slab.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'slab_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <net/sock.h>
  119. #include <asm/cacheflush.h>
  120. #include <asm/tlbflush.h>
  121. #include <asm/page.h>
  122. #include <trace/events/kmem.h>
  123. #include "internal.h"
  124. #include "slab.h"
  125. /*
  126. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  127. * 0 for faster, smaller code (especially in the critical paths).
  128. *
  129. * STATS - 1 to collect stats for /proc/slabinfo.
  130. * 0 for faster, smaller code (especially in the critical paths).
  131. *
  132. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  133. */
  134. #ifdef CONFIG_DEBUG_SLAB
  135. #define DEBUG 1
  136. #define STATS 1
  137. #define FORCED_DEBUG 1
  138. #else
  139. #define DEBUG 0
  140. #define STATS 0
  141. #define FORCED_DEBUG 0
  142. #endif
  143. /* Shouldn't this be in a header file somewhere? */
  144. #define BYTES_PER_WORD sizeof(void *)
  145. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  146. #ifndef ARCH_KMALLOC_FLAGS
  147. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  148. #endif
  149. #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
  150. <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
  151. #if FREELIST_BYTE_INDEX
  152. typedef unsigned char freelist_idx_t;
  153. #else
  154. typedef unsigned short freelist_idx_t;
  155. #endif
  156. #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
  157. /*
  158. * true if a page was allocated from pfmemalloc reserves for network-based
  159. * swap
  160. */
  161. static bool pfmemalloc_active __read_mostly;
  162. /*
  163. * struct array_cache
  164. *
  165. * Purpose:
  166. * - LIFO ordering, to hand out cache-warm objects from _alloc
  167. * - reduce the number of linked list operations
  168. * - reduce spinlock operations
  169. *
  170. * The limit is stored in the per-cpu structure to reduce the data cache
  171. * footprint.
  172. *
  173. */
  174. struct array_cache {
  175. unsigned int avail;
  176. unsigned int limit;
  177. unsigned int batchcount;
  178. unsigned int touched;
  179. void *entry[]; /*
  180. * Must have this definition in here for the proper
  181. * alignment of array_cache. Also simplifies accessing
  182. * the entries.
  183. *
  184. * Entries should not be directly dereferenced as
  185. * entries belonging to slabs marked pfmemalloc will
  186. * have the lower bits set SLAB_OBJ_PFMEMALLOC
  187. */
  188. };
  189. struct alien_cache {
  190. spinlock_t lock;
  191. struct array_cache ac;
  192. };
  193. #define SLAB_OBJ_PFMEMALLOC 1
  194. static inline bool is_obj_pfmemalloc(void *objp)
  195. {
  196. return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
  197. }
  198. static inline void set_obj_pfmemalloc(void **objp)
  199. {
  200. *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
  201. return;
  202. }
  203. static inline void clear_obj_pfmemalloc(void **objp)
  204. {
  205. *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
  206. }
  207. /*
  208. * bootstrap: The caches do not work without cpuarrays anymore, but the
  209. * cpuarrays are allocated from the generic caches...
  210. */
  211. #define BOOT_CPUCACHE_ENTRIES 1
  212. struct arraycache_init {
  213. struct array_cache cache;
  214. void *entries[BOOT_CPUCACHE_ENTRIES];
  215. };
  216. /*
  217. * Need this for bootstrapping a per node allocator.
  218. */
  219. #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
  220. static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
  221. #define CACHE_CACHE 0
  222. #define SIZE_NODE (MAX_NUMNODES)
  223. static int drain_freelist(struct kmem_cache *cache,
  224. struct kmem_cache_node *n, int tofree);
  225. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  226. int node, struct list_head *list);
  227. static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
  228. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  229. static void cache_reap(struct work_struct *unused);
  230. static int slab_early_init = 1;
  231. #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
  232. static void kmem_cache_node_init(struct kmem_cache_node *parent)
  233. {
  234. INIT_LIST_HEAD(&parent->slabs_full);
  235. INIT_LIST_HEAD(&parent->slabs_partial);
  236. INIT_LIST_HEAD(&parent->slabs_free);
  237. parent->shared = NULL;
  238. parent->alien = NULL;
  239. parent->colour_next = 0;
  240. spin_lock_init(&parent->list_lock);
  241. parent->free_objects = 0;
  242. parent->free_touched = 0;
  243. }
  244. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  245. do { \
  246. INIT_LIST_HEAD(listp); \
  247. list_splice(&get_node(cachep, nodeid)->slab, listp); \
  248. } while (0)
  249. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  250. do { \
  251. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  252. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  253. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  254. } while (0)
  255. #define CFLGS_OFF_SLAB (0x80000000UL)
  256. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  257. #define BATCHREFILL_LIMIT 16
  258. /*
  259. * Optimization question: fewer reaps means less probability for unnessary
  260. * cpucache drain/refill cycles.
  261. *
  262. * OTOH the cpuarrays can contain lots of objects,
  263. * which could lock up otherwise freeable slabs.
  264. */
  265. #define REAPTIMEOUT_AC (2*HZ)
  266. #define REAPTIMEOUT_NODE (4*HZ)
  267. #if STATS
  268. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  269. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  270. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  271. #define STATS_INC_GROWN(x) ((x)->grown++)
  272. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  273. #define STATS_SET_HIGH(x) \
  274. do { \
  275. if ((x)->num_active > (x)->high_mark) \
  276. (x)->high_mark = (x)->num_active; \
  277. } while (0)
  278. #define STATS_INC_ERR(x) ((x)->errors++)
  279. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  280. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  281. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  282. #define STATS_SET_FREEABLE(x, i) \
  283. do { \
  284. if ((x)->max_freeable < i) \
  285. (x)->max_freeable = i; \
  286. } while (0)
  287. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  288. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  289. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  290. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  291. #else
  292. #define STATS_INC_ACTIVE(x) do { } while (0)
  293. #define STATS_DEC_ACTIVE(x) do { } while (0)
  294. #define STATS_INC_ALLOCED(x) do { } while (0)
  295. #define STATS_INC_GROWN(x) do { } while (0)
  296. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  297. #define STATS_SET_HIGH(x) do { } while (0)
  298. #define STATS_INC_ERR(x) do { } while (0)
  299. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  300. #define STATS_INC_NODEFREES(x) do { } while (0)
  301. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  302. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  303. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  304. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  305. #define STATS_INC_FREEHIT(x) do { } while (0)
  306. #define STATS_INC_FREEMISS(x) do { } while (0)
  307. #endif
  308. #if DEBUG
  309. /*
  310. * memory layout of objects:
  311. * 0 : objp
  312. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  313. * the end of an object is aligned with the end of the real
  314. * allocation. Catches writes behind the end of the allocation.
  315. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  316. * redzone word.
  317. * cachep->obj_offset: The real object.
  318. * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  319. * cachep->size - 1* BYTES_PER_WORD: last caller address
  320. * [BYTES_PER_WORD long]
  321. */
  322. static int obj_offset(struct kmem_cache *cachep)
  323. {
  324. return cachep->obj_offset;
  325. }
  326. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  327. {
  328. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  329. return (unsigned long long*) (objp + obj_offset(cachep) -
  330. sizeof(unsigned long long));
  331. }
  332. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  333. {
  334. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  335. if (cachep->flags & SLAB_STORE_USER)
  336. return (unsigned long long *)(objp + cachep->size -
  337. sizeof(unsigned long long) -
  338. REDZONE_ALIGN);
  339. return (unsigned long long *) (objp + cachep->size -
  340. sizeof(unsigned long long));
  341. }
  342. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  343. {
  344. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  345. return (void **)(objp + cachep->size - BYTES_PER_WORD);
  346. }
  347. #else
  348. #define obj_offset(x) 0
  349. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  350. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  351. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  352. #endif
  353. #define OBJECT_FREE (0)
  354. #define OBJECT_ACTIVE (1)
  355. #ifdef CONFIG_DEBUG_SLAB_LEAK
  356. static void set_obj_status(struct page *page, int idx, int val)
  357. {
  358. int freelist_size;
  359. char *status;
  360. struct kmem_cache *cachep = page->slab_cache;
  361. freelist_size = cachep->num * sizeof(freelist_idx_t);
  362. status = (char *)page->freelist + freelist_size;
  363. status[idx] = val;
  364. }
  365. static inline unsigned int get_obj_status(struct page *page, int idx)
  366. {
  367. int freelist_size;
  368. char *status;
  369. struct kmem_cache *cachep = page->slab_cache;
  370. freelist_size = cachep->num * sizeof(freelist_idx_t);
  371. status = (char *)page->freelist + freelist_size;
  372. return status[idx];
  373. }
  374. #else
  375. static inline void set_obj_status(struct page *page, int idx, int val) {}
  376. #endif
  377. /*
  378. * Do not go above this order unless 0 objects fit into the slab or
  379. * overridden on the command line.
  380. */
  381. #define SLAB_MAX_ORDER_HI 1
  382. #define SLAB_MAX_ORDER_LO 0
  383. static int slab_max_order = SLAB_MAX_ORDER_LO;
  384. static bool slab_max_order_set __initdata;
  385. static inline struct kmem_cache *virt_to_cache(const void *obj)
  386. {
  387. struct page *page = virt_to_head_page(obj);
  388. return page->slab_cache;
  389. }
  390. static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
  391. unsigned int idx)
  392. {
  393. return page->s_mem + cache->size * idx;
  394. }
  395. /*
  396. * We want to avoid an expensive divide : (offset / cache->size)
  397. * Using the fact that size is a constant for a particular cache,
  398. * we can replace (offset / cache->size) by
  399. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  400. */
  401. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  402. const struct page *page, void *obj)
  403. {
  404. u32 offset = (obj - page->s_mem);
  405. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  406. }
  407. /* internal cache of cache description objs */
  408. static struct kmem_cache kmem_cache_boot = {
  409. .batchcount = 1,
  410. .limit = BOOT_CPUCACHE_ENTRIES,
  411. .shared = 1,
  412. .size = sizeof(struct kmem_cache),
  413. .name = "kmem_cache",
  414. };
  415. #define BAD_ALIEN_MAGIC 0x01020304ul
  416. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  417. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  418. {
  419. return this_cpu_ptr(cachep->cpu_cache);
  420. }
  421. static size_t calculate_freelist_size(int nr_objs, size_t align)
  422. {
  423. size_t freelist_size;
  424. freelist_size = nr_objs * sizeof(freelist_idx_t);
  425. if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
  426. freelist_size += nr_objs * sizeof(char);
  427. if (align)
  428. freelist_size = ALIGN(freelist_size, align);
  429. return freelist_size;
  430. }
  431. static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
  432. size_t idx_size, size_t align)
  433. {
  434. int nr_objs;
  435. size_t remained_size;
  436. size_t freelist_size;
  437. int extra_space = 0;
  438. if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
  439. extra_space = sizeof(char);
  440. /*
  441. * Ignore padding for the initial guess. The padding
  442. * is at most @align-1 bytes, and @buffer_size is at
  443. * least @align. In the worst case, this result will
  444. * be one greater than the number of objects that fit
  445. * into the memory allocation when taking the padding
  446. * into account.
  447. */
  448. nr_objs = slab_size / (buffer_size + idx_size + extra_space);
  449. /*
  450. * This calculated number will be either the right
  451. * amount, or one greater than what we want.
  452. */
  453. remained_size = slab_size - nr_objs * buffer_size;
  454. freelist_size = calculate_freelist_size(nr_objs, align);
  455. if (remained_size < freelist_size)
  456. nr_objs--;
  457. return nr_objs;
  458. }
  459. /*
  460. * Calculate the number of objects and left-over bytes for a given buffer size.
  461. */
  462. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  463. size_t align, int flags, size_t *left_over,
  464. unsigned int *num)
  465. {
  466. int nr_objs;
  467. size_t mgmt_size;
  468. size_t slab_size = PAGE_SIZE << gfporder;
  469. /*
  470. * The slab management structure can be either off the slab or
  471. * on it. For the latter case, the memory allocated for a
  472. * slab is used for:
  473. *
  474. * - One unsigned int for each object
  475. * - Padding to respect alignment of @align
  476. * - @buffer_size bytes for each object
  477. *
  478. * If the slab management structure is off the slab, then the
  479. * alignment will already be calculated into the size. Because
  480. * the slabs are all pages aligned, the objects will be at the
  481. * correct alignment when allocated.
  482. */
  483. if (flags & CFLGS_OFF_SLAB) {
  484. mgmt_size = 0;
  485. nr_objs = slab_size / buffer_size;
  486. } else {
  487. nr_objs = calculate_nr_objs(slab_size, buffer_size,
  488. sizeof(freelist_idx_t), align);
  489. mgmt_size = calculate_freelist_size(nr_objs, align);
  490. }
  491. *num = nr_objs;
  492. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  493. }
  494. #if DEBUG
  495. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  496. static void __slab_error(const char *function, struct kmem_cache *cachep,
  497. char *msg)
  498. {
  499. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  500. function, cachep->name, msg);
  501. dump_stack();
  502. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  503. }
  504. #endif
  505. /*
  506. * By default on NUMA we use alien caches to stage the freeing of
  507. * objects allocated from other nodes. This causes massive memory
  508. * inefficiencies when using fake NUMA setup to split memory into a
  509. * large number of small nodes, so it can be disabled on the command
  510. * line
  511. */
  512. static int use_alien_caches __read_mostly = 1;
  513. static int __init noaliencache_setup(char *s)
  514. {
  515. use_alien_caches = 0;
  516. return 1;
  517. }
  518. __setup("noaliencache", noaliencache_setup);
  519. static int __init slab_max_order_setup(char *str)
  520. {
  521. get_option(&str, &slab_max_order);
  522. slab_max_order = slab_max_order < 0 ? 0 :
  523. min(slab_max_order, MAX_ORDER - 1);
  524. slab_max_order_set = true;
  525. return 1;
  526. }
  527. __setup("slab_max_order=", slab_max_order_setup);
  528. #ifdef CONFIG_NUMA
  529. /*
  530. * Special reaping functions for NUMA systems called from cache_reap().
  531. * These take care of doing round robin flushing of alien caches (containing
  532. * objects freed on different nodes from which they were allocated) and the
  533. * flushing of remote pcps by calling drain_node_pages.
  534. */
  535. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  536. static void init_reap_node(int cpu)
  537. {
  538. int node;
  539. node = next_node(cpu_to_mem(cpu), node_online_map);
  540. if (node == MAX_NUMNODES)
  541. node = first_node(node_online_map);
  542. per_cpu(slab_reap_node, cpu) = node;
  543. }
  544. static void next_reap_node(void)
  545. {
  546. int node = __this_cpu_read(slab_reap_node);
  547. node = next_node(node, node_online_map);
  548. if (unlikely(node >= MAX_NUMNODES))
  549. node = first_node(node_online_map);
  550. __this_cpu_write(slab_reap_node, node);
  551. }
  552. #else
  553. #define init_reap_node(cpu) do { } while (0)
  554. #define next_reap_node(void) do { } while (0)
  555. #endif
  556. /*
  557. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  558. * via the workqueue/eventd.
  559. * Add the CPU number into the expiration time to minimize the possibility of
  560. * the CPUs getting into lockstep and contending for the global cache chain
  561. * lock.
  562. */
  563. static void start_cpu_timer(int cpu)
  564. {
  565. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  566. /*
  567. * When this gets called from do_initcalls via cpucache_init(),
  568. * init_workqueues() has already run, so keventd will be setup
  569. * at that time.
  570. */
  571. if (keventd_up() && reap_work->work.func == NULL) {
  572. init_reap_node(cpu);
  573. INIT_DEFERRABLE_WORK(reap_work, cache_reap);
  574. schedule_delayed_work_on(cpu, reap_work,
  575. __round_jiffies_relative(HZ, cpu));
  576. }
  577. }
  578. static void init_arraycache(struct array_cache *ac, int limit, int batch)
  579. {
  580. /*
  581. * The array_cache structures contain pointers to free object.
