vlan_core.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. #include <linux/skbuff.h>
  2. #include <linux/netdevice.h>
  3. #include <linux/if_vlan.h>
  4. #include <linux/netpoll.h>
  5. #include <linux/export.h>
  6. #include "vlan.h"
  7. bool vlan_do_receive(struct sk_buff **skbp)
  8. {
  9. struct sk_buff *skb = *skbp;
  10. __be16 vlan_proto = skb->vlan_proto;
  11. u16 vlan_id = skb_vlan_tag_get_id(skb);
  12. struct net_device *vlan_dev;
  13. struct vlan_pcpu_stats *rx_stats;
  14. vlan_dev = vlan_find_dev(skb->dev, vlan_proto, vlan_id);
  15. if (!vlan_dev)
  16. return false;
  17. skb = *skbp = skb_share_check(skb, GFP_ATOMIC);
  18. if (unlikely(!skb))
  19. return false;
  20. skb->dev = vlan_dev;
  21. if (unlikely(skb->pkt_type == PACKET_OTHERHOST)) {
  22. /* Our lower layer thinks this is not local, let's make sure.
  23. * This allows the VLAN to have a different MAC than the
  24. * underlying device, and still route correctly. */
  25. if (ether_addr_equal_64bits(eth_hdr(skb)->h_dest, vlan_dev->dev_addr))
  26. skb->pkt_type = PACKET_HOST;
  27. }
  28. if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR)) {
  29. unsigned int offset = skb->data - skb_mac_header(skb);
  30. /*
  31. * vlan_insert_tag expect skb->data pointing to mac header.
  32. * So change skb->data before calling it and change back to
  33. * original position later
  34. */
  35. skb_push(skb, offset);
  36. skb = *skbp = vlan_insert_tag(skb, skb->vlan_proto,
  37. skb->vlan_tci);
  38. if (!skb)
  39. return false;
  40. skb_pull(skb, offset + VLAN_HLEN);
  41. skb_reset_mac_len(skb);
  42. }
  43. skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci);
  44. skb->vlan_tci = 0;
  45. rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats);
  46. u64_stats_update_begin(&rx_stats->syncp);
  47. rx_stats->rx_packets++;
  48. rx_stats->rx_bytes += skb->len;
  49. if (skb->pkt_type == PACKET_MULTICAST)
  50. rx_stats->rx_multicast++;
  51. u64_stats_update_end(&rx_stats->syncp);
  52. return true;
  53. }
  54. /* Must be invoked with rcu_read_lock. */
  55. struct net_device *__vlan_find_dev_deep_rcu(struct net_device *dev,
  56. __be16 vlan_proto, u16 vlan_id)
  57. {
  58. struct vlan_info *vlan_info = rcu_dereference(dev->vlan_info);
  59. if (vlan_info) {
  60. return vlan_group_get_device(&vlan_info->grp,
  61. vlan_proto, vlan_id);
  62. } else {
  63. /*
  64. * Lower devices of master uppers (bonding, team) do not have
  65. * grp assigned to themselves. Grp is assigned to upper device
  66. * instead.
