATIC;
  675. v->threshold = vifc->vifc_threshold;
  676. v->bytes_in = 0;
  677. v->bytes_out = 0;
  678. v->pkt_in = 0;
  679. v->pkt_out = 0;
  680. v->link = dev->ifindex;
  681. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  682. v->link = dev_get_iflink(dev);
  683. /* And finish update writing critical data */
  684. write_lock_bh(&mrt_lock);
  685. v->dev = dev;
  686. #ifdef CONFIG_IP_PIMSM
  687. if (v->flags & VIFF_REGISTER)
  688. mrt->mroute_reg_vif_num = vifi;
  689. #endif
  690. if (vifi+1 > mrt->maxvif)
  691. mrt->maxvif = vifi+1;
  692. write_unlock_bh(&mrt_lock);
  693. return 0;
  694. }
  695. /* called with rcu_read_lock() */
  696. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  697. __be32 origin,
  698. __be32 mcastgrp)
  699. {
  700. int line = MFC_HASH(mcastgrp, origin);
  701. struct mfc_cache *c;
  702. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  703. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  704. return c;
  705. }
  706. return NULL;
  707. }
  708. /* Look for a (*,*,oif) entry */
  709. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  710. int vifi)
  711. {
  712. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  713. struct mfc_cache *c;
  714. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  715. if (c->mfc_origin == htonl(INADDR_ANY) &&
  716. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  717. c->mfc_un.res.ttls[vifi] < 255)
  718. return c;
  719. return NULL;
  720. }
  721. /* Look for a (*,G) entry */
  722. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  723. __be32 mcastgrp, int vifi)
  724. {
  725. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  726. struct mfc_cache *c, *proxy;
  727. if (mcastgrp == htonl(INADDR_ANY))
  728. goto skip;
  729. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  730. if (c->mfc_origin == htonl(INADDR_ANY) &&
  731. c->mfc_mcastgrp == mcastgrp) {
  732. if (c->mfc_un.res.ttls[vifi] < 255)
  733. return c;
  734. /* It's ok if the vifi is part of the static tree */
  735. proxy = ipmr_cache_find_any_parent(mrt,
  736. c->mfc_parent);
  737. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  738. return c;
  739. }
  740. skip:
  741. return ipmr_cache_find_any_parent(mrt, vifi);
  742. }
  743. /*
  744. * Allocate a multicast cache entry
  745. */
  746. static struct mfc_cache *ipmr_cache_alloc(void)
  747. {
  748. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  749. if (c)
  750. c->mfc_un.res.minvif = MAXVIFS;
  751. return c;
  752. }
  753. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  754. {
  755. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  756. if (c) {
  757. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  758. c->mfc_un.unres.expires = jiffies + 10*HZ;
  759. }
  760. return c;
  761. }
  762. /*
  763. * A cache entry has gone into a resolved state from queued
  764. */
  765. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  766. struct mfc_cache *uc, struct mfc_cache *c)
  767. {
  768. struct sk_buff *skb;
  769. struct nlmsgerr *e;
  770. /* Play the pending entries through our router */
  771. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  772. if (ip_hdr(skb)->version == 0) {
  773. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  774. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  775. nlh->nlmsg_len = skb_tail_pointer(skb) -
  776. (u8 *)nlh;
  777. } else {
  778. nlh->nlmsg_type = NLMSG_ERROR;
  779. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  780. skb_trim(skb, nlh->nlmsg_len);
  781. e = nlmsg_data(nlh);
  782. e->error = -EMSGSIZE;
  783. memset(&e->msg, 0, sizeof(e->msg));
  784. }
  785. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  786. } else {
  787. ip_mr_forward(net, mrt, skb, c, 0);
  788. }
  789. }
  790. }
  791. /*
  792. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  793. * expects the following bizarre scheme.
  794. *
  795. * Called under mrt_lock.
  796. */
  797. static int ipmr_cache_report(struct mr_table *mrt,
  798. struct sk_buff *pkt, vifi_t vifi, int assert)
  799. {
  800. struct sk_buff *skb;
  801. const int ihl = ip_hdrlen(pkt);
  802. struct igmphdr *igmp;
  803. struct igmpmsg *msg;
  804. struct sock *mroute_sk;
  805. int ret;
  806. #ifdef CONFIG_IP_PIMSM
  807. if (assert == IGMPMSG_WHOLEPKT)
  808. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  809. else
  810. #endif
  811. skb = alloc_skb(128, GFP_ATOMIC);
  812. if (!skb)
  813. return -ENOBUFS;
  814. #ifdef CONFIG_IP_PIMSM
  815. if (assert == IGMPMSG_WHOLEPKT) {
  816. /* Ugly, but we have no choice with this interface.
  817. * Duplicate old header, fix ihl, length etc.
  818. * And all this only to mangle msg->im_msgtype and
  819. * to set msg->im_mbz to "mbz" :-)
  820. */
  821. skb_push(skb, sizeof(struct iphdr));
  822. skb_reset_network_header(skb);
  823. skb_reset_transport_header(skb);
  824. msg = (struct igmpmsg *)skb_network_header(skb);
  825. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  826. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  827. msg->im_mbz = 0;
  828. msg->im_vif = mrt->mroute_reg_vif_num;
  829. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  830. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  831. sizeof(struct iphdr));
  832. } else
  833. #endif
  834. {
  835. /* Copy the IP header */
  836. skb_set_network_header(skb, skb->len);
  837. skb_put(skb, ihl);
  838. skb_copy_to_linear_data(skb, pkt->data, ihl);
  839. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  840. msg = (struct igmpmsg *)skb_network_header(skb);
  841. msg->im_vif = vifi;
  842. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  843. /* Add our header */
  844. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  845. igmp->type =
  846. msg->im_msgtype = assert;
  847. igmp->code = 0;
  848. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  849. skb->transport_header = skb->network_header;
  850. }
  851. rcu_read_lock();
  852. mroute_sk = rcu_dereference(mrt->mroute_sk);
  853. if (!mroute_sk) {
  854. rcu_read_unlock();
  855. kfree_skb(skb);
  856. return -EINVAL;
  857. }
  858. /* Deliver to mrouted */
  859. ret = sock_queue_rcv_skb(mroute_sk, skb);
  860. rcu_read_unlock();
  861. if (ret < 0) {
  862. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  863. kfree_skb(skb);
  864. }
  865. return ret;
  866. }
  867. /*
  868. * Queue a packet for resolution. It gets locked cache entry!