  582. * However, when such objects are allocated or transferred to another
  583. * cache the pointers are not cleared and they could be counted as
  584. * valid references during a kmemleak scan. Therefore, kmemleak must
  585. * not scan such objects.
  586. */
  587. kmemleak_no_scan(ac);
  588. if (ac) {
  589. ac->avail = 0;
  590. ac->limit = limit;
  591. ac->batchcount = batch;
  592. ac->touched = 0;
  593. }
  594. }
  595. static struct array_cache *alloc_arraycache(int node, int entries,
  596. int batchcount, gfp_t gfp)
  597. {
  598. size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  599. struct array_cache *ac = NULL;
  600. ac = kmalloc_node(memsize, gfp, node);
  601. init_arraycache(ac, entries, batchcount);
  602. return ac;
  603. }
  604. static inline bool is_slab_pfmemalloc(struct page *page)
  605. {
  606. return PageSlabPfmemalloc(page);
  607. }
  608. /* Clears pfmemalloc_active if no slabs have pfmalloc set */
  609. static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
  610. struct array_cache *ac)
  611. {
  612. struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
  613. struct page *page;
  614. unsigned long flags;
  615. if (!pfmemalloc_active)
  616. return;
  617. spin_lock_irqsave(&n->list_lock, flags);
  618. list_for_each_entry(page, &n->slabs_full, lru)
  619. if (is_slab_pfmemalloc(page))
  620. goto out;
  621. list_for_each_entry(page, &n->slabs_partial, lru)
  622. if (is_slab_pfmemalloc(page))
  623. goto out;
  624. list_for_each_entry(page, &n->slabs_free, lru)
  625. if (is_slab_pfmemalloc(page))
  626. goto out;
  627. pfmemalloc_active = false;
  628. out:
  629. spin_unlock_irqrestore(&n->list_lock, flags);
  630. }
  631. static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
  632. gfp_t flags, bool force_refill)
  633. {
  634. int i;
  635. void *objp = ac->entry[--ac->avail];
  636. /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
  637. if (unlikely(is_obj_pfmemalloc(objp))) {
  638. struct kmem_cache_node *n;
  639. if (gfp_pfmemalloc_allowed(flags)) {
  640. clear_obj_pfmemalloc(&objp);
  641. return objp;
  642. }
  643. /* The caller cannot use PFMEMALLOC objects, find another one */
  644. for (i = 0; i < ac->avail; i++) {
  645. /* If a !PFMEMALLOC object is found, swap them */
  646. if (!is_obj_pfmemalloc(ac->entry[i])) {
  647. objp = ac->entry[i];
  648. ac->entry[i] = ac->entry[ac->avail];
  649. ac->entry[ac->avail] = objp;
  650. return objp;
  651. }
  652. }
  653. /*
  654. * If there are empty slabs on the slabs_free list and we are
  655. * being forced to refill the cache, mark this one !pfmemalloc.
  656. */
  657. n = get_node(cachep, numa_mem_id());
  658. if (!list_empty(&n->slabs_free) && force_refill) {
  659. struct page *page = virt_to_head_page(objp);
  660. ClearPageSlabPfmemalloc(page);
  661. clear_obj_pfmemalloc(&objp);
  662. recheck_pfmemalloc_active(cachep, ac);
  663. return objp;
  664. }
  665. /* No !PFMEMALLOC objects available */
  666. ac->avail++;
  667. objp = NULL;
  668. }
  669. return objp;
  670. }
  671. static inline void *ac_get_obj(struct kmem_cache *cachep,
  672. struct array_cache *ac, gfp_t flags, bool force_refill)
  673. {
  674. void *objp;
  675. if (unlikely(sk_memalloc_socks()))
  676. objp = __ac_get_obj(cachep, ac, flags, force_refill);
  677. else
  678. objp = ac->entry[--ac->avail];
  679. return objp;
  680. }
  681. static noinline void *__ac_put_obj(struct kmem_cache *cachep,
  682. struct array_cache *ac, void *objp)
  683. {
  684. if (unlikely(pfmemalloc_active)) {
  685. /* Some pfmemalloc slabs exist, check if this is one */
  686. struct page *page = virt_to_head_page(objp);
  687. if (PageSlabPfmemalloc(page))
  688. set_obj_pfmemalloc(&objp);
  689. }
  690. return objp;
  691. }
  692. static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
  693. void *objp)
  694. {
  695. if (unlikely(sk_memalloc_socks()))
  696. objp = __ac_put_obj(cachep, ac, objp);
  697. ac->entry[ac->avail++] = objp;
  698. }
  699. /*
  700. * Transfer objects in one arraycache to another.
  701. * Locking must be handled by the caller.
  702. *
  703. * Return the number of entries transferred.
  704. */
  705. static int transfer_objects(struct array_cache *to,
  706. struct array_cache *from, unsigned int max)
  707. {
  708. /* Figure out how many entries to transfer */
  709. int nr = min3(from->avail, max, to->limit - to->avail);
  710. if (!nr)
  711. return 0;
  712. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  713. sizeof(void *) *nr);
  714. from->avail -= nr;
  715. to->avail += nr;
  716. return nr;
  717. }
  718. #ifndef CONFIG_NUMA
  719. #define drain_alien_cache(cachep, alien) do { } while (0)
  720. #define reap_alien(cachep, n) do { } while (0)
  721. static inline struct alien_cache **alloc_alien_cache(int node,
  722. int limit, gfp_t gfp)
  723. {
  724. return (struct alien_cache **)BAD_ALIEN_MAGIC;
  725. }
  726. static inline void free_alien_cache(struct alien_cache **ac_ptr)
  727. {
  728. }
  729. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  730. {
  731. return 0;
  732. }
  733. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  734. gfp_t flags)
  735. {
  736. return NULL;
  737. }
  738. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  739. gfp_t flags, int nodeid)
  740. {
  741. return NULL;
  742. }
  743. static inline gfp_t gfp_exact_node(gfp_t flags)
  744. {
  745. return flags;
  746. }
  747. #else /* CONFIG_NUMA */
  748. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  749. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  750. static struct alien_cache *__alloc_alien_cache(int node, int entries,
  751. int batch, gfp_t gfp)
  752. {
  753. size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
  754. struct alien_cache *alc = NULL;
  755. alc = kmalloc_node(memsize, gfp, node);
  756. init_arraycache(&alc->ac, entries, batch);
  757. spin_lock_init(&alc->lock);
  758. return alc;
  759. }
  760. static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  761. {
  762. struct alien_cache **alc_ptr;
  763. size_t memsize = sizeof(void *) * nr_node_ids;
  764. int i;
  765. if (limit > 1)
  766. limit = 12;
  767. alc_ptr = kzalloc_node(memsize, gfp, node);
  768. if (!alc_ptr)
  769. return NULL;
  770. for_each_node(i) {
  771. if (i == node || !node_online(i))
  772. continue;
  773. alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
  774. if (!alc_ptr[i]) {
  775. for (i--; i >= 0; i--)
  776. kfree(alc_ptr[i]);
  777. kfree(alc_ptr);
  778. return NULL;
  779. }
  780. }
  781. return alc_ptr;
  782. }
  783. static void free_alien_cache(struct alien_cache **alc_ptr)
  784. {
  785. int i;
  786. if (!alc_ptr)
  787. return;
  788. for_each_node(i)
  789. kfree(alc_ptr[i]);
  790. kfree(alc_ptr);
  791. }
  792. static void __drain_alien_cache(struct kmem_cache *cachep,
  793. struct array_cache *ac, int node,
  794. struct list_head *list)
  795. {
  796. struct kmem_cache_node *n = get_node(cachep, node);
  797. if (ac->avail) {
  798. spin_lock(&n->list_lock);
  799. /*
  800. * Stuff objects into the remote nodes shared array first.
  801. * That way we could avoid the overhead of putting the objects
  802. * into the free lists and getting them back later.
  803. */
  804. if (n->shared)
  805. transfer_objects(n->shared, ac, ac->limit);
  806. free_block(cachep, ac->entry, ac->avail, node, list);
  807. ac->avail = 0;
  808. spin_unlock(&n->list_lock);
  809. }
  810. }
  811. /*
  812. * Called from cache_reap() to regularly drain alien caches round robin.
  813. */
  814. static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
  815. {
  816. int node = __this_cpu_read(slab_reap_node);
  817. if (n->alien) {
  818. struct alien_cache *alc = n->alien[node];
  819. struct array_cache *ac;
  820. if (alc) {
  821. ac = &alc->ac;
  822. if (ac->avail && spin_trylock_irq(&alc->lock)) {
  823. LIST_HEAD(list);
  824. __drain_alien_cache(cachep, ac, node, &list);
  825. spin_unlock_irq(&alc->lock);
  826. slabs_destroy(cachep, &list);
  827. }
  828. }
  829. }
  830. }
  831. static void drain_alien_cache(struct kmem_cache *cachep,
  832. struct alien_cache **alien)
  833. {
  834. int i = 0;
  835. struct alien_cache *alc;
  836. struct array_cache *ac;
  837. unsigned long flags;
  838. for_each_online_node(i) {
  839. alc = alien[i];
  840. if (alc) {
  841. LIST_HEAD(list);
  842. ac = &alc->ac;
  843. spin_lock_irqsave(&alc->lock, flags);
  844. __drain_alien_cache(cachep, ac, i, &list);
  845. spin_unlock_irqrestore(&alc->lock, flags);
  846. slabs_destroy(cachep, &list);
  847. }
  848. }
  849. }
  850. static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
  851. int node, int page_node)
  852. {
  853. struct kmem_cache_node *n;
  854. struct alien_cache *alien = NULL;
  855. struct array_cache *ac;
  856. LIST_HEAD(list);
  857. n = get_node(cachep, node);
  858. STATS_INC_NODEFREES(cachep);
  859. if (n->alien && n->alien[page_node]) {
  860. alien = n->alien[page_node];
  861. ac = &alien->ac;
  862. spin_lock(&alien->lock);
  863. if (unlikely(ac->avail == ac->limit)) {
  864. STATS_INC_ACOVERFLOW(cachep);
  865. __drain_alien_cache(cachep, ac, page_node, &list);
  866. }
  867. ac_put_obj(cachep, ac, objp);
  868. spin_unlock(&alien->lock);
  869. slabs_destroy(cachep, &list);
  870. } else {
  871. n = get_node(cachep, page_node);
  872. spin_lock(&n->list_lock);
  873. free_block(cachep, &objp, 1, page_node, &list);
  874. spin_unlock(&n->list_lock);
  875. slabs_destroy(cachep, &list);
  876. }
  877. return 1;
  878. }
  879. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  880. {
  881. int page_node = page_to_nid(virt_to_page(objp));
  882. int node = numa_mem_id();
  883. /*
  884. * Make sure we are not freeing a object from another node to the array
  885. * cache on this cpu.
  886. */
  887. if (likely(node == page_node))
  888. return 0;
  889. return __cache_free_alien(cachep, objp, node, page_node);
  890. }
  891. /*
  892. * Construct gfp mask to allocate from a specific node but do not invoke reclaim
  893. * or warn about failures.
  894. */
  895. static inline gfp_t gfp_exact_node(gfp_t flags)
  896. {
  897. return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
  898. }
  899. #endif
  900. /*
  901. * Allocates and initializes node for a node on each slab cache, used for
  902. * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
  903. * will be allocated off-node since memory is not yet online for the new node.
  904. * When hotplugging memory or a cpu, existing node are not replaced if
  905. * already in use.
  906. *
  907. * Must hold slab_mutex.
  908. */
  909. static int init_cache_node_node(int node)
  910. {
  911. struct kmem_cache *cachep;
  912. struct kmem_cache_node *n;
  913. const size_t memsize = sizeof(struct kmem_cache_node);
  914. list_for_each_entry(cachep, &slab_caches, list) {
  915. /*
  916. * Set up the kmem_cache_node for cpu before we can
  917. * begin anything. Make sure some other cpu on this
  918. * node has not already allocated this
  919. */
  920. n = get_node(cachep, node);
  921. if (!n) {
  922. n = kmalloc_node(memsize, GFP_KERNEL, node);
  923. if (!n)
  924. return -ENOMEM;
  925. kmem_cache_node_init(n);
  926. n->next_reap = jiffies + REAPTIMEOUT_NODE +
  927. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  928. /*
  929. * The kmem_cache_nodes don't come and go as CPUs
  930. * come and go. slab_mutex is sufficient
  931. * protection here.
  932. */
  933. cachep->node[node] = n;
  934. }
  935. spin_lock_irq(&n->list_lock);
  936. n->free_limit =
  937. (1 + nr_cpus_node(node)) *
  938. cachep->batchcount + cachep->num;
  939. spin_unlock_irq(&n->list_lock);
  940. }
  941. return 0;
  942. }
  943. static inline int slabs_tofree(struct kmem_cache *cachep,
  944. struct kmem_cache_node *n)
  945. {
  946. return (n->free_objects + cachep->num - 1) / cachep->num;
  947. }
  948. static void cpuup_canceled(long cpu)
  949. {
  950. struct kmem_cache *cachep;
  951. struct kmem_cache_node *n = NULL;
  952. int node = cpu_to_mem(cpu);
  953. const struct cpumask *mask = cpumask_of_node(node);
  954. list_for_each_entry(cachep, &slab_caches, list) {
  955. struct array_cache *nc;
  956. struct array_cache *shared;
  957. struct alien_cache **alien;
  958. LIST_HEAD(list);
  959. n = get_node(cachep, node);
  960. if (!n)
  961. continue;
  962. spin_lock_irq(&n->list_lock);
  963. /* Free limit for this kmem_cache_node */
  964. n->free_limit -= cachep->batchcount;
  965. /* cpu is dead; no one can alloc from it. */
  966. nc = per_cpu_ptr(cachep->cpu_cache, cpu);
  967. if (nc) {
  968. free_block(cachep, nc->entry, nc->avail, node, &list);
  969. nc->avail = 0;
  970. }
  971. if (!cpumask_empty(mask)) {
  972. spin_unlock_irq(&n->list_lock);
  973. goto free_slab;
  974. }
  975. shared = n->shared;
  976. if (shared) {
  977. free_block(cachep, shared->entry,
  978. shared->avail, node, &list);
  979. n->shared = NULL;
  980. }
  981. alien = n->alien;
  982. n->alien = NULL;
  983. spin_unlock_irq(&n->list_lock);
  984. kfree(shared);
  985. if (alien) {
  986. drain_alien_cache(cachep, alien);
  987. free_alien_cache(alien);
  988. }
  989. free_slab:
  990. slabs_destroy(cachep, &list);
  991. }
  992. /*
  993. * In the previous loop, all the objects were freed to
  994. * the respective cache's slabs, now we can go ahead and
  995. * shrink each nodelist to its limit.
  996. */
  997. list_for_each_entry(cachep, &slab_caches, list) {
  998. n = get_node(cachep, node);
  999. if (!n)
  1000. continue;
  1001. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  1002. }
  1003. }
  1004. static int cpuup_prepare(long cpu)
  1005. {
  1006. struct kmem_cache *cachep;
  1007. struct kmem_cache_node *n = NULL;
  1008. int node = cpu_to_mem(cpu);
  1009. int err;
  1010. /*
  1011. * We need to do this right in the beginning since
  1012. * alloc_arraycache's are going to use this list.
