dn_neigh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <linux/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_neigh_error_report(struct neighbour *, struct sk_buff *);
  51. static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb);
  52. /*
  53. * Operations for adding the link layer header.
  54. */
  55. static const struct neigh_ops dn_neigh_ops = {
  56. .family = AF_DECnet,
  57. .error_report = dn_neigh_error_report,
  58. .output = dn_neigh_output,
  59. .connected_output = dn_neigh_output,
  60. };
  61. static u32 dn_neigh_hash(const void *pkey,
  62. const struct net_device *dev,
  63. __u32 *hash_rnd)
  64. {
  65. return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
  66. }
  67. static bool dn_key_eq(const struct neighbour *neigh, const void *pkey)
  68. {
  69. return neigh_key_eq16(neigh, pkey);
  70. }
  71. struct neigh_table dn_neigh_table = {
  72. .family = PF_DECnet,
  73. .entry_size = NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
  74. .key_len = sizeof(__le16),
  75. .protocol = cpu_to_be16(ETH_P_DNA_RT),
  76. .hash = dn_neigh_hash,
  77. .key_eq = dn_key_eq,
  78. .constructor = dn_neigh_construct,
  79. .id = "dn_neigh_cache",
  80. .parms ={
  81. .tbl = &dn_neigh_table,
  82. .reachable_time = 30 * HZ,
  83. .data = {
  84. [NEIGH_VAR_MCAST_PROBES] = 0,
  85. [NEIGH_VAR_UCAST_PROBES] = 0,
  86. [NEIGH_VAR_APP_PROBES] = 0,
  87. [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
  88. [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
  89. [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
  90. [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
  91. [NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
  92. [NEIGH_VAR_PROXY_QLEN] = 0,
  93. [NEIGH_VAR_ANYCAST_DELAY] = 0,
  94. [NEIGH_VAR_PROXY_DELAY] = 0,
  95. [NEIGH_VAR_LOCKTIME] = 1 * HZ,
  96. },
  97. },
  98. .gc_interval = 30 * HZ,
  99. .gc_thresh1 = 128,
  100. .gc_thresh2 = 512,
  101. .gc_thresh3 = 1024,
  102. };
  103. static int dn_neigh_construct(struct neighbour *neigh)
  104. {
  105. struct net_device *dev = neigh->dev;
  106. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  107. struct dn_dev *dn_db;
  108. struct neigh_parms *parms;
  109. rcu_read_lock();
  110. dn_db = rcu_dereference(dev->dn_ptr);
  111. if (dn_db == NULL) {
  112. rcu_read_unlock();
  113. return -EINVAL;
  114. }
  115. parms = dn_db->neigh_parms;
  116. if (!parms) {
  117. rcu_read_unlock();
  118. return -EINVAL;
  119. }
  120. __neigh_parms_put(neigh->parms);
  121. neigh->parms = neigh_parms_clone(parms);
  122. rcu_read_unlock();
  123. neigh->ops = &dn_neigh_ops;
  124. neigh->nud_state = NUD_NOARP;
  125. neigh->output = neigh->ops->connected_output;
  126. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  127. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  128. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  129. dn_dn2eth(neigh->ha, dn->addr);
  130. else {
  131. net_dbg_ratelimited("Trying to create neigh for hw %d\n",
  132. dev->type);
  133. return -EINVAL;
  134. }
  135. /*
  136. * Make an estimate of the remote block size by assuming that its
  137. * two less then the device mtu, which it true for ethernet (and
  138. * other things which support long format headers) since there is
  139. * an extra length field (of 16 bits) which isn't part of the
  140. * ethernet headers and which the DECnet specs won't admit is part
  141. * of the DECnet routing headers either.
  142. *
  143. * If we over estimate here its no big deal, the NSP negotiations
  144. * will prevent us from sending packets which are too large for the
  145. * remote node to handle. In any case this figure is normally updated
  146. * by a hello message in most cases.