  869. */
  870. static int
  871. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  872. {
  873. bool found = false;
  874. int err;
  875. struct mfc_cache *c;
  876. const struct iphdr *iph = ip_hdr(skb);
  877. spin_lock_bh(&mfc_unres_lock);
  878. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  879. if (c->mfc_mcastgrp == iph->daddr &&
  880. c->mfc_origin == iph->saddr) {
  881. found = true;
  882. break;
  883. }
  884. }
  885. if (!found) {
  886. /* Create a new entry if allowable */
  887. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  888. (c = ipmr_cache_alloc_unres()) == NULL) {
  889. spin_unlock_bh(&mfc_unres_lock);
  890. kfree_skb(skb);
  891. return -ENOBUFS;
  892. }
  893. /* Fill in the new cache entry */
  894. c->mfc_parent = -1;
  895. c->mfc_origin = iph->saddr;
  896. c->mfc_mcastgrp = iph->daddr;
  897. /* Reflect first query at mrouted. */
  898. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  899. if (err < 0) {
  900. /* If the report failed throw the cache entry
  901. out - Brad Parker
  902. */
  903. spin_unlock_bh(&mfc_unres_lock);
  904. ipmr_cache_free(c);
  905. kfree_skb(skb);
  906. return err;
  907. }
  908. atomic_inc(&mrt->cache_resolve_queue_len);
  909. list_add(&c->list, &mrt->mfc_unres_queue);
  910. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  911. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  912. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  913. }
  914. /* See if we can append the packet */
  915. if (c->mfc_un.unres.unresolved.qlen > 3) {
  916. kfree_skb(skb);
  917. err = -ENOBUFS;
  918. } else {
  919. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  920. err = 0;
  921. }
  922. spin_unlock_bh(&mfc_unres_lock);
  923. return err;
  924. }
  925. /*
  926. * MFC cache manipulation by user space mroute daemon
  927. */
  928. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  929. {
  930. int line;
  931. struct mfc_cache *c, *next;
  932. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  933. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  934. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  935. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  936. (parent == -1 || parent == c->mfc_parent)) {
  937. list_del_rcu(&c->list);
  938. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  939. ipmr_cache_free(c);
  940. return 0;
  941. }
  942. }
  943. return -ENOENT;
  944. }
  945. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  946. struct mfcctl *mfc, int mrtsock, int parent)
  947. {
  948. bool found = false;
  949. int line;
  950. struct mfc_cache *uc, *c;
  951. if (mfc->mfcc_parent >= MAXVIFS)
  952. return -ENFILE;
  953. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  954. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  955. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  956. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  957. (parent == -1 || parent == c->mfc_parent)) {
  958. found = true;
  959. break;
  960. }
  961. }
  962. if (found) {
  963. write_lock_bh(&mrt_lock);
  964. c->mfc_parent = mfc->mfcc_parent;
  965. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  966. if (!mrtsock)
  967. c->mfc_flags |= MFC_STATIC;
  968. write_unlock_bh(&mrt_lock);
  969. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  970. return 0;
  971. }
  972. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  973. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  974. return -EINVAL;
  975. c = ipmr_cache_alloc();
  976. if (!c)
  977. return -ENOMEM;
  978. c->mfc_origin = mfc->mfcc_origin.s_addr;
  979. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  980. c->mfc_parent = mfc->mfcc_parent;
  981. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  982. if (!mrtsock)
  983. c->mfc_flags |= MFC_STATIC;
  984. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  985. /*
  986. * Check to see if we resolved a queued list. If so we
  987. * need to send on the frames and tidy up.
  988. */
  989. found = false;
  990. spin_lock_bh(&mfc_unres_lock);
  991. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  992. if (uc->mfc_origin == c->mfc_origin &&
  993. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  994. list_del(&uc->list);
  995. atomic_dec(&mrt->cache_resolve_queue_len);
  996. found = true;
  997. break;
  998. }
  999. }
  1000. if (list_empty(&mrt->mfc_unres_queue))
  1001. del_timer(&mrt->ipmr_expire_timer);
  1002. spin_unlock_bh(&mfc_unres_lock);
  1003. if (found) {
  1004. ipmr_cache_resolve(net, mrt, uc, c);
  1005. ipmr_cache_free(uc);
  1006. }
  1007. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1008. return 0;
  1009. }
  1010. /*
  1011. * Close the multicast socket, and clear the vif tables etc
  1012. */
  1013. static void mroute_clean_tables(struct mr_table *mrt)
  1014. {
  1015. int i;
  1016. LIST_HEAD(list);
  1017. struct mfc_cache *c, *next;
  1018. /* Shut down all active vif entries */
  1019. for (i = 0; i < mrt->maxvif; i++) {
  1020. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  1021. vif_delete(mrt, i, 0, &list);
  1022. }
  1023. unregister_netdevice_many(&list);
  1024. /* Wipe the cache */
  1025. for (i = 0; i < MFC_LINES; i++) {
  1026. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1027. if (c->mfc_flags & MFC_STATIC)
  1028. continue;
  1029. list_del_rcu(&c->list);
  1030. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1031. ipmr_cache_free(c);
  1032. }
  1033. }
  1034. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1035. spin_lock_bh(&mfc_unres_lock);
  1036. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1037. list_del(&c->list);
  1038. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1039. ipmr_destroy_unres(mrt, c);
  1040. }
  1041. spin_unlock_bh(&mfc_unres_lock);
  1042. }
  1043. }
  1044. /* called from ip_ra_control(), before an RCU grace period,
  1045. * we dont need to call synchronize_rcu() here
  1046. */
  1047. static void mrtsock_destruct(struct sock *sk)
  1048. {
  1049. struct net *net = sock_net(sk);
  1050. struct mr_table *mrt;
  1051. rtnl_lock();
  1052. ipmr_for_each_table(mrt, net) {
  1053. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1054. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1055. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1056. NETCONFA_IFINDEX_ALL,
  1057. net->ipv4.devconf_all);
  1058. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1059. mroute_clean_tables(mrt);
  1060. }
  1061. }
  1062. rtnl_unlock();
  1063. }
  1064. /*
  1065. * Socket options and virtual interface manipulation. The whole
  1066. * virtual interface system is a complete heap, but unfortunately
  1067. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1068. * MOSPF/PIM router set up we can clean this up.
  1069. */
  1070. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1071. {
  1072. int ret, parent = 0;
  1073. struct vifctl vif;
  1074. struct mfcctl mfc;
  1075. struct net *net = sock_net(sk);
  1076. struct mr_table *mrt;
  1077. if (sk->sk_type != SOCK_RAW ||
  1078. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1079. return -EOPNOTSUPP;
  1080. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1081. if (!mrt)
  1082. return -ENOENT;
  1083. if (optname != MRT_INIT) {
  1084. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1085. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1086. return -EACCES;
  1087. }
  1088. switch (optname) {
  1089. case MRT_INIT:
  1090. if (optlen != sizeof(int))
  1091. return -EINVAL;
  1092. rtnl_lock();
  1093. if (rtnl_dereference(mrt->mroute_sk)) {
  1094. rtnl_unlock();
  1095. return -EADDRINUSE;
  1096. }
  1097. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1098. if (ret == 0) {
  1099. rcu_assign_pointer(mrt->mroute_sk, sk);
  1100. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1101. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1102. NETCONFA_IFINDEX_ALL,
  1103. net->ipv4.devconf_all);
  1104. }
  1105. rtnl_unlock();
  1106. return ret;
  1107. case MRT_DONE:
  1108. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1109. return -EACCES;
  1110. return ip_ra_control(sk, 0, NULL);
  1111. case MRT_ADD_VIF:
  1112. case MRT_DEL_VIF:
  1113. if (optlen != sizeof(vif))
  1114. return -EINVAL;
  1115. if (copy_from_user(&vif, optval, sizeof(vif)))
  1116. return -EFAULT;
  1117. if (vif.vifc_vifi >= MAXVIFS)
  1118. return -ENFILE;
  1119. rtnl_lock();
  1120. if (optname == MRT_ADD_VIF) {
  1121. ret = vif_add(net, mrt, &vif,
  1122. sk == rtnl_dereference(mrt->mroute_sk));
  1123. } else {
  1124. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1125. }
  1126. rtnl_unlock();
  1127. return ret;
  1128. /*
  1129. * Manipulate the forwarding caches. These live
  1130. * in a sort of kernel/user symbiosis.