  1013. * kmalloc_node allows us to add the slab to the right
  1014. * kmem_cache_node and not this cpu's kmem_cache_node
  1015. */
  1016. err = init_cache_node_node(node);
  1017. if (err < 0)
  1018. goto bad;
  1019. /*
  1020. * Now we can go ahead with allocating the shared arrays and
  1021. * array caches
  1022. */
  1023. list_for_each_entry(cachep, &slab_caches, list) {
  1024. struct array_cache *shared = NULL;
  1025. struct alien_cache **alien = NULL;
  1026. if (cachep->shared) {
  1027. shared = alloc_arraycache(node,
  1028. cachep->shared * cachep->batchcount,
  1029. 0xbaadf00d, GFP_KERNEL);
  1030. if (!shared)
  1031. goto bad;
  1032. }
  1033. if (use_alien_caches) {
  1034. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1035. if (!alien) {
  1036. kfree(shared);
  1037. goto bad;
  1038. }
  1039. }
  1040. n = get_node(cachep, node);
  1041. BUG_ON(!n);
  1042. spin_lock_irq(&n->list_lock);
  1043. if (!n->shared) {
  1044. /*
  1045. * We are serialised from CPU_DEAD or
  1046. * CPU_UP_CANCELLED by the cpucontrol lock
  1047. */
  1048. n->shared = shared;
  1049. shared = NULL;
  1050. }
  1051. #ifdef CONFIG_NUMA
  1052. if (!n->alien) {
  1053. n->alien = alien;
  1054. alien = NULL;
  1055. }
  1056. #endif
  1057. spin_unlock_irq(&n->list_lock);
  1058. kfree(shared);
  1059. free_alien_cache(alien);
  1060. }
  1061. return 0;
  1062. bad:
  1063. cpuup_canceled(cpu);
  1064. return -ENOMEM;
  1065. }
  1066. static int cpuup_callback(struct notifier_block *nfb,
  1067. unsigned long action, void *hcpu)
  1068. {
  1069. long cpu = (long)hcpu;
  1070. int err = 0;
  1071. switch (action) {
  1072. case CPU_UP_PREPARE:
  1073. case CPU_UP_PREPARE_FROZEN:
  1074. mutex_lock(&slab_mutex);
  1075. err = cpuup_prepare(cpu);
  1076. mutex_unlock(&slab_mutex);
  1077. break;
  1078. case CPU_ONLINE:
  1079. case CPU_ONLINE_FROZEN:
  1080. start_cpu_timer(cpu);
  1081. break;
  1082. #ifdef CONFIG_HOTPLUG_CPU
  1083. case CPU_DOWN_PREPARE:
  1084. case CPU_DOWN_PREPARE_FROZEN:
  1085. /*
  1086. * Shutdown cache reaper. Note that the slab_mutex is
  1087. * held so that if cache_reap() is invoked it cannot do
  1088. * anything expensive but will only modify reap_work
  1089. * and reschedule the timer.
  1090. */
  1091. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1092. /* Now the cache_reaper is guaranteed to be not running. */
  1093. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1094. break;
  1095. case CPU_DOWN_FAILED:
  1096. case CPU_DOWN_FAILED_FROZEN:
  1097. start_cpu_timer(cpu);
  1098. break;
  1099. case CPU_DEAD:
  1100. case CPU_DEAD_FROZEN:
  1101. /*
  1102. * Even if all the cpus of a node are down, we don't free the
  1103. * kmem_cache_node of any cache. This to avoid a race between
  1104. * cpu_down, and a kmalloc allocation from another cpu for
  1105. * memory from the node of the cpu going down. The node
  1106. * structure is usually allocated from kmem_cache_create() and
  1107. * gets destroyed at kmem_cache_destroy().
  1108. */
  1109. /* fall through */
  1110. #endif
  1111. case CPU_UP_CANCELED:
  1112. case CPU_UP_CANCELED_FROZEN:
  1113. mutex_lock(&slab_mutex);
  1114. cpuup_canceled(cpu);
  1115. mutex_unlock(&slab_mutex);
  1116. break;
  1117. }
  1118. return notifier_from_errno(err);
  1119. }
  1120. static struct notifier_block cpucache_notifier = {
  1121. &cpuup_callback, NULL, 0
  1122. };
  1123. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1124. /*
  1125. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1126. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1127. * removed.
  1128. *
  1129. * Must hold slab_mutex.
  1130. */
  1131. static int __meminit drain_cache_node_node(int node)
  1132. {
  1133. struct kmem_cache *cachep;
  1134. int ret = 0;
  1135. list_for_each_entry(cachep, &slab_caches, list) {
  1136. struct kmem_cache_node *n;
  1137. n = get_node(cachep, node);
  1138. if (!n)
  1139. continue;
  1140. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  1141. if (!list_empty(&n->slabs_full) ||
  1142. !list_empty(&n->slabs_partial)) {
  1143. ret = -EBUSY;
  1144. break;
  1145. }
  1146. }
  1147. return ret;
  1148. }
  1149. static int __meminit slab_memory_callback(struct notifier_block *self,
  1150. unsigned long action, void *arg)
  1151. {
  1152. struct memory_notify *mnb = arg;
  1153. int ret = 0;
  1154. int nid;
  1155. nid = mnb->status_change_nid;
  1156. if (nid < 0)
  1157. goto out;
  1158. switch (action) {
  1159. case MEM_GOING_ONLINE:
  1160. mutex_lock(&slab_mutex);
  1161. ret = init_cache_node_node(nid);
  1162. mutex_unlock(&slab_mutex);
  1163. break;
  1164. case MEM_GOING_OFFLINE:
  1165. mutex_lock(&slab_mutex);
  1166. ret = drain_cache_node_node(nid);
  1167. mutex_unlock(&slab_mutex);
  1168. break;
  1169. case MEM_ONLINE:
  1170. case MEM_OFFLINE:
  1171. case MEM_CANCEL_ONLINE:
  1172. case MEM_CANCEL_OFFLINE:
  1173. break;
  1174. }
  1175. out:
  1176. return notifier_from_errno(ret);
  1177. }
  1178. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1179. /*
  1180. * swap the static kmem_cache_node with kmalloced memory
  1181. */
  1182. static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
  1183. int nodeid)
  1184. {
  1185. struct kmem_cache_node *ptr;
  1186. ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
  1187. BUG_ON(!ptr);
  1188. memcpy(ptr, list, sizeof(struct kmem_cache_node));
  1189. /*
  1190. * Do not assume that spinlocks can be initialized via memcpy:
  1191. */
  1192. spin_lock_init(&ptr->list_lock);
  1193. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1194. cachep->node[nodeid] = ptr;
  1195. }
  1196. /*
  1197. * For setting up all the kmem_cache_node for cache whose buffer_size is same as
  1198. * size of kmem_cache_node.
  1199. */
  1200. static void __init set_up_node(struct kmem_cache *cachep, int index)
  1201. {
  1202. int node;
  1203. for_each_online_node(node) {
  1204. cachep->node[node] = &init_kmem_cache_node[index + node];
  1205. cachep->node[node]->next_reap = jiffies +
  1206. REAPTIMEOUT_NODE +
  1207. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1208. }
  1209. }
  1210. /*
  1211. * Initialisation. Called after the page allocator have been initialised and
  1212. * before smp_init().
  1213. */
  1214. void __init kmem_cache_init(void)
  1215. {
  1216. int i;
  1217. BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
  1218. sizeof(struct rcu_head));
  1219. kmem_cache = &kmem_cache_boot;
  1220. if (num_possible_nodes() == 1)
  1221. use_alien_caches = 0;
  1222. for (i = 0; i < NUM_INIT_LISTS; i++)
  1223. kmem_cache_node_init(&init_kmem_cache_node[i]);
  1224. /*
  1225. * Fragmentation resistance on low memory - only use bigger
  1226. * page orders on machines with more than 32MB of memory if
  1227. * not overridden on the command line.
  1228. */
  1229. if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1230. slab_max_order = SLAB_MAX_ORDER_HI;
  1231. /* Bootstrap is tricky, because several objects are allocated
  1232. * from caches that do not exist yet:
  1233. * 1) initialize the kmem_cache cache: it contains the struct
  1234. * kmem_cache structures of all caches, except kmem_cache itself:
  1235. * kmem_cache is statically allocated.
  1236. * Initially an __init data area is used for the head array and the
  1237. * kmem_cache_node structures, it's replaced with a kmalloc allocated
  1238. * array at the end of the bootstrap.
  1239. * 2) Create the first kmalloc cache.
  1240. * The struct kmem_cache for the new cache is allocated normally.
  1241. * An __init data area is used for the head array.
  1242. * 3) Create the remaining kmalloc caches, with minimally sized
  1243. * head arrays.
  1244. * 4) Replace the __init data head arrays for kmem_cache and the first
  1245. * kmalloc cache with kmalloc allocated arrays.
  1246. * 5) Replace the __init data for kmem_cache_node for kmem_cache and
  1247. * the other cache's with kmalloc allocated memory.
  1248. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1249. */
  1250. /* 1) create the kmem_cache */
  1251. /*
  1252. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1253. */
  1254. create_boot_cache(kmem_cache, "kmem_cache",
  1255. offsetof(struct kmem_cache, node) +
  1256. nr_node_ids * sizeof(struct kmem_cache_node *),
  1257. SLAB_HWCACHE_ALIGN);
  1258. list_add(&kmem_cache->list, &slab_caches);
  1259. slab_state = PARTIAL;
  1260. /*
  1261. * Initialize the caches that provide memory for the kmem_cache_node
  1262. * structures first. Without this, further allocations will bug.
  1263. */
  1264. kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
  1265. kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
  1266. slab_state = PARTIAL_NODE;
  1267. setup_kmalloc_cache_index_table();
  1268. slab_early_init = 0;
  1269. /* 5) Replace the bootstrap kmem_cache_node */
  1270. {
  1271. int nid;
  1272. for_each_online_node(nid) {
  1273. init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
  1274. init_list(kmalloc_caches[INDEX_NODE],
  1275. &init_kmem_cache_node[SIZE_NODE + nid], nid);
  1276. }
  1277. }
  1278. create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
  1279. }
  1280. void __init kmem_cache_init_late(void)
  1281. {
  1282. struct kmem_cache *cachep;
  1283. slab_state = UP;
  1284. /* 6) resize the head arrays to their final sizes */
  1285. mutex_lock(&slab_mutex);
  1286. list_for_each_entry(cachep, &slab_caches, list)
  1287. if (enable_cpucache(cachep, GFP_NOWAIT))
  1288. BUG();
  1289. mutex_unlock(&slab_mutex);
  1290. /* Done! */
  1291. slab_state = FULL;
  1292. /*
  1293. * Register a cpu startup notifier callback that initializes
  1294. * cpu_cache_get for all new cpus
  1295. */
  1296. register_cpu_notifier(&cpucache_notifier);
  1297. #ifdef CONFIG_NUMA
  1298. /*
  1299. * Register a memory hotplug callback that initializes and frees
  1300. * node.
  1301. */
  1302. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1303. #endif
  1304. /*
  1305. * The reap timers are started later, with a module init call: That part
  1306. * of the kernel is not yet operational.
  1307. */
  1308. }
  1309. static int __init cpucache_init(void)
  1310. {
  1311. int cpu;
  1312. /*
  1313. * Register the timers that return unneeded pages to the page allocator
  1314. */
  1315. for_each_online_cpu(cpu)
  1316. start_cpu_timer(cpu);
  1317. /* Done! */
  1318. slab_state = FULL;
  1319. return 0;
  1320. }
  1321. __initcall(cpucache_init);
  1322. static noinline void
  1323. slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
  1324. {
  1325. #if DEBUG
  1326. struct kmem_cache_node *n;
  1327. struct page *page;
  1328. unsigned long flags;
  1329. int node;
  1330. static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1331. DEFAULT_RATELIMIT_BURST);
  1332. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
  1333. return;
  1334. printk(KERN_WARNING
  1335. "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1336. nodeid, gfpflags);
  1337. printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
  1338. cachep->name, cachep->size, cachep->gfporder);
  1339. for_each_kmem_cache_node(cachep, node, n) {
  1340. unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
  1341. unsigned long active_slabs = 0, num_slabs = 0;
  1342. spin_lock_irqsave(&n->list_lock, flags);
  1343. list_for_each_entry(page, &n->slabs_full, lru) {
  1344. active_objs += cachep->num;
  1345. active_slabs++;
  1346. }
  1347. list_for_each_entry(page, &n->slabs_partial, lru) {
  1348. active_objs += page->active;
  1349. active_slabs++;
  1350. }
  1351. list_for_each_entry(page, &n->slabs_free, lru)
  1352. num_slabs++;
  1353. free_objects += n->free_objects;
  1354. spin_unlock_irqrestore(&n->list_lock, flags);
  1355. num_slabs += active_slabs;
  1356. num_objs = num_slabs * cachep->num;
  1357. printk(KERN_WARNING
  1358. " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
  1359. node, active_slabs, num_slabs, active_objs, num_objs,
  1360. free_objects);
  1361. }
  1362. #endif
  1363. }
  1364. /*
  1365. * Interface to system's page allocator. No need to hold the
  1366. * kmem_cache_node ->list_lock.
  1367. *
  1368. * If we requested dmaable memory, we will get it. Even if we
  1369. * did not request dmaable memory, we might get it, but that
  1370. * would be relatively rare and ignorable.
  1371. */
  1372. static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
  1373. int nodeid)
  1374. {
  1375. struct page *page;
  1376. int nr_pages;
  1377. flags |= cachep->allocflags;
  1378. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1379. flags |= __GFP_RECLAIMABLE;
  1380. if (memcg_charge_slab(cachep, flags, cachep->gfporder))
  1381. return NULL;
  1382. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1383. if (!page) {
  1384. memcg_uncharge_slab(cachep, cachep->gfporder);
  1385. slab_out_of_memory(cachep, flags, nodeid);
  1386. return NULL;
  1387. }
  1388. /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
  1389. if (unlikely(page->pfmemalloc))
  1390. pfmemalloc_active = true;
  1391. nr_pages = (1 << cachep->gfporder);
  1392. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1393. add_zone_page_state(page_zone(page),
  1394. NR_SLAB_RECLAIMABLE, nr_pages);
  1395. else
  1396. add_zone_page_state(page_zone(page),
  1397. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1398. __SetPageSlab(page);
  1399. if (page->pfmemalloc)
  1400. SetPageSlabPfmemalloc(page);
  1401. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1402. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1403. if (cachep->ctor)
  1404. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1405. else
  1406. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1407. }
  1408. return page;
  1409. }
  1410. /*
  1411. * Interface to system's page release.