  147. */
  148. dn->blksize = dev->mtu - 2;
  149. return 0;
  150. }
  151. static void dn_neigh_error_report(struct neighbour *neigh, struct sk_buff *skb)
  152. {
  153. printk(KERN_DEBUG "dn_neigh_error_report: called\n");
  154. kfree_skb(skb);
  155. }
  156. static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb)
  157. {
  158. struct dst_entry *dst = skb_dst(skb);
  159. struct dn_route *rt = (struct dn_route *)dst;
  160. struct net_device *dev = neigh->dev;
  161. char mac_addr[ETH_ALEN];
  162. unsigned int seq;
  163. int err;
  164. dn_dn2eth(mac_addr, rt->rt_local_src);
  165. do {
  166. seq = read_seqbegin(&neigh->ha_lock);
  167. err = dev_hard_header(skb, dev, ntohs(skb->protocol),
  168. neigh->ha, mac_addr, skb->len);
  169. } while (read_seqretry(&neigh->ha_lock, seq));
  170. if (err >= 0)
  171. err = dev_queue_xmit(skb);
  172. else {
  173. kfree_skb(skb);
  174. err = -EINVAL;
  175. }
  176. return err;
  177. }
  178. static int dn_neigh_output_packet(struct sock *sk, struct sk_buff *skb)
  179. {
  180. struct dst_entry *dst = skb_dst(skb);
  181. struct dn_route *rt = (struct dn_route *)dst;
  182. struct neighbour *neigh = rt->n;
  183. return neigh->output(neigh, skb);
  184. }
  185. /*
  186. * For talking to broadcast devices: Ethernet & PPP
  187. */
  188. static int dn_long_output(struct neighbour *neigh, struct sock *sk,
  189. struct sk_buff *skb)
  190. {
  191. struct net_device *dev = neigh->dev;
  192. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  193. unsigned char *data;
  194. struct dn_long_packet *lp;
  195. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  196. if (skb_headroom(skb) < headroom) {
  197. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  198. if (skb2 == NULL) {
  199. net_crit_ratelimited("dn_long_output: no memory\n");
  200. kfree_skb(skb);
  201. return -ENOBUFS;
  202. }
  203. consume_skb(skb);
  204. skb = skb2;
  205. net_info_ratelimited("dn_long_output: Increasing headroom\n");
  206. }
  207. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  208. lp = (struct dn_long_packet *)(data+3);
  209. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  210. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  211. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  212. lp->d_area = lp->d_subarea = 0;
  213. dn_dn2eth(lp->d_id, cb->dst);
  214. lp->s_area = lp->s_subarea = 0;
  215. dn_dn2eth(lp->s_id, cb->src);
  216. lp->nl2 = 0;
  217. lp->visit_ct = cb->hops & 0x3f;
  218. lp->s_class = 0;
  219. lp->pt = 0;
  220. skb_reset_network_header(skb);
  221. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
  222. NULL, neigh->dev, dn_neigh_output_packet);
  223. }
  224. /*
  225. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  226. */
  227. static int dn_short_output(struct neighbour *neigh, struct sock *sk,
  228. struct sk_buff *skb)
  229. {
  230. struct net_device *dev = neigh->dev;
  231. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  232. struct dn_short_packet *sp;
  233. unsigned char *data;
  234. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  235. if (skb_headroom(skb) < headroom) {
  236. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  237. if (skb2 == NULL) {
  238. net_crit_ratelimited("dn_short_output: no memory\n");
  239. kfree_skb(skb);
  240. return -ENOBUFS;
  241. }
  242. consume_skb(skb);
  243. skb = skb2;
  244. net_info_ratelimited("dn_short_output: Increasing headroom\n");
  245. }
  246. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  247. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  248. sp = (struct dn_short_packet *)(data+2);
  249. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  250. sp->dstnode = cb->dst;
  251. sp->srcnode = cb->src;
  252. sp->forward = cb->hops & 0x3f;
  253. skb_reset_network_header(skb);
  254. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
  255. NULL, neigh->dev, dn_neigh_output_packet);
  256. }
  257. /*
  258. * For talking to DECnet phase III nodes
  259. * Phase 3 output is the same as short output, execpt that
  260. * it clears the area bits before transmission.