  1131. */
  1132. case MRT_ADD_MFC:
  1133. case MRT_DEL_MFC:
  1134. parent = -1;
  1135. case MRT_ADD_MFC_PROXY:
  1136. case MRT_DEL_MFC_PROXY:
  1137. if (optlen != sizeof(mfc))
  1138. return -EINVAL;
  1139. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1140. return -EFAULT;
  1141. if (parent == 0)
  1142. parent = mfc.mfcc_parent;
  1143. rtnl_lock();
  1144. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1145. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1146. else
  1147. ret = ipmr_mfc_add(net, mrt, &mfc,
  1148. sk == rtnl_dereference(mrt->mroute_sk),
  1149. parent);
  1150. rtnl_unlock();
  1151. return ret;
  1152. /*
  1153. * Control PIM assert.
  1154. */
  1155. case MRT_ASSERT:
  1156. {
  1157. int v;
  1158. if (optlen != sizeof(v))
  1159. return -EINVAL;
  1160. if (get_user(v, (int __user *)optval))
  1161. return -EFAULT;
  1162. mrt->mroute_do_assert = v;
  1163. return 0;
  1164. }
  1165. #ifdef CONFIG_IP_PIMSM
  1166. case MRT_PIM:
  1167. {
  1168. int v;
  1169. if (optlen != sizeof(v))
  1170. return -EINVAL;
  1171. if (get_user(v, (int __user *)optval))
  1172. return -EFAULT;
  1173. v = !!v;
  1174. rtnl_lock();
  1175. ret = 0;
  1176. if (v != mrt->mroute_do_pim) {
  1177. mrt->mroute_do_pim = v;
  1178. mrt->mroute_do_assert = v;
  1179. }
  1180. rtnl_unlock();
  1181. return ret;
  1182. }
  1183. #endif
  1184. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1185. case MRT_TABLE:
  1186. {
  1187. u32 v;
  1188. if (optlen != sizeof(u32))
  1189. return -EINVAL;
  1190. if (get_user(v, (u32 __user *)optval))
  1191. return -EFAULT;
  1192. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  1193. if (v != RT_TABLE_DEFAULT && v >= 1000000000)
  1194. return -EINVAL;
  1195. rtnl_lock();
  1196. ret = 0;
  1197. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1198. ret = -EBUSY;
  1199. } else {
  1200. if (!ipmr_new_table(net, v))
  1201. ret = -ENOMEM;
  1202. else
  1203. raw_sk(sk)->ipmr_table = v;
  1204. }
  1205. rtnl_unlock();
  1206. return ret;
  1207. }
  1208. #endif
  1209. /*
  1210. * Spurious command, or MRT_VERSION which you cannot
  1211. * set.
  1212. */
  1213. default:
  1214. return -ENOPROTOOPT;
  1215. }
  1216. }
  1217. /*
  1218. * Getsock opt support for the multicast routing system.
  1219. */
  1220. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1221. {
  1222. int olr;
  1223. int val;
  1224. struct net *net = sock_net(sk);
  1225. struct mr_table *mrt;
  1226. if (sk->sk_type != SOCK_RAW ||
  1227. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1228. return -EOPNOTSUPP;
  1229. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1230. if (!mrt)
  1231. return -ENOENT;
  1232. if (optname != MRT_VERSION &&
  1233. #ifdef CONFIG_IP_PIMSM
  1234. optname != MRT_PIM &&
  1235. #endif
  1236. optname != MRT_ASSERT)
  1237. return -ENOPROTOOPT;
  1238. if (get_user(olr, optlen))
  1239. return -EFAULT;
  1240. olr = min_t(unsigned int, olr, sizeof(int));
  1241. if (olr < 0)
  1242. return -EINVAL;
  1243. if (put_user(olr, optlen))
  1244. return -EFAULT;
  1245. if (optname == MRT_VERSION)
  1246. val = 0x0305;
  1247. #ifdef CONFIG_IP_PIMSM
  1248. else if (optname == MRT_PIM)
  1249. val = mrt->mroute_do_pim;
  1250. #endif
  1251. else
  1252. val = mrt->mroute_do_assert;
  1253. if (copy_to_user(optval, &val, olr))
  1254. return -EFAULT;
  1255. return 0;
  1256. }
  1257. /*
  1258. * The IP multicast ioctl support routines.
  1259. */
  1260. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1261. {
  1262. struct sioc_sg_req sr;
  1263. struct sioc_vif_req vr;
  1264. struct vif_device *vif;
  1265. struct mfc_cache *c;
  1266. struct net *net = sock_net(sk);
  1267. struct mr_table *mrt;
  1268. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1269. if (!mrt)
  1270. return -ENOENT;
  1271. switch (cmd) {
  1272. case SIOCGETVIFCNT:
  1273. if (copy_from_user(&vr, arg, sizeof(vr)))
  1274. return -EFAULT;
  1275. if (vr.vifi >= mrt->maxvif)
  1276. return -EINVAL;
  1277. read_lock(&mrt_lock);
  1278. vif = &mrt->vif_table[vr.vifi];
  1279. if (VIF_EXISTS(mrt, vr.vifi)) {
  1280. vr.icount = vif->pkt_in;
  1281. vr.ocount = vif->pkt_out;
  1282. vr.ibytes = vif->bytes_in;
  1283. vr.obytes = vif->bytes_out;
  1284. read_unlock(&mrt_lock);
  1285. if (copy_to_user(arg, &vr, sizeof(vr)))
  1286. return -EFAULT;
  1287. return 0;
  1288. }
  1289. read_unlock(&mrt_lock);
  1290. return -EADDRNOTAVAIL;
  1291. case SIOCGETSGCNT:
  1292. if (copy_from_user(&sr, arg, sizeof(sr)))
  1293. return -EFAULT;
  1294. rcu_read_lock();
  1295. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1296. if (c) {
  1297. sr.pktcnt = c->mfc_un.res.pkt;
  1298. sr.bytecnt = c->mfc_un.res.bytes;
  1299. sr.wrong_if = c->mfc_un.res.wrong_if;
  1300. rcu_read_unlock();
  1301. if (copy_to_user(arg, &sr, sizeof(sr)))
  1302. return -EFAULT;
  1303. return 0;
  1304. }
  1305. rcu_read_unlock();
  1306. return -EADDRNOTAVAIL;
  1307. default:
  1308. return -ENOIOCTLCMD;
  1309. }
  1310. }
  1311. #ifdef CONFIG_COMPAT
  1312. struct compat_sioc_sg_req {
  1313. struct in_addr src;
  1314. struct in_addr grp;
  1315. compat_ulong_t pktcnt;
  1316. compat_ulong_t bytecnt;
  1317. compat_ulong_t wrong_if;
  1318. };
  1319. struct compat_sioc_vif_req {
  1320. vifi_t vifi; /* Which iface */
  1321. compat_ulong_t icount;
  1322. compat_ulong_t ocount;
  1323. compat_ulong_t ibytes;
  1324. compat_ulong_t obytes;
  1325. };
  1326. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1327. {
  1328. struct compat_sioc_sg_req sr;
  1329. struct compat_sioc_vif_req vr;
  1330. struct vif_device *vif;
  1331. struct mfc_cache *c;
  1332. struct net *net = sock_net(sk);
  1333. struct mr_table *mrt;
  1334. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1335. if (!mrt)
  1336. return -ENOENT;
  1337. switch (cmd) {
  1338. case SIOCGETVIFCNT:
  1339. if (copy_from_user(&vr, arg, sizeof(vr)))
  1340. return -EFAULT;
  1341. if (vr.vifi >= mrt->maxvif)