  1412. */
  1413. static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
  1414. {
  1415. const unsigned long nr_freed = (1 << cachep->gfporder);
  1416. kmemcheck_free_shadow(page, cachep->gfporder);
  1417. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1418. sub_zone_page_state(page_zone(page),
  1419. NR_SLAB_RECLAIMABLE, nr_freed);
  1420. else
  1421. sub_zone_page_state(page_zone(page),
  1422. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1423. BUG_ON(!PageSlab(page));
  1424. __ClearPageSlabPfmemalloc(page);
  1425. __ClearPageSlab(page);
  1426. page_mapcount_reset(page);
  1427. page->mapping = NULL;
  1428. if (current->reclaim_state)
  1429. current->reclaim_state->reclaimed_slab += nr_freed;
  1430. __free_pages(page, cachep->gfporder);
  1431. memcg_uncharge_slab(cachep, cachep->gfporder);
  1432. }
  1433. static void kmem_rcu_free(struct rcu_head *head)
  1434. {
  1435. struct kmem_cache *cachep;
  1436. struct page *page;
  1437. page = container_of(head, struct page, rcu_head);
  1438. cachep = page->slab_cache;
  1439. kmem_freepages(cachep, page);
  1440. }
  1441. #if DEBUG
  1442. #ifdef CONFIG_DEBUG_PAGEALLOC
  1443. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1444. unsigned long caller)
  1445. {
  1446. int size = cachep->object_size;
  1447. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1448. if (size < 5 * sizeof(unsigned long))
  1449. return;
  1450. *addr++ = 0x12345678;
  1451. *addr++ = caller;
  1452. *addr++ = smp_processor_id();
  1453. size -= 3 * sizeof(unsigned long);
  1454. {
  1455. unsigned long *sptr = &caller;
  1456. unsigned long svalue;
  1457. while (!kstack_end(sptr)) {
  1458. svalue = *sptr++;
  1459. if (kernel_text_address(svalue)) {
  1460. *addr++ = svalue;
  1461. size -= sizeof(unsigned long);
  1462. if (size <= sizeof(unsigned long))
  1463. break;
  1464. }
  1465. }
  1466. }
  1467. *addr++ = 0x87654321;
  1468. }
  1469. #endif
  1470. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1471. {
  1472. int size = cachep->object_size;
  1473. addr = &((char *)addr)[obj_offset(cachep)];
  1474. memset(addr, val, size);
  1475. *(unsigned char *)(addr + size - 1) = POISON_END;
  1476. }
  1477. static void dump_line(char *data, int offset, int limit)
  1478. {
  1479. int i;
  1480. unsigned char error = 0;
  1481. int bad_count = 0;
  1482. printk(KERN_ERR "%03x: ", offset);
  1483. for (i = 0; i < limit; i++) {
  1484. if (data[offset + i] != POISON_FREE) {
  1485. error = data[offset + i];
  1486. bad_count++;
  1487. }
  1488. }
  1489. print_hex_dump(KERN_CONT, "", 0, 16, 1,
  1490. &data[offset], limit, 1);
  1491. if (bad_count == 1) {
  1492. error ^= POISON_FREE;
  1493. if (!(error & (error - 1))) {
  1494. printk(KERN_ERR "Single bit error detected. Probably "
  1495. "bad RAM.\n");
  1496. #ifdef CONFIG_X86
  1497. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1498. "test tool.\n");
  1499. #else
  1500. printk(KERN_ERR "Run a memory test tool.\n");
  1501. #endif
  1502. }
  1503. }
  1504. }
  1505. #endif
  1506. #if DEBUG
  1507. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1508. {
  1509. int i, size;
  1510. char *realobj;
  1511. if (cachep->flags & SLAB_RED_ZONE) {
  1512. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1513. *dbg_redzone1(cachep, objp),
  1514. *dbg_redzone2(cachep, objp));
  1515. }
  1516. if (cachep->flags & SLAB_STORE_USER) {
  1517. printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
  1518. *dbg_userword(cachep, objp),
  1519. *dbg_userword(cachep, objp));
  1520. }
  1521. realobj = (char *)objp + obj_offset(cachep);
  1522. size = cachep->object_size;
  1523. for (i = 0; i < size && lines; i += 16, lines--) {
  1524. int limit;
  1525. limit = 16;
  1526. if (i + limit > size)
  1527. limit = size - i;
  1528. dump_line(realobj, i, limit);
  1529. }
  1530. }
  1531. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1532. {
  1533. char *realobj;
  1534. int size, i;
  1535. int lines = 0;
  1536. realobj = (char *)objp + obj_offset(cachep);
  1537. size = cachep->object_size;
  1538. for (i = 0; i < size; i++) {
  1539. char exp = POISON_FREE;
  1540. if (i == size - 1)
  1541. exp = POISON_END;
  1542. if (realobj[i] != exp) {
  1543. int limit;
  1544. /* Mismatch ! */
  1545. /* Print header */
  1546. if (lines == 0) {
  1547. printk(KERN_ERR
  1548. "Slab corruption (%s): %s start=%p, len=%d\n",
  1549. print_tainted(), cachep->name, realobj, size);
  1550. print_objinfo(cachep, objp, 0);
  1551. }
  1552. /* Hexdump the affected line */
  1553. i = (i / 16) * 16;
  1554. limit = 16;
  1555. if (i + limit > size)
  1556. limit = size - i;
  1557. dump_line(realobj, i, limit);
  1558. i += 16;
  1559. lines++;
  1560. /* Limit to 5 lines */
  1561. if (lines > 5)
  1562. break;
  1563. }
  1564. }
  1565. if (lines != 0) {
  1566. /* Print some data about the neighboring objects, if they
  1567. * exist:
  1568. */
  1569. struct page *page = virt_to_head_page(objp);
  1570. unsigned int objnr;
  1571. objnr = obj_to_index(cachep, page, objp);
  1572. if (objnr) {
  1573. objp = index_to_obj(cachep, page, objnr - 1);
  1574. realobj = (char *)objp + obj_offset(cachep);
  1575. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1576. realobj, size);
  1577. print_objinfo(cachep, objp, 2);
  1578. }
  1579. if (objnr + 1 < cachep->num) {
  1580. objp = index_to_obj(cachep, page, objnr + 1);
  1581. realobj = (char *)objp + obj_offset(cachep);
  1582. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1583. realobj, size);
  1584. print_objinfo(cachep, objp, 2);
  1585. }
  1586. }
  1587. }
  1588. #endif
  1589. #if DEBUG
  1590. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1591. struct page *page)
  1592. {
  1593. int i;
  1594. for (i = 0; i < cachep->num; i++) {
  1595. void *objp = index_to_obj(cachep, page, i);
  1596. if (cachep->flags & SLAB_POISON) {
  1597. #ifdef CONFIG_DEBUG_PAGEALLOC
  1598. if (cachep->size % PAGE_SIZE == 0 &&
  1599. OFF_SLAB(cachep))
  1600. kernel_map_pages(virt_to_page(objp),
  1601. cachep->size / PAGE_SIZE, 1);
  1602. else
  1603. check_poison_obj(cachep, objp);
  1604. #else
  1605. check_poison_obj(cachep, objp);
  1606. #endif
  1607. }
  1608. if (cachep->flags & SLAB_RED_ZONE) {
  1609. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1610. slab_error(cachep, "start of a freed object "
  1611. "was overwritten");
  1612. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1613. slab_error(cachep, "end of a freed object "
  1614. "was overwritten");
  1615. }
  1616. }
  1617. }
  1618. #else
  1619. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1620. struct page *page)
  1621. {
  1622. }
  1623. #endif
  1624. /**
  1625. * slab_destroy - destroy and release all objects in a slab
  1626. * @cachep: cache pointer being destroyed
  1627. * @page: page pointer being destroyed
  1628. *
  1629. * Destroy all the objs in a slab page, and release the mem back to the system.
  1630. * Before calling the slab page must have been unlinked from the cache. The
  1631. * kmem_cache_node ->list_lock is not held/needed.
  1632. */
  1633. static void slab_destroy(struct kmem_cache *cachep, struct page *page)
  1634. {
  1635. void *freelist;
  1636. freelist = page->freelist;
  1637. slab_destroy_debugcheck(cachep, page);
  1638. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1639. struct rcu_head *head;
  1640. /*
  1641. * RCU free overloads the RCU head over the LRU.
  1642. * slab_page has been overloeaded over the LRU,
  1643. * however it is not used from now on so that
  1644. * we can use it safely.
  1645. */
  1646. head = (void *)&page->rcu_head;
  1647. call_rcu(head, kmem_rcu_free);
  1648. } else {
  1649. kmem_freepages(cachep, page);
  1650. }
  1651. /*
  1652. * From now on, we don't use freelist
  1653. * although actual page can be freed in rcu context
  1654. */
  1655. if (OFF_SLAB(cachep))
  1656. kmem_cache_free(cachep->freelist_cache, freelist);
  1657. }
  1658. static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
  1659. {
  1660. struct page *page, *n;
  1661. list_for_each_entry_safe(page, n, list, lru) {
  1662. list_del(&page->lru);
  1663. slab_destroy(cachep, page);
  1664. }
  1665. }
  1666. /**
  1667. * calculate_slab_order - calculate size (page order) of slabs
  1668. * @cachep: pointer to the cache that is being created
  1669. * @size: size of objects to be created in this cache.
  1670. * @align: required alignment for the objects.
  1671. * @flags: slab allocation flags
  1672. *
  1673. * Also calculates the number of objects per slab.
  1674. *
  1675. * This could be made much more intelligent. For now, try to avoid using
  1676. * high order pages for slabs. When the gfp() functions are more friendly
  1677. * towards high-order requests, this should be changed.
  1678. */
  1679. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1680. size_t size, size_t align, unsigned long flags)
  1681. {
  1682. unsigned long offslab_limit;
  1683. size_t left_over = 0;
  1684. int gfporder;
  1685. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1686. unsigned int num;
  1687. size_t remainder;
  1688. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1689. if (!num)
  1690. continue;
  1691. /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
  1692. if (num > SLAB_OBJ_MAX_NUM)
  1693. break;
  1694. if (flags & CFLGS_OFF_SLAB) {
  1695. size_t freelist_size_per_obj = sizeof(freelist_idx_t);
  1696. /*
  1697. * Max number of objs-per-slab for caches which
  1698. * use off-slab slabs. Needed to avoid a possible
  1699. * looping condition in cache_grow().
  1700. */
  1701. if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
  1702. freelist_size_per_obj += sizeof(char);
  1703. offslab_limit = size;
  1704. offslab_limit /= freelist_size_per_obj;
  1705. if (num > offslab_limit)
  1706. break;
  1707. }
  1708. /* Found something acceptable - save it away */
  1709. cachep->num = num;
  1710. cachep->gfporder = gfporder;
  1711. left_over = remainder;
  1712. /*
  1713. * A VFS-reclaimable slab tends to have most allocations
  1714. * as GFP_NOFS and we really don't want to have to be allocating
  1715. * higher-order pages when we are unable to shrink dcache.
  1716. */
  1717. if (flags & SLAB_RECLAIM_ACCOUNT)
  1718. break;
  1719. /*
  1720. * Large number of objects is good, but very large slabs are
  1721. * currently bad for the gfp()s.
  1722. */
  1723. if (gfporder >= slab_max_order)
  1724. break;
  1725. /*
  1726. * Acceptable internal fragmentation?
  1727. */
  1728. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1729. break;
  1730. }
  1731. return left_over;
  1732. }
  1733. static struct array_cache __percpu *alloc_kmem_cache_cpus(
  1734. struct kmem_cache *cachep, int entries, int batchcount)
  1735. {
  1736. int cpu;
  1737. size_t size;
  1738. struct array_cache __percpu *cpu_cache;
  1739. size = sizeof(void *) * entries + sizeof(struct array_cache);
  1740. cpu_cache = __alloc_percpu(size, sizeof(void *));
  1741. if (!cpu_cache)
  1742. return NULL;
  1743. for_each_possible_cpu(cpu) {
  1744. init_arraycache(per_cpu_ptr(cpu_cache, cpu),
  1745. entries, batchcount);
  1746. }
  1747. return cpu_cache;
  1748. }
  1749. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1750. {
  1751. if (slab_state >= FULL)
  1752. return enable_cpucache(cachep, gfp);
  1753. cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
  1754. if (!cachep->cpu_cache)
  1755. return 1;
  1756. if (slab_state == DOWN) {
  1757. /* Creation of first cache (kmem_cache). */
  1758. set_up_node(kmem_cache, CACHE_CACHE);
  1759. } else if (slab_state == PARTIAL) {
  1760. /* For kmem_cache_node */
  1761. set_up_node(cachep, SIZE_NODE);
  1762. } else {
  1763. int node;
  1764. for_each_online_node(node) {
  1765. cachep->node[node] = kmalloc_node(
  1766. sizeof(struct kmem_cache_node), gfp, node);
  1767. BUG_ON(!cachep->node[node]);
  1768. kmem_cache_node_init(cachep->node[node]);
  1769. }
  1770. }
  1771. cachep->node[numa_mem_id()]->next_reap =
  1772. jiffies + REAPTIMEOUT_NODE +
  1773. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1774. cpu_cache_get(cachep)->avail = 0;
  1775. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1776. cpu_cache_get(cachep)->batchcount = 1;
  1777. cpu_cache_get(cachep)->touched = 0;
  1778. cachep->batchcount = 1;
  1779. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1780. return 0;
  1781. }
  1782. unsigned long kmem_cache_flags(unsigned long object_size,
  1783. unsigned long flags, const char *name,
  1784. void (*ctor)(void *))
  1785. {
  1786. return flags;
  1787. }
  1788. struct kmem_cache *
  1789. __kmem_cache_alias(const char *name, size_t size, size_t align,
  1790. unsigned long flags, void (*ctor)(void *))
  1791. {
  1792. struct kmem_cache *cachep;
  1793. cachep = find_mergeable(size, align, flags, name, ctor);
  1794. if (cachep) {
  1795. cachep->refcount++;
  1796. /*
  1797. * Adjust the object sizes so that we clear
  1798. * the complete object on kzalloc.
  1799. */
  1800. cachep->object_size = max_t(int, cachep->object_size, size);
  1801. }
  1802. return cachep;
  1803. }
  1804. /**
  1805. * __kmem_cache_create - Create a cache.
  1806. * @cachep: cache management descriptor
  1807. * @flags: SLAB flags
  1808. *
  1809. * Returns a ptr to the cache on success, NULL on failure.
  1810. * Cannot be called within a int, but can be interrupted.
  1811. * The @ctor is run when new pages are allocated by the cache.
  1812. *
  1813. * The flags are
  1814. *
  1815. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1816. * to catch references to uninitialised memory.
  1817. *
  1818. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1819. * for buffer overruns.
  1820. *
  1821. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1822. * cacheline. This can be beneficial if you're counting cycles as closely
  1823. * as davem.
  1824. */
  1825. int
  1826. __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
  1827. {
  1828. size_t left_over, freelist_size;
  1829. size_t ralign = BYTES_PER_WORD;
  1830. gfp_t gfp;
  1831. int err;
  1832. size_t size = cachep->size;
  1833. #if DEBUG
  1834. #if FORCED_DEBUG
  1835. /*
  1836. * Enable redzoning and last user accounting, except for caches with
  1837. * large objects, if the increased size would increase the object size
  1838. * above the next power of two: caches with object sizes just above a
  1839. * power of two have a significant amount of internal fragmentation.
  1840. */
  1841. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1842. 2 * sizeof(unsigned long long)))
  1843. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1844. if (!(flags & SLAB_DESTROY_BY_RCU))
  1845. flags |= SLAB_POISON;
  1846. #endif
  1847. if (flags & SLAB_DESTROY_BY_RCU)
  1848. BUG_ON(flags & SLAB_POISON);
  1849. #endif
  1850. /*
  1851. * Check that size is in terms of words. This is needed to avoid
  1852. * unaligned accesses for some archs when redzoning is used, and makes
  1853. * sure any on-slab bufctl's are also correctly aligned.
  1854. */
  1855. if (size & (BYTES_PER_WORD - 1)) {
  1856. size += (BYTES_PER_WORD - 1);
  1857. size &= ~(BYTES_PER_WORD - 1);
  1858. }
  1859. if (flags & SLAB_RED_ZONE) {
  1860. ralign = REDZONE_ALIGN;
  1861. /* If redzoning, ensure that the second redzone is suitably
  1862. * aligned, by adjusting the object size accordingly. */
  1863. size += REDZONE_ALIGN - 1;
  1864. size &= ~(REDZONE_ALIGN - 1);
  1865. }
  1866. /* 3) caller mandated alignment */
  1867. if (ralign < cachep->align) {
  1868. ralign = cachep->align;
  1869. }
  1870. /* disable debug if necessary */
  1871. if (ralign > __alignof__(unsigned long long))
  1872. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1873. /*
  1874. * 4) Store it.
  1875. */
  1876. cachep->align = ralign;
  1877. if (slab_is_available())
  1878. gfp = GFP_KERNEL;
  1879. else
  1880. gfp = GFP_NOWAIT;
  1881. #if DEBUG
  1882. /*
  1883. * Both debugging options require word-alignment which is calculated
  1884. * into align above.
  1885. */
  1886. if (flags & SLAB_RED_ZONE) {
  1887. /* add space for red zone words */
  1888. cachep->obj_offset += sizeof(unsigned long long);
  1889. size += 2 * sizeof(unsigned long long);
  1890. }
  1891. if (flags & SLAB_STORE_USER) {
  1892. /* user store requires one word storage behind the end of
  1893. * the real object. But if the second red zone needs to be
  1894. * aligned to 64 bits, we must allow that much space.