  261. */
  262. static int dn_phase3_output(struct neighbour *neigh, struct sock *sk,
  263. struct sk_buff *skb)
  264. {
  265. struct net_device *dev = neigh->dev;
  266. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  267. struct dn_short_packet *sp;
  268. unsigned char *data;
  269. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  270. if (skb_headroom(skb) < headroom) {
  271. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  272. if (skb2 == NULL) {
  273. net_crit_ratelimited("dn_phase3_output: no memory\n");
  274. kfree_skb(skb);
  275. return -ENOBUFS;
  276. }
  277. consume_skb(skb);
  278. skb = skb2;
  279. net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
  280. }
  281. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  282. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  283. sp = (struct dn_short_packet *)(data + 2);
  284. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  285. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  286. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  287. sp->forward = cb->hops & 0x3f;
  288. skb_reset_network_header(skb);
  289. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
  290. NULL, neigh->dev, dn_neigh_output_packet);
  291. }
  292. int dn_to_neigh_output(struct sock *sk, struct sk_buff *skb)
  293. {
  294. struct dst_entry *dst = skb_dst(skb);
  295. struct dn_route *rt = (struct dn_route *) dst;
  296. struct neighbour *neigh = rt->n;
  297. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  298. struct dn_dev *dn_db;
  299. bool use_long;
  300. rcu_read_lock();
  301. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  302. if (dn_db == NULL) {
  303. rcu_read_unlock();
  304. return -EINVAL;
  305. }
  306. use_long = dn_db->use_long;
  307. rcu_read_unlock();
  308. if (dn->flags & DN_NDFLAG_P3)
  309. return dn_phase3_output(neigh, sk, skb);
  310. if (use_long)
  311. return dn_long_output(neigh, sk, skb);
  312. else
  313. return dn_short_output(neigh, sk, skb);
  314. }
  315. /*
  316. * Unfortunately, the neighbour code uses the device in its hash
  317. * function, so we don't get any advantage from it. This function
  318. * basically does a neigh_lookup(), but without comparing the device
  319. * field. This is required for the On-Ethernet cache
  320. */
  321. /*
  322. * Pointopoint link receives a hello message
  323. */
  324. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  325. {
  326. kfree_skb(skb);
  327. }
  328. /*
  329. * Ethernet router hello message received
  330. */
  331. int dn_neigh_router_hello(struct sock *sk, struct sk_buff *skb)
  332. {
  333. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  334. struct neighbour *neigh;
  335. struct dn_neigh *dn;
  336. struct dn_dev *dn_db;
  337. __le16 src;
  338. src = dn_eth2dn(msg->id);
  339. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  340. dn = (struct dn_neigh *)neigh;
  341. if (neigh) {
  342. write_lock(&neigh->lock);
  343. neigh->used = jiffies;
  344. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  345. if (!(neigh->nud_state & NUD_PERMANENT)) {
  346. neigh->updated = jiffies;
  347. if (neigh->dev->type == ARPHRD_ETHER)
  348. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  349. dn->blksize = le16_to_cpu(msg->blksize);
  350. dn->priority = msg->priority;
  351. dn->flags &= ~DN_NDFLAG_P3;
  352. switch (msg->iinfo & DN_RT_INFO_TYPE) {
  353. case DN_RT_INFO_L1RT:
  354. dn->flags &=~DN_NDFLAG_R2;
  355. dn->flags |= DN_NDFLAG_R1;
  356. break;
  357. case DN_RT_INFO_L2RT:
  358. dn->flags |= DN_NDFLAG_R2;
  359. }
  360. }
  361. /* Only use routers in our area */
  362. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  363. if (!dn_db->router) {
  364. dn_db->router = neigh_clone(neigh);
  365. } else {
  366. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  367. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  368. }
  369. }
  370. write_unlock(&neigh->lock);
  371. neigh_release(neigh);
  372. }
  373. kfree_skb(skb);
  374. return 0;
  375. }
  376. /*
  377. * Endnode hello message received
  378. */
  379. int dn_neigh_endnode_hello(struct sock *sk, struct sk_buff *skb)
  380. {
  381. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  382. struct neighbour *neigh;