  1342. return -EINVAL;
  1343. read_lock(&mrt_lock);
  1344. vif = &mrt->vif_table[vr.vifi];
  1345. if (VIF_EXISTS(mrt, vr.vifi)) {
  1346. vr.icount = vif->pkt_in;
  1347. vr.ocount = vif->pkt_out;
  1348. vr.ibytes = vif->bytes_in;
  1349. vr.obytes = vif->bytes_out;
  1350. read_unlock(&mrt_lock);
  1351. if (copy_to_user(arg, &vr, sizeof(vr)))
  1352. return -EFAULT;
  1353. return 0;
  1354. }
  1355. read_unlock(&mrt_lock);
  1356. return -EADDRNOTAVAIL;
  1357. case SIOCGETSGCNT:
  1358. if (copy_from_user(&sr, arg, sizeof(sr)))
  1359. return -EFAULT;
  1360. rcu_read_lock();
  1361. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1362. if (c) {
  1363. sr.pktcnt = c->mfc_un.res.pkt;
  1364. sr.bytecnt = c->mfc_un.res.bytes;
  1365. sr.wrong_if = c->mfc_un.res.wrong_if;
  1366. rcu_read_unlock();
  1367. if (copy_to_user(arg, &sr, sizeof(sr)))
  1368. return -EFAULT;
  1369. return 0;
  1370. }
  1371. rcu_read_unlock();
  1372. return -EADDRNOTAVAIL;
  1373. default:
  1374. return -ENOIOCTLCMD;
  1375. }
  1376. }
  1377. #endif
  1378. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1379. {
  1380. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1381. struct net *net = dev_net(dev);
  1382. struct mr_table *mrt;
  1383. struct vif_device *v;
  1384. int ct;
  1385. if (event != NETDEV_UNREGISTER)
  1386. return NOTIFY_DONE;
  1387. ipmr_for_each_table(mrt, net) {
  1388. v = &mrt->vif_table[0];
  1389. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1390. if (v->dev == dev)
  1391. vif_delete(mrt, ct, 1, NULL);
  1392. }
  1393. }
  1394. return NOTIFY_DONE;
  1395. }
  1396. static struct notifier_block ip_mr_notifier = {
  1397. .notifier_call = ipmr_device_event,
  1398. };
  1399. /*
  1400. * Encapsulate a packet by attaching a valid IPIP header to it.
  1401. * This avoids tunnel drivers and other mess and gives us the speed so
  1402. * important for multicast video.
  1403. */
  1404. static void ip_encap(struct net *net, struct sk_buff *skb,
  1405. __be32 saddr, __be32 daddr)
  1406. {
  1407. struct iphdr *iph;
  1408. const struct iphdr *old_iph = ip_hdr(skb);
  1409. skb_push(skb, sizeof(struct iphdr));
  1410. skb->transport_header = skb->network_header;
  1411. skb_reset_network_header(skb);
  1412. iph = ip_hdr(skb);
  1413. iph->version = 4;
  1414. iph->tos = old_iph->tos;
  1415. iph->ttl = old_iph->ttl;
  1416. iph->frag_off = 0;
  1417. iph->daddr = daddr;
  1418. iph->saddr = saddr;
  1419. iph->protocol = IPPROTO_IPIP;
  1420. iph->ihl = 5;
  1421. iph->tot_len = htons(skb->len);
  1422. ip_select_ident(net, skb, NULL);
  1423. ip_send_check(iph);
  1424. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1425. nf_reset(skb);
  1426. }
  1427. static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb)
  1428. {
  1429. struct ip_options *opt = &(IPCB(skb)->opt);
  1430. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1431. IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  1432. if (unlikely(opt->optlen))
  1433. ip_forward_options(skb);
  1434. return dst_output_sk(sk, skb);
  1435. }
  1436. /*
  1437. * Processing handlers for ipmr_forward
  1438. */
  1439. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1440. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1441. {
  1442. const struct iphdr *iph = ip_hdr(skb);
  1443. struct vif_device *vif = &mrt->vif_table[vifi];
  1444. struct net_device *dev;
  1445. struct rtable *rt;
  1446. struct flowi4 fl4;
  1447. int encap = 0;
  1448. if (!vif->dev)
  1449. goto out_free;
  1450. #ifdef CONFIG_IP_PIMSM
  1451. if (vif->flags & VIFF_REGISTER) {
  1452. vif->pkt_out++;
  1453. vif->bytes_out += skb->len;
  1454. vif->dev->stats.tx_bytes += skb->len;
  1455. vif->dev->stats.tx_packets++;
  1456. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1457. goto out_free;
  1458. }
  1459. #endif
  1460. if (vif->flags & VIFF_TUNNEL) {
  1461. rt = ip_route_output_ports(net, &fl4, NULL,
  1462. vif->remote, vif->local,
  1463. 0, 0,
  1464. IPPROTO_IPIP,
  1465. RT_TOS(iph->tos), vif->link);
  1466. if (IS_ERR(rt))
  1467. goto out_free;
  1468. encap = sizeof(struct iphdr);
  1469. } else {
  1470. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1471. 0, 0,
  1472. IPPROTO_IPIP,
  1473. RT_TOS(iph->tos), vif->link);
  1474. if (IS_ERR(rt))
  1475. goto out_free;
  1476. }
  1477. dev = rt->dst.dev;
  1478. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1479. /* Do not fragment multicasts. Alas, IPv4 does not
  1480. * allow to send ICMP, so that packets will disappear
  1481. * to blackhole.
  1482. */
  1483. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1484. ip_rt_put(rt);
  1485. goto out_free;
  1486. }
  1487. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1488. if (skb_cow(skb, encap)) {
  1489. ip_rt_put(rt);
  1490. goto out_free;
  1491. }
  1492. vif->pkt_out++;
  1493. vif->bytes_out += skb->len;
  1494. skb_dst_drop(skb);
  1495. skb_dst_set(skb, &rt->dst);
  1496. ip_decrease_ttl(ip_hdr(skb));
  1497. /* FIXME: forward and output firewalls used to be called here.
  1498. * What do we do with netfilter? -- RR
  1499. */
  1500. if (vif->flags & VIFF_TUNNEL) {
  1501. ip_encap(net, skb, vif->local, vif->remote);
  1502. /* FIXME: extra output firewall step used to be here. --RR */
  1503. vif->dev->stats.tx_packets++;
  1504. vif->dev->stats.tx_bytes += skb->len;
  1505. }
  1506. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1507. /*
  1508. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1509. * not only before forwarding, but after forwarding on all output
  1510. * interfaces. It is clear, if mrouter runs a multicasting
  1511. * program, it should receive packets not depending to what interface
  1512. * program is joined.
  1513. * If we will not make it, the program will have to join on all
  1514. * interfaces. On the other hand, multihoming host (or router, but
  1515. * not mrouter) cannot join to more than one interface - it will
  1516. * result in receiving multiple packets.