  1895. */
  1896. if (flags & SLAB_RED_ZONE)
  1897. size += REDZONE_ALIGN;
  1898. else
  1899. size += BYTES_PER_WORD;
  1900. }
  1901. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1902. if (size >= kmalloc_size(INDEX_NODE + 1)
  1903. && cachep->object_size > cache_line_size()
  1904. && ALIGN(size, cachep->align) < PAGE_SIZE) {
  1905. cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
  1906. size = PAGE_SIZE;
  1907. }
  1908. #endif
  1909. #endif
  1910. /*
  1911. * Determine if the slab management is 'on' or 'off' slab.
  1912. * (bootstrapping cannot cope with offslab caches so don't do
  1913. * it too early on. Always use on-slab management when
  1914. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  1915. */
  1916. if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
  1917. !(flags & SLAB_NOLEAKTRACE))
  1918. /*
  1919. * Size is large, assume best to place the slab management obj
  1920. * off-slab (should allow better packing of objs).
  1921. */
  1922. flags |= CFLGS_OFF_SLAB;
  1923. size = ALIGN(size, cachep->align);
  1924. /*
  1925. * We should restrict the number of objects in a slab to implement
  1926. * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
  1927. */
  1928. if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
  1929. size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
  1930. left_over = calculate_slab_order(cachep, size, cachep->align, flags);
  1931. if (!cachep->num)
  1932. return -E2BIG;
  1933. freelist_size = calculate_freelist_size(cachep->num, cachep->align);
  1934. /*
  1935. * If the slab has been placed off-slab, and we have enough space then
  1936. * move it on-slab. This is at the expense of any extra colouring.
  1937. */
  1938. if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
  1939. flags &= ~CFLGS_OFF_SLAB;
  1940. left_over -= freelist_size;
  1941. }
  1942. if (flags & CFLGS_OFF_SLAB) {
  1943. /* really off slab. No need for manual alignment */
  1944. freelist_size = calculate_freelist_size(cachep->num, 0);
  1945. #ifdef CONFIG_PAGE_POISONING
  1946. /* If we're going to use the generic kernel_map_pages()
  1947. * poisoning, then it's going to smash the contents of
  1948. * the redzone and userword anyhow, so switch them off.
  1949. */
  1950. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  1951. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1952. #endif
  1953. }
  1954. cachep->colour_off = cache_line_size();
  1955. /* Offset must be a multiple of the alignment. */
  1956. if (cachep->colour_off < cachep->align)
  1957. cachep->colour_off = cachep->align;
  1958. cachep->colour = left_over / cachep->colour_off;
  1959. cachep->freelist_size = freelist_size;
  1960. cachep->flags = flags;
  1961. cachep->allocflags = __GFP_COMP;
  1962. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  1963. cachep->allocflags |= GFP_DMA;
  1964. cachep->size = size;
  1965. cachep->reciprocal_buffer_size = reciprocal_value(size);
  1966. if (flags & CFLGS_OFF_SLAB) {
  1967. cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
  1968. /*
  1969. * This is a possibility for one of the kmalloc_{dma,}_caches.
  1970. * But since we go off slab only for object size greater than
  1971. * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
  1972. * in ascending order,this should not happen at all.
  1973. * But leave a BUG_ON for some lucky dude.
  1974. */
  1975. BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
  1976. }
  1977. err = setup_cpu_cache(cachep, gfp);
  1978. if (err) {
  1979. __kmem_cache_shutdown(cachep);
  1980. return err;
  1981. }
  1982. return 0;
  1983. }
  1984. #if DEBUG
  1985. static void check_irq_off(void)
  1986. {
  1987. BUG_ON(!irqs_disabled());
  1988. }
  1989. static void check_irq_on(void)
  1990. {
  1991. BUG_ON(irqs_disabled());
  1992. }
  1993. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1994. {
  1995. #ifdef CONFIG_SMP
  1996. check_irq_off();
  1997. assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
  1998. #endif
  1999. }
  2000. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2001. {
  2002. #ifdef CONFIG_SMP
  2003. check_irq_off();
  2004. assert_spin_locked(&get_node(cachep, node)->list_lock);
  2005. #endif
  2006. }
  2007. #else
  2008. #define check_irq_off() do { } while(0)
  2009. #define check_irq_on() do { } while(0)
  2010. #define check_spinlock_acquired(x) do { } while(0)
  2011. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2012. #endif
  2013. static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
  2014. struct array_cache *ac,
  2015. int force, int node);
  2016. static void do_drain(void *arg)
  2017. {
  2018. struct kmem_cache *cachep = arg;
  2019. struct array_cache *ac;
  2020. int node = numa_mem_id();
  2021. struct kmem_cache_node *n;
  2022. LIST_HEAD(list);
  2023. check_irq_off();
  2024. ac = cpu_cache_get(cachep);
  2025. n = get_node(cachep, node);
  2026. spin_lock(&n->list_lock);
  2027. free_block(cachep, ac->entry, ac->avail, node, &list);
  2028. spin_unlock(&n->list_lock);
  2029. slabs_destroy(cachep, &list);
  2030. ac->avail = 0;
  2031. }
  2032. static void drain_cpu_caches(struct kmem_cache *cachep)
  2033. {
  2034. struct kmem_cache_node *n;
  2035. int node;
  2036. on_each_cpu(do_drain, cachep, 1);
  2037. check_irq_on();
  2038. for_each_kmem_cache_node(cachep, node, n)
  2039. if (n->alien)
  2040. drain_alien_cache(cachep, n->alien);
  2041. for_each_kmem_cache_node(cachep, node, n)
  2042. drain_array(cachep, n, n->shared, 1, node);
  2043. }
  2044. /*
  2045. * Remove slabs from the list of free slabs.
  2046. * Specify the number of slabs to drain in tofree.
  2047. *
  2048. * Returns the actual number of slabs released.
  2049. */
  2050. static int drain_freelist(struct kmem_cache *cache,
  2051. struct kmem_cache_node *n, int tofree)
  2052. {
  2053. struct list_head *p;
  2054. int nr_freed;
  2055. struct page *page;
  2056. nr_freed = 0;
  2057. while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
  2058. spin_lock_irq(&n->list_lock);
  2059. p = n->slabs_free.prev;
  2060. if (p == &n->slabs_free) {
  2061. spin_unlock_irq(&n->list_lock);
  2062. goto out;
  2063. }
  2064. page = list_entry(p, struct page, lru);
  2065. #if DEBUG
  2066. BUG_ON(page->active);
  2067. #endif
  2068. list_del(&page->lru);
  2069. /*
  2070. * Safe to drop the lock. The slab is no longer linked
  2071. * to the cache.
  2072. */
  2073. n->free_objects -= cache->num;
  2074. spin_unlock_irq(&n->list_lock);
  2075. slab_destroy(cache, page);
  2076. nr_freed++;
  2077. }
  2078. out:
  2079. return nr_freed;
  2080. }
  2081. int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
  2082. {
  2083. int ret = 0;
  2084. int node;
  2085. struct kmem_cache_node *n;
  2086. drain_cpu_caches(cachep);
  2087. check_irq_on();
  2088. for_each_kmem_cache_node(cachep, node, n) {
  2089. drain_freelist(cachep, n, slabs_tofree(cachep, n));
  2090. ret += !list_empty(&n->slabs_full) ||
  2091. !list_empty(&n->slabs_partial);
  2092. }
  2093. return (ret ? 1 : 0);
  2094. }
  2095. int __kmem_cache_shutdown(struct kmem_cache *cachep)
  2096. {
  2097. int i;
  2098. struct kmem_cache_node *n;
  2099. int rc = __kmem_cache_shrink(cachep, false);
  2100. if (rc)
  2101. return rc;
  2102. free_percpu(cachep->cpu_cache);
  2103. /* NUMA: free the node structures */
  2104. for_each_kmem_cache_node(cachep, i, n) {
  2105. kfree(n->shared);
  2106. free_alien_cache(n->alien);
  2107. kfree(n);
  2108. cachep->node[i] = NULL;
  2109. }
  2110. return 0;
  2111. }
  2112. /*
  2113. * Get the memory for a slab management obj.
  2114. *
  2115. * For a slab cache when the slab descriptor is off-slab, the
  2116. * slab descriptor can't come from the same cache which is being created,
  2117. * Because if it is the case, that means we defer the creation of
  2118. * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
  2119. * And we eventually call down to __kmem_cache_create(), which
  2120. * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
  2121. * This is a "chicken-and-egg" problem.
  2122. *
  2123. * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
  2124. * which are all initialized during kmem_cache_init().
  2125. */
  2126. static void *alloc_slabmgmt(struct kmem_cache *cachep,
  2127. struct page *page, int colour_off,
  2128. gfp_t local_flags, int nodeid)
  2129. {
  2130. void *freelist;
  2131. void *addr = page_address(page);
  2132. if (OFF_SLAB(cachep)) {
  2133. /* Slab management obj is off-slab. */
  2134. freelist = kmem_cache_alloc_node(cachep->freelist_cache,
  2135. local_flags, nodeid);
  2136. if (!freelist)
  2137. return NULL;
  2138. } else {
  2139. freelist = addr + colour_off;
  2140. colour_off += cachep->freelist_size;
  2141. }
  2142. page->active = 0;
  2143. page->s_mem = addr + colour_off;
  2144. return freelist;
  2145. }
  2146. static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
  2147. {
  2148. return ((freelist_idx_t *)page->freelist)[idx];
  2149. }
  2150. static inline void set_free_obj(struct page *page,
  2151. unsigned int idx, freelist_idx_t val)
  2152. {
  2153. ((freelist_idx_t *)(page->freelist))[idx] = val;
  2154. }
  2155. static void cache_init_objs(struct kmem_cache *cachep,
  2156. struct page *page)
  2157. {
  2158. int i;
  2159. for (i = 0; i < cachep->num; i++) {
  2160. void *objp = index_to_obj(cachep, page, i);
  2161. #if DEBUG
  2162. /* need to poison the objs? */
  2163. if (cachep->flags & SLAB_POISON)
  2164. poison_obj(cachep, objp, POISON_FREE);
  2165. if (cachep->flags & SLAB_STORE_USER)
  2166. *dbg_userword(cachep, objp) = NULL;
  2167. if (cachep->flags & SLAB_RED_ZONE) {
  2168. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2169. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2170. }
  2171. /*
  2172. * Constructors are not allowed to allocate memory from the same
  2173. * cache which they are a constructor for. Otherwise, deadlock.
  2174. * They must also be threaded.
  2175. */
  2176. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2177. cachep->ctor(objp + obj_offset(cachep));
  2178. if (cachep->flags & SLAB_RED_ZONE) {
  2179. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2180. slab_error(cachep, "constructor overwrote the"
  2181. " end of an object");
  2182. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2183. slab_error(cachep, "constructor overwrote the"
  2184. " start of an object");
  2185. }
  2186. if ((cachep->size % PAGE_SIZE) == 0 &&
  2187. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2188. kernel_map_pages(virt_to_page(objp),
  2189. cachep->size / PAGE_SIZE, 0);
  2190. #else
  2191. if (cachep->ctor)
  2192. cachep->ctor(objp);
  2193. #endif
  2194. set_obj_status(page, i, OBJECT_FREE);
  2195. set_free_obj(page, i, i);
  2196. }
  2197. }
  2198. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2199. {
  2200. if (CONFIG_ZONE_DMA_FLAG) {
  2201. if (flags & GFP_DMA)
  2202. BUG_ON(!(cachep->allocflags & GFP_DMA));
  2203. else
  2204. BUG_ON(cachep->allocflags & GFP_DMA);
  2205. }
  2206. }
  2207. static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
  2208. int nodeid)
  2209. {
  2210. void *objp;
  2211. objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
  2212. page->active++;
  2213. #if DEBUG
  2214. WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
  2215. #endif
  2216. return objp;
  2217. }
  2218. static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
  2219. void *objp, int nodeid)
  2220. {
  2221. unsigned int objnr = obj_to_index(cachep, page, objp);
  2222. #if DEBUG
  2223. unsigned int i;
  2224. /* Verify that the slab belongs to the intended node */
  2225. WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
  2226. /* Verify double free bug */
  2227. for (i = page->active; i < cachep->num; i++) {
  2228. if (get_free_obj(page, i) == objnr) {
  2229. printk(KERN_ERR "slab: double free detected in cache "
  2230. "'%s', objp %p\n", cachep->name, objp);
  2231. BUG();
  2232. }
  2233. }
  2234. #endif
  2235. page->active--;
  2236. set_free_obj(page, page->active, objnr);
  2237. }
  2238. /*
  2239. * Map pages beginning at addr to the given cache and slab. This is required
  2240. * for the slab allocator to be able to lookup the cache and slab of a
  2241. * virtual address for kfree, ksize, and slab debugging.
  2242. */
  2243. static void slab_map_pages(struct kmem_cache *cache, struct page *page,
  2244. void *freelist)
  2245. {
  2246. page->slab_cache = cache;
  2247. page->freelist = freelist;
  2248. }
  2249. /*
  2250. * Grow (by 1) the number of slabs within a cache. This is called by
  2251. * kmem_cache_alloc() when there are no active objs left in a cache.
  2252. */
  2253. static int cache_grow(struct kmem_cache *cachep,
  2254. gfp_t flags, int nodeid, struct page *page)
  2255. {
  2256. void *freelist;
  2257. size_t offset;
  2258. gfp_t local_flags;
  2259. struct kmem_cache_node *n;
  2260. /*
  2261. * Be lazy and only check for valid flags here, keeping it out of the
  2262. * critical path in kmem_cache_alloc().
  2263. */
  2264. if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
  2265. pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
  2266. BUG();
  2267. }
  2268. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2269. /* Take the node list lock to change the colour_next on this node */
  2270. check_irq_off();
  2271. n = get_node(cachep, nodeid);
  2272. spin_lock(&n->list_lock);
  2273. /* Get colour for the slab, and cal the next value. */
  2274. offset = n->colour_next;
  2275. n->colour_next++;
  2276. if (n->colour_next >= cachep->colour)
  2277. n->colour_next = 0;
  2278. spin_unlock(&n->list_lock);
  2279. offset *= cachep->colour_off;
  2280. if (local_flags & __GFP_WAIT)
  2281. local_irq_enable();
  2282. /*
  2283. * The test for missing atomic flag is performed here, rather than
  2284. * the more obvious place, simply to reduce the critical path length
  2285. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2286. * will eventually be caught here (where it matters).
  2287. */
  2288. kmem_flagcheck(cachep, flags);
  2289. /*
  2290. * Get mem for the objs. Attempt to allocate a physical page from
  2291. * 'nodeid'.
  2292. */
  2293. if (!page)
  2294. page = kmem_getpages(cachep, local_flags, nodeid);
  2295. if (!page)
  2296. goto failed;
  2297. /* Get slab management. */
  2298. freelist = alloc_slabmgmt(cachep, page, offset,
  2299. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2300. if (!freelist)
  2301. goto opps1;
  2302. slab_map_pages(cachep, page, freelist);
  2303. cache_init_objs(cachep, page);
  2304. if (local_flags & __GFP_WAIT)
  2305. local_irq_disable();
  2306. check_irq_off();
  2307. spin_lock(&n->list_lock);
  2308. /* Make slab active. */
  2309. list_add_tail(&page->lru, &(n->slabs_free));
  2310. STATS_INC_GROWN(cachep);
  2311. n->free_objects += cachep->num;
  2312. spin_unlock(&n->list_lock);
  2313. return 1;
  2314. opps1:
  2315. kmem_freepages(cachep, page);
  2316. failed:
  2317. if (local_flags & __GFP_WAIT)
  2318. local_irq_disable();
  2319. return 0;
  2320. }
  2321. #if DEBUG
  2322. /*
  2323. * Perform extra freeing checks:
  2324. * - detect bad pointers.