  67. */
  68. struct net_device *upper_dev;
  69. upper_dev = netdev_master_upper_dev_get_rcu(dev);
  70. if (upper_dev)
  71. return __vlan_find_dev_deep_rcu(upper_dev,
  72. vlan_proto, vlan_id);
  73. }
  74. return NULL;
  75. }
  76. EXPORT_SYMBOL(__vlan_find_dev_deep_rcu);
  77. struct net_device *vlan_dev_real_dev(const struct net_device *dev)
  78. {
  79. struct net_device *ret = vlan_dev_priv(dev)->real_dev;
  80. while (is_vlan_dev(ret))
  81. ret = vlan_dev_priv(ret)->real_dev;
  82. return ret;
  83. }
  84. EXPORT_SYMBOL(vlan_dev_real_dev);
  85. u16 vlan_dev_vlan_id(const struct net_device *dev)
  86. {
  87. return vlan_dev_priv(dev)->vlan_id;
  88. }
  89. EXPORT_SYMBOL(vlan_dev_vlan_id);
  90. __be16 vlan_dev_vlan_proto(const struct net_device *dev)
  91. {
  92. return vlan_dev_priv(dev)->vlan_proto;
  93. }
  94. EXPORT_SYMBOL(vlan_dev_vlan_proto);
  95. /*
  96. * vlan info and vid list
  97. */
  98. static void vlan_group_free(struct vlan_group *grp)
  99. {
  100. int i, j;
  101. for (i = 0; i < VLAN_PROTO_NUM; i++)
  102. for (j = 0; j < VLAN_GROUP_ARRAY_SPLIT_PARTS; j++)
  103. kfree(grp->vlan_devices_arrays[i][j]);
  104. }
  105. static void vlan_info_free(struct vlan_info *vlan_info)
  106. {
  107. vlan_group_free(&vlan_info->grp);
  108. kfree(vlan_info);
  109. }
  110. static void vlan_info_rcu_free(struct rcu_head *rcu)
  111. {
  112. vlan_info_free(container_of(rcu, struct vlan_info, rcu));
  113. }
  114. static struct vlan_info *vlan_info_alloc(struct net_device *dev)
  115. {
  116. struct vlan_info *vlan_info;
  117. vlan_info = kzalloc(sizeof(struct vlan_info), GFP_KERNEL);
  118. if (!vlan_info)
  119. return NULL;
  120. vlan_info->real_dev = dev;
  121. INIT_LIST_HEAD(&vlan_info->vid_list);
  122. return vlan_info;
  123. }
  124. struct vlan_vid_info {
  125. struct list_head list;
  126. __be16 proto;
  127. u16 vid;
  128. int refcount;
  129. };
  130. static bool vlan_hw_filter_capable(const struct net_device *dev,
  131. const struct vlan_vid_info *vid_info)
  132. {
  133. if (vid_info->proto == htons(ETH_P_8021Q) &&
  134. dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
  135. return true;
  136. if (vid_info->proto == htons(ETH_P_8021AD) &&
  137. dev->features & NETIF_F_HW_VLAN_STAG_FILTER)
  138. return true;
  139. return false;
  140. }
  141. static struct vlan_vid_info *vlan_vid_info_get(struct vlan_info *vlan_info,
  142. __be16 proto, u16 vid)
  143. {
  144. struct vlan_vid_info *vid_info;
  145. list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
  146. if (vid_info->proto == proto && vid_info->vid == vid)
  147. return vid_info;
  148. }
  149. return NULL;
  150. }
  151. static struct vlan_vid_info *vlan_vid_info_alloc(__be16 proto, u16 vid)
  152. {
  153. struct vlan_vid_info *vid_info;
  154. vid_info = kzalloc(sizeof(struct vlan_vid_info), GFP_KERNEL);
  155. if (!vid_info)
  156. return NULL;
  157. vid_info->proto = proto;
  158. vid_info->vid = vid;
  159. return vid_info;
  160. }
  161. static int __vlan_vid_add(struct vlan_info *vlan_info, __be16 proto, u16 vid,
  162. struct vlan_vid_info **pvid_info)
  163. {
  164. struct net_device *dev = vlan_info->real_dev;
  165. const struct net_device_ops *ops = dev->netdev_ops;
  166. struct vlan_vid_info *vid_info;
  167. int err;
  168. vid_info = vlan_vid_info_alloc(proto, vid);
  169. if (!vid_info)
  170. return -ENOMEM;
  171. if (vlan_hw_filter_capable(dev, vid_info)) {
  172. err = ops->ndo_vlan_rx_add_vid(dev, proto, vid);
  173. if (err) {
  174. kfree(vid_info);
  175. return err;
  176. }
  177. }
  178. list_add(&vid_info->list, &vlan_info->vid_list);
  179. vlan_info->nr_vids++;
  180. *pvid_info = vid_info;
  181. return 0;
  182. }