  1517. */
  1518. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb,
  1519. skb->dev, dev,
  1520. ipmr_forward_finish);
  1521. return;
  1522. out_free:
  1523. kfree_skb(skb);
  1524. }
  1525. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1526. {
  1527. int ct;
  1528. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1529. if (mrt->vif_table[ct].dev == dev)
  1530. break;
  1531. }
  1532. return ct;
  1533. }
  1534. /* "local" means that we should preserve one skb (for local delivery) */
  1535. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1536. struct sk_buff *skb, struct mfc_cache *cache,
  1537. int local)
  1538. {
  1539. int psend = -1;
  1540. int vif, ct;
  1541. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1542. vif = cache->mfc_parent;
  1543. cache->mfc_un.res.pkt++;
  1544. cache->mfc_un.res.bytes += skb->len;
  1545. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1546. struct mfc_cache *cache_proxy;
  1547. /* For an (*,G) entry, we only check that the incomming
  1548. * interface is part of the static tree.
  1549. */
  1550. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1551. if (cache_proxy &&
  1552. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1553. goto forward;
  1554. }
  1555. /*
  1556. * Wrong interface: drop packet and (maybe) send PIM assert.
  1557. */
  1558. if (mrt->vif_table[vif].dev != skb->dev) {
  1559. if (rt_is_output_route(skb_rtable(skb))) {
  1560. /* It is our own packet, looped back.
  1561. * Very complicated situation...
  1562. *
  1563. * The best workaround until routing daemons will be
  1564. * fixed is not to redistribute packet, if it was
  1565. * send through wrong interface. It means, that
  1566. * multicast applications WILL NOT work for
  1567. * (S,G), which have default multicast route pointing
  1568. * to wrong oif. In any case, it is not a good
  1569. * idea to use multicasting applications on router.
  1570. */
  1571. goto dont_forward;
  1572. }
  1573. cache->mfc_un.res.wrong_if++;
  1574. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1575. /* pimsm uses asserts, when switching from RPT to SPT,
  1576. * so that we cannot check that packet arrived on an oif.
  1577. * It is bad, but otherwise we would need to move pretty
  1578. * large chunk of pimd to kernel. Ough... --ANK
  1579. */
  1580. (mrt->mroute_do_pim ||
  1581. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1582. time_after(jiffies,
  1583. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1584. cache->mfc_un.res.last_assert = jiffies;
  1585. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1586. }
  1587. goto dont_forward;
  1588. }
  1589. forward:
  1590. mrt->vif_table[vif].pkt_in++;
  1591. mrt->vif_table[vif].bytes_in += skb->len;
  1592. /*
  1593. * Forward the frame
  1594. */
  1595. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1596. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1597. if (true_vifi >= 0 &&
  1598. true_vifi != cache->mfc_parent &&
  1599. ip_hdr(skb)->ttl >
  1600. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1601. /* It's an (*,*) entry and the packet is not coming from
  1602. * the upstream: forward the packet to the upstream
  1603. * only.
  1604. */
  1605. psend = cache->mfc_parent;
  1606. goto last_forward;
  1607. }
  1608. goto dont_forward;
  1609. }
  1610. for (ct = cache->mfc_un.res.maxvif - 1;
  1611. ct >= cache->mfc_un.res.minvif; ct--) {
  1612. /* For (*,G) entry, don't forward to the incoming interface */
  1613. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1614. ct != true_vifi) &&
  1615. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1616. if (psend != -1) {
  1617. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1618. if (skb2)
  1619. ipmr_queue_xmit(net, mrt, skb2, cache,
  1620. psend);
  1621. }
  1622. psend = ct;
  1623. }
  1624. }
  1625. last_forward:
  1626. if (psend != -1) {
  1627. if (local) {
  1628. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1629. if (skb2)
  1630. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1631. } else {
  1632. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1633. return;
  1634. }
  1635. }
  1636. dont_forward:
  1637. if (!local)
  1638. kfree_skb(skb);
  1639. }
  1640. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1641. {
  1642. struct rtable *rt = skb_rtable(skb);
  1643. struct iphdr *iph = ip_hdr(skb);
  1644. struct flowi4 fl4 = {
  1645. .daddr = iph->daddr,
  1646. .saddr = iph->saddr,
  1647. .flowi4_tos = RT_TOS(iph->tos),
  1648. .flowi4_oif = (rt_is_output_route(rt) ?
  1649. skb->dev->ifindex : 0),
  1650. .flowi4_iif = (rt_is_output_route(rt) ?
  1651. LOOPBACK_IFINDEX :
  1652. skb->dev->ifindex),
  1653. .flowi4_mark = skb->mark,
  1654. };
  1655. struct mr_table *mrt;
  1656. int err;
  1657. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1658. if (err)
  1659. return ERR_PTR(err);
  1660. return mrt;
  1661. }
  1662. /*
  1663. * Multicast packets for forwarding arrive here
  1664. * Called with rcu_read_lock();
  1665. */
  1666. int ip_mr_input(struct sk_buff *skb)
  1667. {
  1668. struct mfc_cache *cache;
  1669. struct net *net = dev_net(skb->dev);
  1670. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1671. struct mr_table *mrt;
  1672. /* Packet is looped back after forward, it should not be
  1673. * forwarded second time, but still can be delivered locally.
  1674. */
  1675. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1676. goto dont_forward;
  1677. mrt = ipmr_rt_fib_lookup(net, skb);
  1678. if (IS_ERR(mrt)) {
  1679. kfree_skb(skb);
  1680. return PTR_ERR(mrt);
  1681. }
  1682. if (!local) {
  1683. if (IPCB(skb)->opt.router_alert) {
  1684. if (ip_call_ra_chain(skb))
  1685. return 0;
  1686. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1687. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1688. * Cisco IOS <= 11.2(8)) do not put router alert
  1689. * option to IGMP packets destined to routable
  1690. * groups. It is very bad, because it means
  1691. * that we can forward NO IGMP messages.