  2325. * - POISON/RED_ZONE checking
  2326. */
  2327. static void kfree_debugcheck(const void *objp)
  2328. {
  2329. if (!virt_addr_valid(objp)) {
  2330. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2331. (unsigned long)objp);
  2332. BUG();
  2333. }
  2334. }
  2335. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2336. {
  2337. unsigned long long redzone1, redzone2;
  2338. redzone1 = *dbg_redzone1(cache, obj);
  2339. redzone2 = *dbg_redzone2(cache, obj);
  2340. /*
  2341. * Redzone is ok.
  2342. */
  2343. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2344. return;
  2345. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2346. slab_error(cache, "double free detected");
  2347. else
  2348. slab_error(cache, "memory outside object was overwritten");
  2349. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2350. obj, redzone1, redzone2);
  2351. }
  2352. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2353. unsigned long caller)
  2354. {
  2355. unsigned int objnr;
  2356. struct page *page;
  2357. BUG_ON(virt_to_cache(objp) != cachep);
  2358. objp -= obj_offset(cachep);
  2359. kfree_debugcheck(objp);
  2360. page = virt_to_head_page(objp);
  2361. if (cachep->flags & SLAB_RED_ZONE) {
  2362. verify_redzone_free(cachep, objp);
  2363. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2364. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2365. }
  2366. if (cachep->flags & SLAB_STORE_USER)
  2367. *dbg_userword(cachep, objp) = (void *)caller;
  2368. objnr = obj_to_index(cachep, page, objp);
  2369. BUG_ON(objnr >= cachep->num);
  2370. BUG_ON(objp != index_to_obj(cachep, page, objnr));
  2371. set_obj_status(page, objnr, OBJECT_FREE);
  2372. if (cachep->flags & SLAB_POISON) {
  2373. #ifdef CONFIG_DEBUG_PAGEALLOC
  2374. if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2375. store_stackinfo(cachep, objp, caller);
  2376. kernel_map_pages(virt_to_page(objp),
  2377. cachep->size / PAGE_SIZE, 0);
  2378. } else {
  2379. poison_obj(cachep, objp, POISON_FREE);
  2380. }
  2381. #else
  2382. poison_obj(cachep, objp, POISON_FREE);
  2383. #endif
  2384. }
  2385. return objp;
  2386. }
  2387. #else
  2388. #define kfree_debugcheck(x) do { } while(0)
  2389. #define cache_free_debugcheck(x,objp,z) (objp)
  2390. #endif
  2391. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
  2392. bool force_refill)
  2393. {
  2394. int batchcount;
  2395. struct kmem_cache_node *n;
  2396. struct array_cache *ac;
  2397. int node;
  2398. check_irq_off();
  2399. node = numa_mem_id();
  2400. if (unlikely(force_refill))
  2401. goto force_grow;
  2402. retry:
  2403. ac = cpu_cache_get(cachep);
  2404. batchcount = ac->batchcount;
  2405. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2406. /*
  2407. * If there was little recent activity on this cache, then
  2408. * perform only a partial refill. Otherwise we could generate
  2409. * refill bouncing.
  2410. */
  2411. batchcount = BATCHREFILL_LIMIT;
  2412. }
  2413. n = get_node(cachep, node);
  2414. BUG_ON(ac->avail > 0 || !n);
  2415. spin_lock(&n->list_lock);
  2416. /* See if we can refill from the shared array */
  2417. if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
  2418. n->shared->touched = 1;
  2419. goto alloc_done;
  2420. }
  2421. while (batchcount > 0) {
  2422. struct list_head *entry;
  2423. struct page *page;
  2424. /* Get slab alloc is to come from. */
  2425. entry = n->slabs_partial.next;
  2426. if (entry == &n->slabs_partial) {
  2427. n->free_touched = 1;
  2428. entry = n->slabs_free.next;
  2429. if (entry == &n->slabs_free)
  2430. goto must_grow;
  2431. }
  2432. page = list_entry(entry, struct page, lru);
  2433. check_spinlock_acquired(cachep);
  2434. /*
  2435. * The slab was either on partial or free list so
  2436. * there must be at least one object available for
  2437. * allocation.
  2438. */
  2439. BUG_ON(page->active >= cachep->num);
  2440. while (page->active < cachep->num && batchcount--) {
  2441. STATS_INC_ALLOCED(cachep);
  2442. STATS_INC_ACTIVE(cachep);
  2443. STATS_SET_HIGH(cachep);
  2444. ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
  2445. node));
  2446. }
  2447. /* move slabp to correct slabp list: */
  2448. list_del(&page->lru);
  2449. if (page->active == cachep->num)
  2450. list_add(&page->lru, &n->slabs_full);
  2451. else
  2452. list_add(&page->lru, &n->slabs_partial);
  2453. }
  2454. must_grow:
  2455. n->free_objects -= ac->avail;
  2456. alloc_done:
  2457. spin_unlock(&n->list_lock);
  2458. if (unlikely(!ac->avail)) {
  2459. int x;
  2460. force_grow:
  2461. x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
  2462. /* cache_grow can reenable interrupts, then ac could change. */
  2463. ac = cpu_cache_get(cachep);
  2464. node = numa_mem_id();
  2465. /* no objects in sight? abort */
  2466. if (!x && (ac->avail == 0 || force_refill))
  2467. return NULL;
  2468. if (!ac->avail) /* objects refilled by interrupt? */
  2469. goto retry;
  2470. }
  2471. ac->touched = 1;
  2472. return ac_get_obj(cachep, ac, flags, force_refill);
  2473. }
  2474. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2475. gfp_t flags)
  2476. {
  2477. might_sleep_if(flags & __GFP_WAIT);
  2478. #if DEBUG
  2479. kmem_flagcheck(cachep, flags);
  2480. #endif
  2481. }
  2482. #if DEBUG
  2483. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2484. gfp_t flags, void *objp, unsigned long caller)
  2485. {
  2486. struct page *page;
  2487. if (!objp)
  2488. return objp;
  2489. if (cachep->flags & SLAB_POISON) {
  2490. #ifdef CONFIG_DEBUG_PAGEALLOC
  2491. if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2492. kernel_map_pages(virt_to_page(objp),
  2493. cachep->size / PAGE_SIZE, 1);
  2494. else
  2495. check_poison_obj(cachep, objp);
  2496. #else
  2497. check_poison_obj(cachep, objp);
  2498. #endif
  2499. poison_obj(cachep, objp, POISON_INUSE);
  2500. }
  2501. if (cachep->flags & SLAB_STORE_USER)
  2502. *dbg_userword(cachep, objp) = (void *)caller;
  2503. if (cachep->flags & SLAB_RED_ZONE) {
  2504. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2505. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2506. slab_error(cachep, "double free, or memory outside"
  2507. " object was overwritten");
  2508. printk(KERN_ERR
  2509. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2510. objp, *dbg_redzone1(cachep, objp),
  2511. *dbg_redzone2(cachep, objp));
  2512. }
  2513. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2514. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2515. }
  2516. page = virt_to_head_page(objp);
  2517. set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
  2518. objp += obj_offset(cachep);
  2519. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2520. cachep->ctor(objp);
  2521. if (ARCH_SLAB_MINALIGN &&
  2522. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2523. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2524. objp, (int)ARCH_SLAB_MINALIGN);
  2525. }
  2526. return objp;
  2527. }
  2528. #else
  2529. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2530. #endif
  2531. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2532. {
  2533. if (unlikely(cachep == kmem_cache))
  2534. return false;
  2535. return should_failslab(cachep->object_size, flags, cachep->flags);
  2536. }
  2537. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2538. {
  2539. void *objp;
  2540. struct array_cache *ac;
  2541. bool force_refill = false;
  2542. check_irq_off();
  2543. ac = cpu_cache_get(cachep);
  2544. if (likely(ac->avail)) {
  2545. ac->touched = 1;
  2546. objp = ac_get_obj(cachep, ac, flags, false);
  2547. /*
  2548. * Allow for the possibility all avail objects are not allowed
  2549. * by the current flags
  2550. */
  2551. if (objp) {
  2552. STATS_INC_ALLOCHIT(cachep);
  2553. goto out;
  2554. }
  2555. force_refill = true;
  2556. }
  2557. STATS_INC_ALLOCMISS(cachep);
  2558. objp = cache_alloc_refill(cachep, flags, force_refill);
  2559. /*
  2560. * the 'ac' may be updated by cache_alloc_refill(),
  2561. * and kmemleak_erase() requires its correct value.
  2562. */
  2563. ac = cpu_cache_get(cachep);
  2564. out:
  2565. /*
  2566. * To avoid a false negative, if an object that is in one of the
  2567. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2568. * treat the array pointers as a reference to the object.
  2569. */
  2570. if (objp)
  2571. kmemleak_erase(&ac->entry[ac->avail]);
  2572. return objp;
  2573. }
  2574. #ifdef CONFIG_NUMA
  2575. /*
  2576. * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
  2577. *
  2578. * If we are in_interrupt, then process context, including cpusets and
  2579. * mempolicy, may not apply and should not be used for allocation policy.
  2580. */
  2581. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2582. {
  2583. int nid_alloc, nid_here;
  2584. if (in_interrupt() || (flags & __GFP_THISNODE))
  2585. return NULL;
  2586. nid_alloc = nid_here = numa_mem_id();
  2587. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2588. nid_alloc = cpuset_slab_spread_node();
  2589. else if (current->mempolicy)
  2590. nid_alloc = mempolicy_slab_node();
  2591. if (nid_alloc != nid_here)
  2592. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2593. return NULL;
  2594. }
  2595. /*
  2596. * Fallback function if there was no memory available and no objects on a
  2597. * certain node and fall back is permitted. First we scan all the
  2598. * available node for available objects. If that fails then we
  2599. * perform an allocation without specifying a node. This allows the page
  2600. * allocator to do its reclaim / fallback magic. We then insert the
  2601. * slab into the proper nodelist and then allocate from it.
  2602. */
  2603. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2604. {
  2605. struct zonelist *zonelist;
  2606. gfp_t local_flags;
  2607. struct zoneref *z;
  2608. struct zone *zone;
  2609. enum zone_type high_zoneidx = gfp_zone(flags);
  2610. void *obj = NULL;
  2611. int nid;
  2612. unsigned int cpuset_mems_cookie;
  2613. if (flags & __GFP_THISNODE)
  2614. return NULL;
  2615. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2616. retry_cpuset:
  2617. cpuset_mems_cookie = read_mems_allowed_begin();
  2618. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  2619. retry:
  2620. /*
  2621. * Look through allowed nodes for objects available
  2622. * from existing per node queues.
  2623. */
  2624. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2625. nid = zone_to_nid(zone);
  2626. if (cpuset_zone_allowed(zone, flags) &&
  2627. get_node(cache, nid) &&
  2628. get_node(cache, nid)->free_objects) {
  2629. obj = ____cache_alloc_node(cache,
  2630. gfp_exact_node(flags), nid);
  2631. if (obj)
  2632. break;
  2633. }
  2634. }
  2635. if (!obj) {
  2636. /*
  2637. * This allocation will be performed within the constraints
  2638. * of the current cpuset / memory policy requirements.
  2639. * We may trigger various forms of reclaim on the allowed
  2640. * set and go into memory reserves if necessary.
  2641. */
  2642. struct page *page;
  2643. if (local_flags & __GFP_WAIT)
  2644. local_irq_enable();
  2645. kmem_flagcheck(cache, flags);
  2646. page = kmem_getpages(cache, local_flags, numa_mem_id());
  2647. if (local_flags & __GFP_WAIT)
  2648. local_irq_disable();
  2649. if (page) {
  2650. /*
  2651. * Insert into the appropriate per node queues
  2652. */
  2653. nid = page_to_nid(page);
  2654. if (cache_grow(cache, flags, nid, page)) {
  2655. obj = ____cache_alloc_node(cache,
  2656. gfp_exact_node(flags), nid);
  2657. if (!obj)
  2658. /*
  2659. * Another processor may allocate the
  2660. * objects in the slab since we are
  2661. * not holding any locks.
  2662. */
  2663. goto retry;
  2664. } else {
  2665. /* cache_grow already freed obj */
  2666. obj = NULL;
  2667. }
  2668. }
  2669. }
  2670. if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
  2671. goto retry_cpuset;
  2672. return obj;
  2673. }
  2674. /*
  2675. * A interface to enable slab creation on nodeid
  2676. */
  2677. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2678. int nodeid)
  2679. {
  2680. struct list_head *entry;
  2681. struct page *page;
  2682. struct kmem_cache_node *n;
  2683. void *obj;
  2684. int x;
  2685. VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
  2686. n = get_node(cachep, nodeid);
  2687. BUG_ON(!n);
  2688. retry:
  2689. check_irq_off();
  2690. spin_lock(&n->list_lock);
  2691. entry = n->slabs_partial.next;
  2692. if (entry == &n->slabs_partial) {
  2693. n->free_touched = 1;
  2694. entry = n->slabs_free.next;
  2695. if (entry == &n->slabs_free)
  2696. goto must_grow;
  2697. }
  2698. page = list_entry(entry, struct page, lru);
  2699. check_spinlock_acquired_node(cachep, nodeid);
  2700. STATS_INC_NODEALLOCS(cachep);
  2701. STATS_INC_ACTIVE(cachep);
  2702. STATS_SET_HIGH(cachep);
  2703. BUG_ON(page->active == cachep->num);
  2704. obj = slab_get_obj(cachep, page, nodeid);
  2705. n->free_objects--;
  2706. /* move slabp to correct slabp list: */
  2707. list_del(&page->lru);
  2708. if (page->active == cachep->num)
  2709. list_add(&page->lru, &n->slabs_full);
  2710. else
  2711. list_add(&page->lru, &n->slabs_partial);
  2712. spin_unlock(&n->list_lock);
  2713. goto done;
  2714. must_grow:
  2715. spin_unlock(&n->list_lock);
  2716. x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
  2717. if (x)
  2718. goto retry;
  2719. return fallback_alloc(cachep, flags);
  2720. done:
  2721. return obj;
  2722. }
  2723. static __always_inline void *
  2724. slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2725. unsigned long caller)
  2726. {
  2727. unsigned long save_flags;
  2728. void *ptr;
  2729. int slab_node = numa_mem_id();
  2730. flags &= gfp_allowed_mask;
  2731. lockdep_trace_alloc(flags);
  2732. if (slab_should_failslab(cachep, flags))
  2733. return NULL;
  2734. cachep = memcg_kmem_get_cache(cachep, flags);
  2735. cache_alloc_debugcheck_before(cachep, flags);
  2736. local_irq_save(save_flags);
  2737. if (nodeid == NUMA_NO_NODE)
  2738. nodeid = slab_node;
  2739. if (unlikely(!get_node(cachep, nodeid))) {
  2740. /* Node not bootstrapped yet */
  2741. ptr = fallback_alloc(cachep, flags);
  2742. goto out;
  2743. }
  2744. if (nodeid == slab_node) {
  2745. /*
  2746. * Use the locally cached objects if possible.
  2747. * However ____cache_alloc does not allow fallback
  2748. * to other nodes. It may fail while we still have
  2749. * objects on other nodes available.
  2750. */
  2751. ptr = ____cache_alloc(cachep, flags);
  2752. if (ptr)
  2753. goto out;
  2754. }
  2755. /* ___cache_alloc_node can fall back to other nodes */
  2756. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2757. out:
  2758. local_irq_restore(save_flags);
  2759. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2760. kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
  2761. flags);
  2762. if (likely(ptr)) {
  2763. kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
  2764. if (unlikely(flags & __GFP_ZERO))
  2765. memset(ptr, 0, cachep->object_size);
  2766. }
  2767. memcg_kmem_put_cache(cachep);
  2768. return ptr;
  2769. }
  2770. static __always_inline void *
  2771. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2772. {
  2773. void *objp;
  2774. if (current->mempolicy || cpuset_do_slab_mem_spread()) {
  2775. objp = alternate_node_alloc(cache, flags);
  2776. if (objp)
  2777. goto out;
  2778. }
  2779. objp = ____cache_alloc(cache, flags);
  2780. /*
  2781. * We may just have run out of memory on the local node.