  383. struct dn_neigh *dn;
  384. __le16 src;
  385. src = dn_eth2dn(msg->id);
  386. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  387. dn = (struct dn_neigh *)neigh;
  388. if (neigh) {
  389. write_lock(&neigh->lock);
  390. neigh->used = jiffies;
  391. if (!(neigh->nud_state & NUD_PERMANENT)) {
  392. neigh->updated = jiffies;
  393. if (neigh->dev->type == ARPHRD_ETHER)
  394. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  395. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  396. dn->blksize = le16_to_cpu(msg->blksize);
  397. dn->priority = 0;
  398. }
  399. write_unlock(&neigh->lock);
  400. neigh_release(neigh);
  401. }
  402. kfree_skb(skb);
  403. return 0;
  404. }
  405. static char *dn_find_slot(char *base, int max, int priority)
  406. {
  407. int i;
  408. unsigned char *min = NULL;
  409. base += 6; /* skip first id */
  410. for(i = 0; i < max; i++) {
  411. if (!min || (*base < *min))
  412. min = base;
  413. base += 7; /* find next priority */
  414. }
  415. if (!min)
  416. return NULL;
  417. return (*min < priority) ? (min - 6) : NULL;
  418. }
  419. struct elist_cb_state {
  420. struct net_device *dev;
  421. unsigned char *ptr;
  422. unsigned char *rs;
  423. int t, n;
  424. };
  425. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  426. {
  427. struct elist_cb_state *s = _info;
  428. struct dn_neigh *dn;
  429. if (neigh->dev != s->dev)
  430. return;
  431. dn = (struct dn_neigh *) neigh;
  432. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  433. return;
  434. if (s->t == s->n)
  435. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  436. else
  437. s->t++;
  438. if (s->rs == NULL)
  439. return;
  440. dn_dn2eth(s->rs, dn->addr);
  441. s->rs += 6;
  442. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  443. *(s->rs) |= dn->priority;
  444. s->rs++;
  445. }
  446. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  447. {
  448. struct elist_cb_state state;
  449. state.dev = dev;
  450. state.t = 0;
  451. state.n = n;
  452. state.ptr = ptr;
  453. state.rs = ptr;
  454. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  455. return state.t;
  456. }
  457. #ifdef CONFIG_PROC_FS
  458. static inline void dn_neigh_format_entry(struct seq_file *seq,
  459. struct neighbour *n)
  460. {
  461. struct dn_neigh *dn = (struct dn_neigh *) n;
  462. char buf[DN_ASCBUF_LEN];
  463. read_lock(&n->lock);
  464. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  465. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  466. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  467. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  468. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  469. dn->n.nud_state,
  470. atomic_read(&dn->n.refcnt),
  471. dn->blksize,
  472. (dn->n.dev) ? dn->n.dev->name : "?");
  473. read_unlock(&n->lock);
  474. }
  475. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  476. {
  477. if (v == SEQ_START_TOKEN) {
  478. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  479. } else {
  480. dn_neigh_format_entry(seq, v);
  481. }
  482. return 0;
  483. }
  484. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  485. {
  486. return neigh_seq_start(seq, pos, &dn_neigh_table,
  487. NEIGH_SEQ_NEIGH_ONLY);
  488. }
  489. static const struct seq_operations dn_neigh_seq_ops = {
  490. .start = dn_neigh_seq_start,
  491. .next = neigh_seq_next,
  492. .stop = neigh_seq_stop,
  493. .show = dn_neigh_seq_show,
  494. };
  495. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  496. {
  497. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  498. sizeof(struct neigh_seq_state));
  499. }
  500. static const struct file_operations dn_neigh_seq_fops = {
  501. .owner = THIS_MODULE,
  502. .open = dn_neigh_seq_open,
  503. .read = seq_read,
  504. .llseek = seq_lseek,
  505. .release = seq_release_net,
  506. };
  507. #endif
  508. void __init dn_neigh_init(void)
  509. {
  510. neigh_table_init(NEIGH_DN_TABLE, &dn_neigh_table);
  511. proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
  512. &dn_neigh_seq_fops);
  513. }
  514. void __exit dn_neigh_cleanup(void)
  515. {
  516. remove_proc_entry("decnet_neigh", init_net.proc_net);
  517. neigh_table_clear(NEIGH_DN_TABLE, &dn_neigh_table);
  518. }