  1692. */
  1693. struct sock *mroute_sk;
  1694. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1695. if (mroute_sk) {
  1696. nf_reset(skb);
  1697. raw_rcv(mroute_sk, skb);
  1698. return 0;
  1699. }
  1700. }
  1701. }
  1702. /* already under rcu_read_lock() */
  1703. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1704. if (!cache) {
  1705. int vif = ipmr_find_vif(mrt, skb->dev);
  1706. if (vif >= 0)
  1707. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1708. vif);
  1709. }
  1710. /*
  1711. * No usable cache entry
  1712. */
  1713. if (!cache) {
  1714. int vif;
  1715. if (local) {
  1716. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1717. ip_local_deliver(skb);
  1718. if (!skb2)
  1719. return -ENOBUFS;
  1720. skb = skb2;
  1721. }
  1722. read_lock(&mrt_lock);
  1723. vif = ipmr_find_vif(mrt, skb->dev);
  1724. if (vif >= 0) {
  1725. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1726. read_unlock(&mrt_lock);
  1727. return err2;
  1728. }
  1729. read_unlock(&mrt_lock);
  1730. kfree_skb(skb);
  1731. return -ENODEV;
  1732. }
  1733. read_lock(&mrt_lock);
  1734. ip_mr_forward(net, mrt, skb, cache, local);
  1735. read_unlock(&mrt_lock);
  1736. if (local)
  1737. return ip_local_deliver(skb);
  1738. return 0;
  1739. dont_forward:
  1740. if (local)
  1741. return ip_local_deliver(skb);
  1742. kfree_skb(skb);
  1743. return 0;
  1744. }
  1745. #ifdef CONFIG_IP_PIMSM
  1746. /* called with rcu_read_lock() */
  1747. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1748. unsigned int pimlen)
  1749. {
  1750. struct net_device *reg_dev = NULL;
  1751. struct iphdr *encap;
  1752. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1753. /*
  1754. * Check that:
  1755. * a. packet is really sent to a multicast group
  1756. * b. packet is not a NULL-REGISTER
  1757. * c. packet is not truncated
  1758. */
  1759. if (!ipv4_is_multicast(encap->daddr) ||
  1760. encap->tot_len == 0 ||
  1761. ntohs(encap->tot_len) + pimlen > skb->len)
  1762. return 1;
  1763. read_lock(&mrt_lock);
  1764. if (mrt->mroute_reg_vif_num >= 0)
  1765. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1766. read_unlock(&mrt_lock);
  1767. if (!reg_dev)
  1768. return 1;
  1769. skb->mac_header = skb->network_header;
  1770. skb_pull(skb, (u8 *)encap - skb->data);
  1771. skb_reset_network_header(skb);
  1772. skb->protocol = htons(ETH_P_IP);
  1773. skb->ip_summed = CHECKSUM_NONE;
  1774. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  1775. netif_rx(skb);
  1776. return NET_RX_SUCCESS;
  1777. }
  1778. #endif
  1779. #ifdef CONFIG_IP_PIMSM_V1
  1780. /*
  1781. * Handle IGMP messages of PIMv1
  1782. */
  1783. int pim_rcv_v1(struct sk_buff *skb)
  1784. {
  1785. struct igmphdr *pim;
  1786. struct net *net = dev_net(skb->dev);
  1787. struct mr_table *mrt;
  1788. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1789. goto drop;
  1790. pim = igmp_hdr(skb);
  1791. mrt = ipmr_rt_fib_lookup(net, skb);
  1792. if (IS_ERR(mrt))
  1793. goto drop;
  1794. if (!mrt->mroute_do_pim ||
  1795. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1796. goto drop;
  1797. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1798. drop:
  1799. kfree_skb(skb);
  1800. }
  1801. return 0;
  1802. }
  1803. #endif
  1804. #ifdef CONFIG_IP_PIMSM_V2
  1805. static int pim_rcv(struct sk_buff *skb)
  1806. {
  1807. struct pimreghdr *pim;
  1808. struct net *net = dev_net(skb->dev);
  1809. struct mr_table *mrt;
  1810. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1811. goto drop;
  1812. pim = (struct pimreghdr *)skb_transport_header(skb);
  1813. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1814. (pim->flags & PIM_NULL_REGISTER) ||
  1815. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1816. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1817. goto drop;
  1818. mrt = ipmr_rt_fib_lookup(net, skb);
  1819. if (IS_ERR(mrt))
  1820. goto drop;
  1821. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1822. drop:
  1823. kfree_skb(skb);
  1824. }
  1825. return 0;
  1826. }
  1827. #endif
  1828. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1829. struct mfc_cache *c, struct rtmsg *rtm)
  1830. {
  1831. int ct;
  1832. struct rtnexthop *nhp;
  1833. struct nlattr *mp_attr;
  1834. struct rta_mfc_stats mfcs;
  1835. /* If cache is unresolved, don't try to parse IIF and OIF */
  1836. if (c->mfc_parent >= MAXVIFS)
  1837. return -ENOENT;
  1838. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1839. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1840. return -EMSGSIZE;
  1841. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1842. return -EMSGSIZE;
  1843. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1844. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1845. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1846. nla_nest_cancel(skb, mp_attr);
  1847. return -EMSGSIZE;
  1848. }
  1849. nhp->rtnh_flags = 0;
  1850. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1851. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1852. nhp->rtnh_len = sizeof(*nhp);
  1853. }
  1854. }
  1855. nla_nest_end(skb, mp_attr);
  1856. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1857. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1858. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1859. if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
  1860. return -EMSGSIZE;
  1861. rtm->rtm_type = RTN_MULTICAST;
  1862. return 1;
  1863. }
  1864. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1865. __be32 saddr, __be32 daddr,
  1866. struct rtmsg *rtm, int nowait)
  1867. {
  1868. struct mfc_cache *cache;
  1869. struct mr_table *mrt;
  1870. int err;
  1871. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1872. if (!mrt)
  1873. return -ENOENT;
  1874. rcu_read_lock();
  1875. cache = ipmr_cache_find(mrt, saddr, daddr);
  1876. if (!cache && skb->dev) {
  1877. int vif = ipmr_find_vif(mrt, skb->dev);
  1878. if (vif >= 0)
  1879. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1880. }
  1881. if (!cache) {
  1882. struct sk_buff *skb2;
  1883. struct iphdr *iph;
  1884. struct net_device *dev;
  1885. int vif = -1;
  1886. if (nowait) {
  1887. rcu_read_unlock();
  1888. return -EAGAIN;
  1889. }
  1890. dev = skb->dev;
  1891. read_lock(&mrt_lock);
  1892. if (dev)
  1893. vif = ipmr_find_vif(mrt, dev);
  1894. if (vif < 0) {
  1895. read_unlock(&mrt_lock);
  1896. rcu_read_unlock();
  1897. return -ENODEV;
  1898. }
  1899. skb2 = skb_clone(skb, GFP_ATOMIC);
  1900. if (!skb2) {
  1901. read_unlock(&mrt_lock);
  1902. rcu_read_unlock();
  1903. return -ENOMEM;
  1904. }
  1905. skb_push(skb2, sizeof(struct iphdr));
  1906. skb_reset_network_header(skb2);
  1907. iph = ip_hdr(skb2);
  1908. iph->ihl = sizeof(struct iphdr) >> 2;
  1909. iph->saddr = saddr;
  1910. iph->daddr = daddr;
  1911. iph->version = 0;
  1912. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1913. read_unlock(&mrt_lock);
  1914. rcu_read_unlock();
  1915. return err;
  1916. }
  1917. read_lock(&mrt_lock);
  1918. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1919. cache->mfc_flags |= MFC_NOTIFY;