  2782. * ____cache_alloc_node() knows how to locate memory on other nodes
  2783. */
  2784. if (!objp)
  2785. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  2786. out:
  2787. return objp;
  2788. }
  2789. #else
  2790. static __always_inline void *
  2791. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2792. {
  2793. return ____cache_alloc(cachep, flags);
  2794. }
  2795. #endif /* CONFIG_NUMA */
  2796. static __always_inline void *
  2797. slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
  2798. {
  2799. unsigned long save_flags;
  2800. void *objp;
  2801. flags &= gfp_allowed_mask;
  2802. lockdep_trace_alloc(flags);
  2803. if (slab_should_failslab(cachep, flags))
  2804. return NULL;
  2805. cachep = memcg_kmem_get_cache(cachep, flags);
  2806. cache_alloc_debugcheck_before(cachep, flags);
  2807. local_irq_save(save_flags);
  2808. objp = __do_cache_alloc(cachep, flags);
  2809. local_irq_restore(save_flags);
  2810. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  2811. kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
  2812. flags);
  2813. prefetchw(objp);
  2814. if (likely(objp)) {
  2815. kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
  2816. if (unlikely(flags & __GFP_ZERO))
  2817. memset(objp, 0, cachep->object_size);
  2818. }
  2819. memcg_kmem_put_cache(cachep);
  2820. return objp;
  2821. }
  2822. /*
  2823. * Caller needs to acquire correct kmem_cache_node's list_lock
  2824. * @list: List of detached free slabs should be freed by caller
  2825. */
  2826. static void free_block(struct kmem_cache *cachep, void **objpp,
  2827. int nr_objects, int node, struct list_head *list)
  2828. {
  2829. int i;
  2830. struct kmem_cache_node *n = get_node(cachep, node);
  2831. for (i = 0; i < nr_objects; i++) {
  2832. void *objp;
  2833. struct page *page;
  2834. clear_obj_pfmemalloc(&objpp[i]);
  2835. objp = objpp[i];
  2836. page = virt_to_head_page(objp);
  2837. list_del(&page->lru);
  2838. check_spinlock_acquired_node(cachep, node);
  2839. slab_put_obj(cachep, page, objp, node);
  2840. STATS_DEC_ACTIVE(cachep);
  2841. n->free_objects++;
  2842. /* fixup slab chains */
  2843. if (page->active == 0) {
  2844. if (n->free_objects > n->free_limit) {
  2845. n->free_objects -= cachep->num;
  2846. list_add_tail(&page->lru, list);
  2847. } else {
  2848. list_add(&page->lru, &n->slabs_free);
  2849. }
  2850. } else {
  2851. /* Unconditionally move a slab to the end of the
  2852. * partial list on free - maximum time for the
  2853. * other objects to be freed, too.
  2854. */
  2855. list_add_tail(&page->lru, &n->slabs_partial);
  2856. }
  2857. }
  2858. }
  2859. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2860. {
  2861. int batchcount;
  2862. struct kmem_cache_node *n;
  2863. int node = numa_mem_id();
  2864. LIST_HEAD(list);
  2865. batchcount = ac->batchcount;
  2866. #if DEBUG
  2867. BUG_ON(!batchcount || batchcount > ac->avail);
  2868. #endif
  2869. check_irq_off();
  2870. n = get_node(cachep, node);
  2871. spin_lock(&n->list_lock);
  2872. if (n->shared) {
  2873. struct array_cache *shared_array = n->shared;
  2874. int max = shared_array->limit - shared_array->avail;
  2875. if (max) {
  2876. if (batchcount > max)
  2877. batchcount = max;
  2878. memcpy(&(shared_array->entry[shared_array->avail]),
  2879. ac->entry, sizeof(void *) * batchcount);
  2880. shared_array->avail += batchcount;
  2881. goto free_done;
  2882. }
  2883. }
  2884. free_block(cachep, ac->entry, batchcount, node, &list);
  2885. free_done:
  2886. #if STATS
  2887. {
  2888. int i = 0;
  2889. struct list_head *p;
  2890. p = n->slabs_free.next;
  2891. while (p != &(n->slabs_free)) {
  2892. struct page *page;
  2893. page = list_entry(p, struct page, lru);
  2894. BUG_ON(page->active);
  2895. i++;
  2896. p = p->next;
  2897. }
  2898. STATS_SET_FREEABLE(cachep, i);
  2899. }
  2900. #endif
  2901. spin_unlock(&n->list_lock);
  2902. slabs_destroy(cachep, &list);
  2903. ac->avail -= batchcount;
  2904. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2905. }
  2906. /*
  2907. * Release an obj back to its cache. If the obj has a constructed state, it must
  2908. * be in this state _before_ it is released. Called with disabled ints.
  2909. */
  2910. static inline void __cache_free(struct kmem_cache *cachep, void *objp,
  2911. unsigned long caller)
  2912. {
  2913. struct array_cache *ac = cpu_cache_get(cachep);
  2914. check_irq_off();
  2915. kmemleak_free_recursive(objp, cachep->flags);
  2916. objp = cache_free_debugcheck(cachep, objp, caller);
  2917. kmemcheck_slab_free(cachep, objp, cachep->object_size);
  2918. /*
  2919. * Skip calling cache_free_alien() when the platform is not numa.
  2920. * This will avoid cache misses that happen while accessing slabp (which
  2921. * is per page memory reference) to get nodeid. Instead use a global
  2922. * variable to skip the call, which is mostly likely to be present in
  2923. * the cache.
  2924. */
  2925. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  2926. return;
  2927. if (ac->avail < ac->limit) {
  2928. STATS_INC_FREEHIT(cachep);
  2929. } else {
  2930. STATS_INC_FREEMISS(cachep);
  2931. cache_flusharray(cachep, ac);
  2932. }
  2933. ac_put_obj(cachep, ac, objp);
  2934. }
  2935. /**
  2936. * kmem_cache_alloc - Allocate an object
  2937. * @cachep: The cache to allocate from.
  2938. * @flags: See kmalloc().
  2939. *
  2940. * Allocate an object from this cache. The flags are only relevant
  2941. * if the cache has no available objects.
  2942. */
  2943. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2944. {
  2945. void *ret = slab_alloc(cachep, flags, _RET_IP_);
  2946. trace_kmem_cache_alloc(_RET_IP_, ret,
  2947. cachep->object_size, cachep->size, flags);
  2948. return ret;
  2949. }
  2950. EXPORT_SYMBOL(kmem_cache_alloc);
  2951. #ifdef CONFIG_TRACING
  2952. void *
  2953. kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
  2954. {
  2955. void *ret;
  2956. ret = slab_alloc(cachep, flags, _RET_IP_);
  2957. trace_kmalloc(_RET_IP_, ret,
  2958. size, cachep->size, flags);
  2959. return ret;
  2960. }
  2961. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2962. #endif
  2963. #ifdef CONFIG_NUMA
  2964. /**
  2965. * kmem_cache_alloc_node - Allocate an object on the specified node
  2966. * @cachep: The cache to allocate from.
  2967. * @flags: See kmalloc().
  2968. * @nodeid: node number of the target node.
  2969. *
  2970. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2971. * node, which can improve the performance for cpu bound structures.
  2972. *
  2973. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2974. */
  2975. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2976. {
  2977. void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  2978. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2979. cachep->object_size, cachep->size,
  2980. flags, nodeid);
  2981. return ret;
  2982. }
  2983. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2984. #ifdef CONFIG_TRACING
  2985. void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
  2986. gfp_t flags,
  2987. int nodeid,
  2988. size_t size)
  2989. {
  2990. void *ret;
  2991. ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  2992. trace_kmalloc_node(_RET_IP_, ret,
  2993. size, cachep->size,
  2994. flags, nodeid);
  2995. return ret;
  2996. }
  2997. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2998. #endif
  2999. static __always_inline void *
  3000. __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
  3001. {
  3002. struct kmem_cache *cachep;
  3003. cachep = kmalloc_slab(size, flags);
  3004. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3005. return cachep;
  3006. return kmem_cache_alloc_node_trace(cachep, flags, node, size);
  3007. }
  3008. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3009. {
  3010. return __do_kmalloc_node(size, flags, node, _RET_IP_);
  3011. }
  3012. EXPORT_SYMBOL(__kmalloc_node);
  3013. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3014. int node, unsigned long caller)
  3015. {
  3016. return __do_kmalloc_node(size, flags, node, caller);
  3017. }
  3018. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3019. #endif /* CONFIG_NUMA */
  3020. /**
  3021. * __do_kmalloc - allocate memory
  3022. * @size: how many bytes of memory are required.
  3023. * @flags: the type of memory to allocate (see kmalloc).
  3024. * @caller: function caller for debug tracking of the caller
  3025. */
  3026. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3027. unsigned long caller)
  3028. {
  3029. struct kmem_cache *cachep;
  3030. void *ret;
  3031. cachep = kmalloc_slab(size, flags);
  3032. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3033. return cachep;
  3034. ret = slab_alloc(cachep, flags, caller);
  3035. trace_kmalloc(caller, ret,
  3036. size, cachep->size, flags);
  3037. return ret;
  3038. }
  3039. void *__kmalloc(size_t size, gfp_t flags)
  3040. {
  3041. return __do_kmalloc(size, flags, _RET_IP_);
  3042. }
  3043. EXPORT_SYMBOL(__kmalloc);
  3044. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3045. {
  3046. return __do_kmalloc(size, flags, caller);
  3047. }
  3048. EXPORT_SYMBOL(__kmalloc_track_caller);
  3049. /**
  3050. * kmem_cache_free - Deallocate an object
  3051. * @cachep: The cache the allocation was from.
  3052. * @objp: The previously allocated object.
  3053. *
  3054. * Free an object which was previously allocated from this
  3055. * cache.
  3056. */
  3057. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3058. {
  3059. unsigned long flags;
  3060. cachep = cache_from_obj(cachep, objp);
  3061. if (!cachep)
  3062. return;
  3063. local_irq_save(flags);
  3064. debug_check_no_locks_freed(objp, cachep->object_size);
  3065. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3066. debug_check_no_obj_freed(objp, cachep->object_size);
  3067. __cache_free(cachep, objp, _RET_IP_);
  3068. local_irq_restore(flags);
  3069. trace_kmem_cache_free(_RET_IP_, objp);
  3070. }
  3071. EXPORT_SYMBOL(kmem_cache_free);
  3072. /**
  3073. * kfree - free previously allocated memory
  3074. * @objp: pointer returned by kmalloc.
  3075. *
  3076. * If @objp is NULL, no operation is performed.
  3077. *
  3078. * Don't free memory not originally allocated by kmalloc()
  3079. * or you will run into trouble.
  3080. */
  3081. void kfree(const void *objp)
  3082. {
  3083. struct kmem_cache *c;
  3084. unsigned long flags;
  3085. trace_kfree(_RET_IP_, objp);
  3086. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3087. return;
  3088. local_irq_save(flags);
  3089. kfree_debugcheck(objp);
  3090. c = virt_to_cache(objp);
  3091. debug_check_no_locks_freed(objp, c->object_size);
  3092. debug_check_no_obj_freed(objp, c->object_size);
  3093. __cache_free(c, (void *)objp, _RET_IP_);
  3094. local_irq_restore(flags);
  3095. }
  3096. EXPORT_SYMBOL(kfree);
  3097. /*
  3098. * This initializes kmem_cache_node or resizes various caches for all nodes.
  3099. */
  3100. static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
  3101. {
  3102. int node;
  3103. struct kmem_cache_node *n;
  3104. struct array_cache *new_shared;
  3105. struct alien_cache **new_alien = NULL;
  3106. for_each_online_node(node) {
  3107. if (use_alien_caches) {
  3108. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3109. if (!new_alien)
  3110. goto fail;
  3111. }
  3112. new_shared = NULL;
  3113. if (cachep->shared) {
  3114. new_shared = alloc_arraycache(node,
  3115. cachep->shared*cachep->batchcount,
  3116. 0xbaadf00d, gfp);
  3117. if (!new_shared) {
  3118. free_alien_cache(new_alien);
  3119. goto fail;
  3120. }
  3121. }
  3122. n = get_node(cachep, node);
  3123. if (n) {
  3124. struct array_cache *shared = n->shared;
  3125. LIST_HEAD(list);
  3126. spin_lock_irq(&n->list_lock);
  3127. if (shared)
  3128. free_block(cachep, shared->entry,
  3129. shared->avail, node, &list);
  3130. n->shared = new_shared;
  3131. if (!n->alien) {
  3132. n->alien = new_alien;
  3133. new_alien = NULL;
  3134. }
  3135. n->free_limit = (1 + nr_cpus_node(node)) *
  3136. cachep->batchcount + cachep->num;
  3137. spin_unlock_irq(&n->list_lock);
  3138. slabs_destroy(cachep, &list);
  3139. kfree(shared);
  3140. free_alien_cache(new_alien);
  3141. continue;
  3142. }
  3143. n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
  3144. if (!n) {
  3145. free_alien_cache(new_alien);
  3146. kfree(new_shared);
  3147. goto fail;
  3148. }
  3149. kmem_cache_node_init(n);
  3150. n->next_reap = jiffies + REAPTIMEOUT_NODE +
  3151. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  3152. n->shared = new_shared;
  3153. n->alien = new_alien;
  3154. n->free_limit = (1 + nr_cpus_node(node)) *
  3155. cachep->batchcount + cachep->num;
  3156. cachep->node[node] = n;
  3157. }
  3158. return 0;
  3159. fail:
  3160. if (!cachep->list.next) {
  3161. /* Cache is not active yet. Roll back what we did */
  3162. node--;
  3163. while (node >= 0) {
  3164. n = get_node(cachep, node);
  3165. if (n) {
  3166. kfree(n->shared);
  3167. free_alien_cache(n->alien);
  3168. kfree(n);
  3169. cachep->node[node] = NULL;
  3170. }
  3171. node--;
  3172. }
  3173. }
  3174. return -ENOMEM;
  3175. }
  3176. /* Always called with the slab_mutex held */
  3177. static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3178. int batchcount, int shared, gfp_t gfp)
  3179. {
  3180. struct array_cache __percpu *cpu_cache, *prev;
  3181. int cpu;
  3182. cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
  3183. if (!cpu_cache)
  3184. return -ENOMEM;
  3185. prev = cachep->cpu_cache;
  3186. cachep->cpu_cache = cpu_cache;
  3187. kick_all_cpus_sync();
  3188. check_irq_on();
  3189. cachep->batchcount = batchcount;
  3190. cachep->limit = limit;
  3191. cachep->shared = shared;
  3192. if (!prev)
  3193. goto alloc_node;
  3194. for_each_online_cpu(cpu) {
  3195. LIST_HEAD(list);
  3196. int node;
  3197. struct kmem_cache_node *n;
  3198. struct array_cache *ac = per_cpu_ptr(prev, cpu);
  3199. node = cpu_to_mem(cpu);
  3200. n = get_node(cachep, node);
  3201. spin_lock_irq(&n->list_lock);
  3202. free_block(cachep, ac->entry, ac->avail, node, &list);
  3203. spin_unlock_irq(&n->list_lock);
  3204. slabs_destroy(cachep, &list);
  3205. }
  3206. free_percpu(prev);
  3207. alloc_node:
  3208. return alloc_kmem_cache_node(cachep, gfp);
  3209. }
  3210. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3211. int batchcount, int shared, gfp_t gfp)
  3212. {
  3213. int ret;
  3214. struct kmem_cache *c;
  3215. ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3216. if (slab_state < FULL)
  3217. return ret;
  3218. if ((ret < 0) || !is_root_cache(cachep))
  3219. return ret;
  3220. lockdep_assert_held(&slab_mutex);
  3221. for_each_memcg_cache(c, cachep) {
  3222. /* return value determined by the root cache only */
  3223. __do_tune_cpucache(c, limit, batchcount, shared, gfp);
  3224. }
  3225. return ret;
  3226. }
  3227. /* Called with slab_mutex held always */
  3228. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3229. {
  3230. int err;
  3231. int limit = 0;
  3232. int shared = 0;
  3233. int batchcount = 0;
  3234. if (!is_root_cache(cachep)) {
  3235. struct kmem_cache *root = memcg_root_cache(cachep);
  3236. limit = root->limit;
  3237. shared = root->shared;
  3238. batchcount = root->batchcount;
  3239. }
  3240. if (limit && shared && batchcount)
  3241. goto skip_setup;
  3242. /*
  3243. * The head array serves three purposes:
  3244. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3245. * - reduce the number of spinlock operations.