  183. int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid)
  184. {
  185. struct vlan_info *vlan_info;
  186. struct vlan_vid_info *vid_info;
  187. bool vlan_info_created = false;
  188. int err;
  189. ASSERT_RTNL();
  190. vlan_info = rtnl_dereference(dev->vlan_info);
  191. if (!vlan_info) {
  192. vlan_info = vlan_info_alloc(dev);
  193. if (!vlan_info)
  194. return -ENOMEM;
  195. vlan_info_created = true;
  196. }
  197. vid_info = vlan_vid_info_get(vlan_info, proto, vid);
  198. if (!vid_info) {
  199. err = __vlan_vid_add(vlan_info, proto, vid, &vid_info);
  200. if (err)
  201. goto out_free_vlan_info;
  202. }
  203. vid_info->refcount++;
  204. if (vlan_info_created)
  205. rcu_assign_pointer(dev->vlan_info, vlan_info);
  206. return 0;
  207. out_free_vlan_info:
  208. if (vlan_info_created)
  209. kfree(vlan_info);
  210. return err;
  211. }
  212. EXPORT_SYMBOL(vlan_vid_add);
  213. static void __vlan_vid_del(struct vlan_info *vlan_info,
  214. struct vlan_vid_info *vid_info)
  215. {
  216. struct net_device *dev = vlan_info->real_dev;
  217. const struct net_device_ops *ops = dev->netdev_ops;
  218. __be16 proto = vid_info->proto;
  219. u16 vid = vid_info->vid;
  220. int err;
  221. if (vlan_hw_filter_capable(dev, vid_info)) {
  222. err = ops->ndo_vlan_rx_kill_vid(dev, proto, vid);
  223. if (err) {
  224. pr_warn("failed to kill vid %04x/%d for device %s\n",
  225. proto, vid, dev->name);
  226. }
  227. }
  228. list_del(&vid_info->list);
  229. kfree(vid_info);
  230. vlan_info->nr_vids--;
  231. }
  232. void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid)
  233. {
  234. struct vlan_info *vlan_info;
  235. struct vlan_vid_info *vid_info;
  236. ASSERT_RTNL();
  237. vlan_info = rtnl_dereference(dev->vlan_info);
  238. if (!vlan_info)
  239. return;
  240. vid_info = vlan_vid_info_get(vlan_info, proto, vid);
  241. if (!vid_info)
  242. return;
  243. vid_info->refcount--;
  244. if (vid_info->refcount == 0) {
  245. __vlan_vid_del(vlan_info, vid_info);
  246. if (vlan_info->nr_vids == 0) {
  247. RCU_INIT_POINTER(dev->vlan_info, NULL);
  248. call_rcu(&vlan_info->rcu, vlan_info_rcu_free);
  249. }
  250. }
  251. }
  252. EXPORT_SYMBOL(vlan_vid_del);
  253. int vlan_vids_add_by_dev(struct net_device *dev,
  254. const struct net_device *by_dev)
  255. {
  256. struct vlan_vid_info *vid_info;
  257. struct vlan_info *vlan_info;
  258. int err;
  259. ASSERT_RTNL();
  260. vlan_info = rtnl_dereference(by_dev->vlan_info);
  261. if (!vlan_info)
  262. return 0;
  263. list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
  264. err = vlan_vid_add(dev, vid_info->proto, vid_info->vid);
  265. if (err)
  266. goto unwind;
  267. }
  268. return 0;
  269. unwind:
  270. list_for_each_entry_continue_reverse(vid_info,
  271. &vlan_info->vid_list,
  272. list) {
  273. vlan_vid_del(dev, vid_info->proto, vid_info->vid);
  274. }
  275. return err;
  276. }
  277. EXPORT_SYMBOL(vlan_vids_add_by_dev);
  278. void vlan_vids_del_by_dev(struct net_device *dev,
  279. const struct net_device *by_dev)
  280. {
  281. struct vlan_vid_info *vid_info;
  282. struct vlan_info *vlan_info;
  283. ASSERT_RTNL();
  284. vlan_info = rtnl_dereference(by_dev->vlan_info);
  285. if (!vlan_info)
  286. return;
  287. list_for_each_entry(vid_info, &vlan_info->vid_list, list)
  288. vlan_vid_del(dev, vid_info->proto, vid_info->vid);
  289. }
  290. EXPORT_SYMBOL(vlan_vids_del_by_dev);
  291. bool vlan_uses_dev(const struct net_device *dev)
  292. {
  293. struct vlan_info *vlan_info;
  294. ASSERT_RTNL();
  295. vlan_info = rtnl_dereference(dev->vlan_info);
  296. if (!vlan_info)
  297. return false;
  298. return vlan_info->grp.nr_vlan_devs ? true : false;
  299. }
  300. EXPORT_SYMBOL(vlan_uses_dev);