  1920. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1921. read_unlock(&mrt_lock);
  1922. rcu_read_unlock();
  1923. return err;
  1924. }
  1925. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1926. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1927. int flags)
  1928. {
  1929. struct nlmsghdr *nlh;
  1930. struct rtmsg *rtm;
  1931. int err;
  1932. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1933. if (!nlh)
  1934. return -EMSGSIZE;
  1935. rtm = nlmsg_data(nlh);
  1936. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1937. rtm->rtm_dst_len = 32;
  1938. rtm->rtm_src_len = 32;
  1939. rtm->rtm_tos = 0;
  1940. rtm->rtm_table = mrt->id;
  1941. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1942. goto nla_put_failure;
  1943. rtm->rtm_type = RTN_MULTICAST;
  1944. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1945. if (c->mfc_flags & MFC_STATIC)
  1946. rtm->rtm_protocol = RTPROT_STATIC;
  1947. else
  1948. rtm->rtm_protocol = RTPROT_MROUTED;
  1949. rtm->rtm_flags = 0;
  1950. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  1951. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  1952. goto nla_put_failure;
  1953. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1954. /* do not break the dump if cache is unresolved */
  1955. if (err < 0 && err != -ENOENT)
  1956. goto nla_put_failure;
  1957. nlmsg_end(skb, nlh);
  1958. return 0;
  1959. nla_put_failure:
  1960. nlmsg_cancel(skb, nlh);
  1961. return -EMSGSIZE;
  1962. }
  1963. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1964. {
  1965. size_t len =
  1966. NLMSG_ALIGN(sizeof(struct rtmsg))
  1967. + nla_total_size(4) /* RTA_TABLE */
  1968. + nla_total_size(4) /* RTA_SRC */
  1969. + nla_total_size(4) /* RTA_DST */
  1970. ;
  1971. if (!unresolved)
  1972. len = len
  1973. + nla_total_size(4) /* RTA_IIF */
  1974. + nla_total_size(0) /* RTA_MULTIPATH */
  1975. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1976. /* RTA_MFC_STATS */
  1977. + nla_total_size(sizeof(struct rta_mfc_stats))
  1978. ;
  1979. return len;
  1980. }
  1981. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1982. int cmd)
  1983. {
  1984. struct net *net = read_pnet(&mrt->net);
  1985. struct sk_buff *skb;
  1986. int err = -ENOBUFS;
  1987. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1988. GFP_ATOMIC);
  1989. if (!skb)
  1990. goto errout;
  1991. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  1992. if (err < 0)
  1993. goto errout;
  1994. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1995. return;
  1996. errout:
  1997. kfree_skb(skb);
  1998. if (err < 0)
  1999. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  2000. }
  2001. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2002. {
  2003. struct net *net = sock_net(skb->sk);
  2004. struct mr_table *mrt;
  2005. struct mfc_cache *mfc;
  2006. unsigned int t = 0, s_t;
  2007. unsigned int h = 0, s_h;
  2008. unsigned int e = 0, s_e;
  2009. s_t = cb->args[0];
  2010. s_h = cb->args[1];
  2011. s_e = cb->args[2];
  2012. rcu_read_lock();
  2013. ipmr_for_each_table(mrt, net) {
  2014. if (t < s_t)
  2015. goto next_table;
  2016. if (t > s_t)
  2017. s_h = 0;
  2018. for (h = s_h; h < MFC_LINES; h++) {
  2019. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  2020. if (e < s_e)
  2021. goto next_entry;
  2022. if (ipmr_fill_mroute(mrt, skb,
  2023. NETLINK_CB(cb->skb).portid,
  2024. cb->nlh->nlmsg_seq,
  2025. mfc, RTM_NEWROUTE,
  2026. NLM_F_MULTI) < 0)
  2027. goto done;
  2028. next_entry:
  2029. e++;
  2030. }
  2031. e = s_e = 0;
  2032. }
  2033. spin_lock_bh(&mfc_unres_lock);
  2034. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2035. if (e < s_e)
  2036. goto next_entry2;
  2037. if (ipmr_fill_mroute(mrt, skb,
  2038. NETLINK_CB(cb->skb).portid,
  2039. cb->nlh->nlmsg_seq,
  2040. mfc, RTM_NEWROUTE,
  2041. NLM_F_MULTI) < 0) {
  2042. spin_unlock_bh(&mfc_unres_lock);
  2043. goto done;
  2044. }
  2045. next_entry2:
  2046. e++;
  2047. }
  2048. spin_unlock_bh(&mfc_unres_lock);
  2049. e = s_e = 0;
  2050. s_h = 0;
  2051. next_table:
  2052. t++;
  2053. }
  2054. done:
  2055. rcu_read_unlock();
  2056. cb->args[2] = e;
  2057. cb->args[1] = h;
  2058. cb->args[0] = t;
  2059. return skb->len;
  2060. }
  2061. #ifdef CONFIG_PROC_FS
  2062. /*
  2063. * The /proc interfaces to multicast routing :
  2064. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2065. */
  2066. struct ipmr_vif_iter {
  2067. struct seq_net_private p;
  2068. struct mr_table *mrt;
  2069. int ct;
  2070. };
  2071. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2072. struct ipmr_vif_iter *iter,
  2073. loff_t pos)
  2074. {
  2075. struct mr_table *mrt = iter->mrt;
  2076. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2077. if (!VIF_EXISTS(mrt, iter->ct))
  2078. continue;
  2079. if (pos-- == 0)
  2080. return &mrt->vif_table[iter->ct];
  2081. }
  2082. return NULL;
  2083. }
  2084. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2085. __acquires(mrt_lock)
  2086. {
  2087. struct ipmr_vif_iter *iter = seq->private;
  2088. struct net *net = seq_file_net(seq);
  2089. struct mr_table *mrt;
  2090. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2091. if (!mrt)
  2092. return ERR_PTR(-ENOENT);
  2093. iter->mrt = mrt;
  2094. read_lock(&mrt_lock);
  2095. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2096. : SEQ_START_TOKEN;
  2097. }
  2098. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2099. {
  2100. struct ipmr_vif_iter *iter = seq->private;
  2101. struct net *net = seq_file_net(seq);
  2102. struct mr_table *mrt = iter->mrt;
  2103. ++*pos;
  2104. if (v == SEQ_START_TOKEN)
  2105. return ipmr_vif_seq_idx(net, iter, 0);
  2106. while (++iter->ct < mrt->maxvif) {
  2107. if (!VIF_EXISTS(mrt, iter->ct))
  2108. continue;
  2109. return &mrt->vif_table[iter->ct];
  2110. }
  2111. return NULL;
  2112. }
  2113. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2114. __releases(mrt_lock)
  2115. {
  2116. read_unlock(&mrt_lock);
  2117. }
  2118. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2119. {
  2120. struct ipmr_vif_iter *iter = seq->private;
  2121. struct mr_table *mrt = iter->mrt;
  2122. if (v == SEQ_START_TOKEN) {
  2123. seq_puts(seq,
  2124. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2125. } else {
  2126. const struct vif_device *vif = v;
  2127. const char *name = vif->dev ? vif->dev->name : "none";
  2128. seq_printf(seq,
  2129. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2130. vif - mrt->vif_table,
  2131. name, vif->bytes_in, vif->pkt_in,
  2132. vif->bytes_out, vif->pkt_out,
  2133. vif->flags, vif->local, vif->remote);
  2134. }
  2135. return 0;
  2136. }
  2137. static const struct seq_operations ipmr_vif_seq_ops = {
  2138. .start = ipmr_vif_seq_start,
  2139. .next = ipmr_vif_seq_next,
  2140. .stop = ipmr_vif_seq_stop,
  2141. .show = ipmr_vif_seq_show,
  2142. };
  2143. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2144. {
  2145. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2146. sizeof(struct ipmr_vif_iter));
  2147. }
  2148. static const struct file_operations ipmr_vif_fops = {
  2149. .owner = THIS_MODULE,
  2150. .open = ipmr_vif_open,