  3246. * - reduce the number of linked list operations on the slab and
  3247. * bufctl chains: array operations are cheaper.
  3248. * The numbers are guessed, we should auto-tune as described by
  3249. * Bonwick.
  3250. */
  3251. if (cachep->size > 131072)
  3252. limit = 1;
  3253. else if (cachep->size > PAGE_SIZE)
  3254. limit = 8;
  3255. else if (cachep->size > 1024)
  3256. limit = 24;
  3257. else if (cachep->size > 256)
  3258. limit = 54;
  3259. else
  3260. limit = 120;
  3261. /*
  3262. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3263. * allocation behaviour: Most allocs on one cpu, most free operations
  3264. * on another cpu. For these cases, an efficient object passing between
  3265. * cpus is necessary. This is provided by a shared array. The array
  3266. * replaces Bonwick's magazine layer.
  3267. * On uniprocessor, it's functionally equivalent (but less efficient)
  3268. * to a larger limit. Thus disabled by default.
  3269. */
  3270. shared = 0;
  3271. if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
  3272. shared = 8;
  3273. #if DEBUG
  3274. /*
  3275. * With debugging enabled, large batchcount lead to excessively long
  3276. * periods with disabled local interrupts. Limit the batchcount
  3277. */
  3278. if (limit > 32)
  3279. limit = 32;
  3280. #endif
  3281. batchcount = (limit + 1) / 2;
  3282. skip_setup:
  3283. err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3284. if (err)
  3285. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3286. cachep->name, -err);
  3287. return err;
  3288. }
  3289. /*
  3290. * Drain an array if it contains any elements taking the node lock only if
  3291. * necessary. Note that the node listlock also protects the array_cache
  3292. * if drain_array() is used on the shared array.
  3293. */
  3294. static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
  3295. struct array_cache *ac, int force, int node)
  3296. {
  3297. LIST_HEAD(list);
  3298. int tofree;
  3299. if (!ac || !ac->avail)
  3300. return;
  3301. if (ac->touched && !force) {
  3302. ac->touched = 0;
  3303. } else {
  3304. spin_lock_irq(&n->list_lock);
  3305. if (ac->avail) {
  3306. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3307. if (tofree > ac->avail)
  3308. tofree = (ac->avail + 1) / 2;
  3309. free_block(cachep, ac->entry, tofree, node, &list);
  3310. ac->avail -= tofree;
  3311. memmove(ac->entry, &(ac->entry[tofree]),
  3312. sizeof(void *) * ac->avail);
  3313. }
  3314. spin_unlock_irq(&n->list_lock);
  3315. slabs_destroy(cachep, &list);
  3316. }
  3317. }
  3318. /**
  3319. * cache_reap - Reclaim memory from caches.
  3320. * @w: work descriptor
  3321. *
  3322. * Called from workqueue/eventd every few seconds.
  3323. * Purpose:
  3324. * - clear the per-cpu caches for this CPU.
  3325. * - return freeable pages to the main free memory pool.
  3326. *
  3327. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3328. * again on the next iteration.
  3329. */
  3330. static void cache_reap(struct work_struct *w)
  3331. {
  3332. struct kmem_cache *searchp;
  3333. struct kmem_cache_node *n;
  3334. int node = numa_mem_id();
  3335. struct delayed_work *work = to_delayed_work(w);
  3336. if (!mutex_trylock(&slab_mutex))
  3337. /* Give up. Setup the next iteration. */
  3338. goto out;
  3339. list_for_each_entry(searchp, &slab_caches, list) {
  3340. check_irq_on();
  3341. /*
  3342. * We only take the node lock if absolutely necessary and we
  3343. * have established with reasonable certainty that
  3344. * we can do some work if the lock was obtained.
  3345. */
  3346. n = get_node(searchp, node);
  3347. reap_alien(searchp, n);
  3348. drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
  3349. /*
  3350. * These are racy checks but it does not matter
  3351. * if we skip one check or scan twice.
  3352. */
  3353. if (time_after(n->next_reap, jiffies))
  3354. goto next;
  3355. n->next_reap = jiffies + REAPTIMEOUT_NODE;
  3356. drain_array(searchp, n, n->shared, 0, node);
  3357. if (n->free_touched)
  3358. n->free_touched = 0;
  3359. else {
  3360. int freed;
  3361. freed = drain_freelist(searchp, n, (n->free_limit +
  3362. 5 * searchp->num - 1) / (5 * searchp->num));
  3363. STATS_ADD_REAPED(searchp, freed);
  3364. }
  3365. next:
  3366. cond_resched();
  3367. }
  3368. check_irq_on();
  3369. mutex_unlock(&slab_mutex);
  3370. next_reap_node();
  3371. out:
  3372. /* Set up the next iteration */
  3373. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
  3374. }
  3375. #ifdef CONFIG_SLABINFO
  3376. void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
  3377. {
  3378. struct page *page;
  3379. unsigned long active_objs;
  3380. unsigned long num_objs;
  3381. unsigned long active_slabs = 0;
  3382. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3383. const char *name;
  3384. char *error = NULL;
  3385. int node;
  3386. struct kmem_cache_node *n;
  3387. active_objs = 0;
  3388. num_slabs = 0;
  3389. for_each_kmem_cache_node(cachep, node, n) {
  3390. check_irq_on();
  3391. spin_lock_irq(&n->list_lock);
  3392. list_for_each_entry(page, &n->slabs_full, lru) {
  3393. if (page->active != cachep->num && !error)
  3394. error = "slabs_full accounting error";
  3395. active_objs += cachep->num;
  3396. active_slabs++;
  3397. }
  3398. list_for_each_entry(page, &n->slabs_partial, lru) {
  3399. if (page->active == cachep->num && !error)
  3400. error = "slabs_partial accounting error";
  3401. if (!page->active && !error)
  3402. error = "slabs_partial accounting error";
  3403. active_objs += page->active;
  3404. active_slabs++;
  3405. }
  3406. list_for_each_entry(page, &n->slabs_free, lru) {
  3407. if (page->active && !error)
  3408. error = "slabs_free accounting error";
  3409. num_slabs++;
  3410. }
  3411. free_objects += n->free_objects;
  3412. if (n->shared)
  3413. shared_avail += n->shared->avail;
  3414. spin_unlock_irq(&n->list_lock);
  3415. }
  3416. num_slabs += active_slabs;
  3417. num_objs = num_slabs * cachep->num;
  3418. if (num_objs - active_objs != free_objects && !error)
  3419. error = "free_objects accounting error";
  3420. name = cachep->name;
  3421. if (error)
  3422. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3423. sinfo->active_objs = active_objs;
  3424. sinfo->num_objs = num_objs;
  3425. sinfo->active_slabs = active_slabs;
  3426. sinfo->num_slabs = num_slabs;
  3427. sinfo->shared_avail = shared_avail;
  3428. sinfo->limit = cachep->limit;
  3429. sinfo->batchcount = cachep->batchcount;
  3430. sinfo->shared = cachep->shared;
  3431. sinfo->objects_per_slab = cachep->num;
  3432. sinfo->cache_order = cachep->gfporder;
  3433. }
  3434. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
  3435. {
  3436. #if STATS
  3437. { /* node stats */
  3438. unsigned long high = cachep->high_mark;
  3439. unsigned long allocs = cachep->num_allocations;
  3440. unsigned long grown = cachep->grown;
  3441. unsigned long reaped = cachep->reaped;
  3442. unsigned long errors = cachep->errors;
  3443. unsigned long max_freeable = cachep->max_freeable;
  3444. unsigned long node_allocs = cachep->node_allocs;
  3445. unsigned long node_frees = cachep->node_frees;
  3446. unsigned long overflows = cachep->node_overflow;
  3447. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3448. "%4lu %4lu %4lu %4lu %4lu",
  3449. allocs, high, grown,
  3450. reaped, errors, max_freeable, node_allocs,
  3451. node_frees, overflows);
  3452. }
  3453. /* cpu stats */
  3454. {
  3455. unsigned long allochit = atomic_read(&cachep->allochit);
  3456. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3457. unsigned long freehit = atomic_read(&cachep->freehit);
  3458. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3459. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3460. allochit, allocmiss, freehit, freemiss);
  3461. }
  3462. #endif
  3463. }
  3464. #define MAX_SLABINFO_WRITE 128
  3465. /**
  3466. * slabinfo_write - Tuning for the slab allocator
  3467. * @file: unused
  3468. * @buffer: user buffer
  3469. * @count: data length
  3470. * @ppos: unused
  3471. */
  3472. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3473. size_t count, loff_t *ppos)
  3474. {
  3475. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3476. int limit, batchcount, shared, res;
  3477. struct kmem_cache *cachep;
  3478. if (count > MAX_SLABINFO_WRITE)
  3479. return -EINVAL;
  3480. if (copy_from_user(&kbuf, buffer, count))
  3481. return -EFAULT;
  3482. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3483. tmp = strchr(kbuf, ' ');
  3484. if (!tmp)
  3485. return -EINVAL;
  3486. *tmp = '\0';
  3487. tmp++;
  3488. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3489. return -EINVAL;
  3490. /* Find the cache in the chain of caches. */
  3491. mutex_lock(&slab_mutex);
  3492. res = -EINVAL;
  3493. list_for_each_entry(cachep, &slab_caches, list) {
  3494. if (!strcmp(cachep->name, kbuf)) {
  3495. if (limit < 1 || batchcount < 1 ||
  3496. batchcount > limit || shared < 0) {
  3497. res = 0;
  3498. } else {
  3499. res = do_tune_cpucache(cachep, limit,
  3500. batchcount, shared,
  3501. GFP_KERNEL);
  3502. }
  3503. break;
  3504. }
  3505. }
  3506. mutex_unlock(&slab_mutex);
  3507. if (res >= 0)
  3508. res = count;
  3509. return res;
  3510. }
  3511. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3512. static inline int add_caller(unsigned long *n, unsigned long v)
  3513. {
  3514. unsigned long *p;
  3515. int l;
  3516. if (!v)
  3517. return 1;
  3518. l = n[1];
  3519. p = n + 2;
  3520. while (l) {
  3521. int i = l/2;
  3522. unsigned long *q = p + 2 * i;
  3523. if (*q == v) {
  3524. q[1]++;
  3525. return 1;
  3526. }
  3527. if (*q > v) {
  3528. l = i;
  3529. } else {
  3530. p = q + 2;
  3531. l -= i + 1;
  3532. }
  3533. }
  3534. if (++n[1] == n[0])
  3535. return 0;
  3536. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3537. p[0] = v;
  3538. p[1] = 1;
  3539. return 1;
  3540. }
  3541. static void handle_slab(unsigned long *n, struct kmem_cache *c,
  3542. struct page *page)
  3543. {
  3544. void *p;
  3545. int i;
  3546. if (n[0] == n[1])
  3547. return;
  3548. for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
  3549. if (get_obj_status(page, i) != OBJECT_ACTIVE)
  3550. continue;
  3551. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3552. return;
  3553. }
  3554. }
  3555. static void show_symbol(struct seq_file *m, unsigned long address)
  3556. {
  3557. #ifdef CONFIG_KALLSYMS
  3558. unsigned long offset, size;
  3559. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3560. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3561. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3562. if (modname[0])
  3563. seq_printf(m, " [%s]", modname);
  3564. return;
  3565. }
  3566. #endif
  3567. seq_printf(m, "%p", (void *)address);
  3568. }
  3569. static int leaks_show(struct seq_file *m, void *p)
  3570. {
  3571. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
  3572. struct page *page;
  3573. struct kmem_cache_node *n;
  3574. const char *name;
  3575. unsigned long *x = m->private;
  3576. int node;
  3577. int i;
  3578. if (!(cachep->flags & SLAB_STORE_USER))
  3579. return 0;
  3580. if (!(cachep->flags & SLAB_RED_ZONE))
  3581. return 0;
  3582. /* OK, we can do it */
  3583. x[1] = 0;
  3584. for_each_kmem_cache_node(cachep, node, n) {
  3585. check_irq_on();
  3586. spin_lock_irq(&n->list_lock);
  3587. list_for_each_entry(page, &n->slabs_full, lru)
  3588. handle_slab(x, cachep, page);
  3589. list_for_each_entry(page, &n->slabs_partial, lru)
  3590. handle_slab(x, cachep, page);
  3591. spin_unlock_irq(&n->list_lock);
  3592. }
  3593. name = cachep->name;
  3594. if (x[0] == x[1]) {
  3595. /* Increase the buffer size */
  3596. mutex_unlock(&slab_mutex);
  3597. m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3598. if (!m->private) {
  3599. /* Too bad, we are really out */
  3600. m->private = x;
  3601. mutex_lock(&slab_mutex);
  3602. return -ENOMEM;
  3603. }
  3604. *(unsigned long *)m->private = x[0] * 2;
  3605. kfree(x);
  3606. mutex_lock(&slab_mutex);
  3607. /* Now make sure this entry will be retried */
  3608. m->count = m->size;
  3609. return 0;
  3610. }
  3611. for (i = 0; i < x[1]; i++) {
  3612. seq_printf(m, "%s: %lu ", name, x[2*i+3]);
  3613. show_symbol(m, x[2*i+2]);
  3614. seq_putc(m, '\n');
  3615. }
  3616. return 0;
  3617. }
  3618. static const struct seq_operations slabstats_op = {
  3619. .start = slab_start,
  3620. .next = slab_next,
  3621. .stop = slab_stop,
  3622. .show = leaks_show,
  3623. };
  3624. static int slabstats_open(struct inode *inode, struct file *file)
  3625. {
  3626. unsigned long *n;
  3627. n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
  3628. if (!n)
  3629. return -ENOMEM;
  3630. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3631. return 0;
  3632. }
  3633. static const struct file_operations proc_slabstats_operations = {
  3634. .open = slabstats_open,
  3635. .read = seq_read,
  3636. .llseek = seq_lseek,
  3637. .release = seq_release_private,
  3638. };
  3639. #endif
  3640. static int __init slab_proc_init(void)
  3641. {
  3642. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3643. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3644. #endif
  3645. return 0;
  3646. }
  3647. module_init(slab_proc_init);
  3648. #endif
  3649. /**
  3650. * ksize - get the actual amount of memory allocated for a given object
  3651. * @objp: Pointer to the object
  3652. *
  3653. * kmalloc may internally round up allocations and return more memory
  3654. * than requested. ksize() can be used to determine the actual amount of
  3655. * memory allocated. The caller may use this additional memory, even though
  3656. * a smaller amount of memory was initially specified with the kmalloc call.
  3657. * The caller must guarantee that objp points to a valid object previously
  3658. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3659. * must not be freed during the duration of the call.
  3660. */
  3661. size_t ksize(const void *objp)
  3662. {
  3663. BUG_ON(!objp);
  3664. if (unlikely(objp == ZERO_SIZE_PTR))
  3665. return 0;
  3666. return virt_to_cache(objp)->object_size;
  3667. }
  3668. EXPORT_SYMBOL(ksize);