  2151. .read = seq_read,
  2152. .llseek = seq_lseek,
  2153. .release = seq_release_net,
  2154. };
  2155. struct ipmr_mfc_iter {
  2156. struct seq_net_private p;
  2157. struct mr_table *mrt;
  2158. struct list_head *cache;
  2159. int ct;
  2160. };
  2161. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2162. struct ipmr_mfc_iter *it, loff_t pos)
  2163. {
  2164. struct mr_table *mrt = it->mrt;
  2165. struct mfc_cache *mfc;
  2166. rcu_read_lock();
  2167. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2168. it->cache = &mrt->mfc_cache_array[it->ct];
  2169. list_for_each_entry_rcu(mfc, it->cache, list)
  2170. if (pos-- == 0)
  2171. return mfc;
  2172. }
  2173. rcu_read_unlock();
  2174. spin_lock_bh(&mfc_unres_lock);
  2175. it->cache = &mrt->mfc_unres_queue;
  2176. list_for_each_entry(mfc, it->cache, list)
  2177. if (pos-- == 0)
  2178. return mfc;
  2179. spin_unlock_bh(&mfc_unres_lock);
  2180. it->cache = NULL;
  2181. return NULL;
  2182. }
  2183. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2184. {
  2185. struct ipmr_mfc_iter *it = seq->private;
  2186. struct net *net = seq_file_net(seq);
  2187. struct mr_table *mrt;
  2188. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2189. if (!mrt)
  2190. return ERR_PTR(-ENOENT);
  2191. it->mrt = mrt;
  2192. it->cache = NULL;
  2193. it->ct = 0;
  2194. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2195. : SEQ_START_TOKEN;
  2196. }
  2197. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2198. {
  2199. struct mfc_cache *mfc = v;
  2200. struct ipmr_mfc_iter *it = seq->private;
  2201. struct net *net = seq_file_net(seq);
  2202. struct mr_table *mrt = it->mrt;
  2203. ++*pos;
  2204. if (v == SEQ_START_TOKEN)
  2205. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2206. if (mfc->list.next != it->cache)
  2207. return list_entry(mfc->list.next, struct mfc_cache, list);
  2208. if (it->cache == &mrt->mfc_unres_queue)
  2209. goto end_of_list;
  2210. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2211. while (++it->ct < MFC_LINES) {
  2212. it->cache = &mrt->mfc_cache_array[it->ct];
  2213. if (list_empty(it->cache))
  2214. continue;
  2215. return list_first_entry(it->cache, struct mfc_cache, list);
  2216. }
  2217. /* exhausted cache_array, show unresolved */
  2218. rcu_read_unlock();
  2219. it->cache = &mrt->mfc_unres_queue;
  2220. it->ct = 0;
  2221. spin_lock_bh(&mfc_unres_lock);
  2222. if (!list_empty(it->cache))
  2223. return list_first_entry(it->cache, struct mfc_cache, list);
  2224. end_of_list:
  2225. spin_unlock_bh(&mfc_unres_lock);
  2226. it->cache = NULL;
  2227. return NULL;
  2228. }
  2229. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2230. {
  2231. struct ipmr_mfc_iter *it = seq->private;
  2232. struct mr_table *mrt = it->mrt;
  2233. if (it->cache == &mrt->mfc_unres_queue)
  2234. spin_unlock_bh(&mfc_unres_lock);
  2235. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2236. rcu_read_unlock();
  2237. }
  2238. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2239. {
  2240. int n;
  2241. if (v == SEQ_START_TOKEN) {
  2242. seq_puts(seq,
  2243. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2244. } else {
  2245. const struct mfc_cache *mfc = v;
  2246. const struct ipmr_mfc_iter *it = seq->private;
  2247. const struct mr_table *mrt = it->mrt;
  2248. seq_printf(seq, "%08X %08X %-3hd",
  2249. (__force u32) mfc->mfc_mcastgrp,
  2250. (__force u32) mfc->mfc_origin,
  2251. mfc->mfc_parent);
  2252. if (it->cache != &mrt->mfc_unres_queue) {
  2253. seq_printf(seq, " %8lu %8lu %8lu",
  2254. mfc->mfc_un.res.pkt,
  2255. mfc->mfc_un.res.bytes,
  2256. mfc->mfc_un.res.wrong_if);
  2257. for (n = mfc->mfc_un.res.minvif;
  2258. n < mfc->mfc_un.res.maxvif; n++) {
  2259. if (VIF_EXISTS(mrt, n) &&
  2260. mfc->mfc_un.res.ttls[n] < 255)
  2261. seq_printf(seq,
  2262. " %2d:%-3d",
  2263. n, mfc->mfc_un.res.ttls[n]);
  2264. }
  2265. } else {
  2266. /* unresolved mfc_caches don't contain
  2267. * pkt, bytes and wrong_if values
  2268. */
  2269. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2270. }
  2271. seq_putc(seq, '\n');
  2272. }
  2273. return 0;
  2274. }
  2275. static const struct seq_operations ipmr_mfc_seq_ops = {
  2276. .start = ipmr_mfc_seq_start,
  2277. .next = ipmr_mfc_seq_next,
  2278. .stop = ipmr_mfc_seq_stop,
  2279. .show = ipmr_mfc_seq_show,
  2280. };
  2281. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2282. {
  2283. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2284. sizeof(struct ipmr_mfc_iter));
  2285. }
  2286. static const struct file_operations ipmr_mfc_fops = {
  2287. .owner = THIS_MODULE,
  2288. .open = ipmr_mfc_open,
  2289. .read = seq_read,
  2290. .llseek = seq_lseek,
  2291. .release = seq_release_net,
  2292. };
  2293. #endif
  2294. #ifdef CONFIG_IP_PIMSM_V2
  2295. static const struct net_protocol pim_protocol = {
  2296. .handler = pim_rcv,
  2297. .netns_ok = 1,
  2298. };
  2299. #endif
  2300. /*
  2301. * Setup for IP multicast routing
  2302. */
  2303. static int __net_init ipmr_net_init(struct net *net)
  2304. {
  2305. int err;
  2306. err = ipmr_rules_init(net);
  2307. if (err < 0)
  2308. goto fail;
  2309. #ifdef CONFIG_PROC_FS
  2310. err = -ENOMEM;
  2311. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2312. goto proc_vif_fail;
  2313. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2314. goto proc_cache_fail;
  2315. #endif
  2316. return 0;
  2317. #ifdef CONFIG_PROC_FS
  2318. proc_cache_fail:
  2319. remove_proc_entry("ip_mr_vif", net->proc_net);
  2320. proc_vif_fail:
  2321. ipmr_rules_exit(net);
  2322. #endif
  2323. fail:
  2324. return err;
  2325. }
  2326. static void __net_exit ipmr_net_exit(struct net *net)
  2327. {
  2328. #ifdef CONFIG_PROC_FS
  2329. remove_proc_entry("ip_mr_cache", net->proc_net);
  2330. remove_proc_entry("ip_mr_vif", net->proc_net);
  2331. #endif
  2332. ipmr_rules_exit(net);
  2333. }
  2334. static struct pernet_operations ipmr_net_ops = {
  2335. .init = ipmr_net_init,
  2336. .exit = ipmr_net_exit,
  2337. };
  2338. int __init ip_mr_init(void)
  2339. {
  2340. int err;
  2341. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2342. sizeof(struct mfc_cache),
  2343. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2344. NULL);
  2345. if (!mrt_cachep)
  2346. return -ENOMEM;
  2347. err = register_pernet_subsys(&ipmr_net_ops);
  2348. if (err)
  2349. goto reg_pernet_fail;
  2350. err = register_netdevice_notifier(&ip_mr_notifier);
  2351. if (err)
  2352. goto reg_notif_fail;
  2353. #ifdef CONFIG_IP_PIMSM_V2
  2354. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2355. pr_err("%s: can't add PIM protocol\n", __func__);
  2356. err = -EAGAIN;
  2357. goto add_proto_fail;
  2358. }
  2359. #endif
  2360. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2361. NULL, ipmr_rtm_dumproute, NULL);
  2362. return 0;
  2363. #ifdef CONFIG_IP_PIMSM_V2
  2364. add_proto_fail:
  2365. unregister_netdevice_notifier(&ip_mr_notifier);
  2366. #endif
  2367. reg_notif_fail:
  2368. unregister_pernet_subsys(&ipmr_net_ops);
  2369. reg_pernet_fail:
  2370. kmem_cache_destroy(mrt_cachep);
  2371. return err;
  2372. }