memory.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <asm/io.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/tlb.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/pgtable.h>
  65. #include "internal.h"
  66. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  67. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  68. #endif
  69. #ifndef CONFIG_NEED_MULTIPLE_NODES
  70. /* use the per-pgdat data instead for discontigmem - mbligh */
  71. unsigned long max_mapnr;
  72. struct page *mem_map;
  73. EXPORT_SYMBOL(max_mapnr);
  74. EXPORT_SYMBOL(mem_map);
  75. #endif
  76. /*
  77. * A number of key systems in x86 including ioremap() rely on the assumption
  78. * that high_memory defines the upper bound on direct map memory, then end
  79. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  80. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  81. * and ZONE_HIGHMEM.
  82. */
  83. void * high_memory;
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. EXPORT_SYMBOL(zero_pfn);
  106. /*
  107. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  108. */
  109. static int __init init_zero_pfn(void)
  110. {
  111. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  112. return 0;
  113. }
  114. core_initcall(init_zero_pfn);
  115. #if defined(SPLIT_RSS_COUNTING)
  116. void sync_mm_rss(struct mm_struct *mm)
  117. {
  118. int i;
  119. for (i = 0; i < NR_MM_COUNTERS; i++) {
  120. if (current->rss_stat.count[i]) {
  121. add_mm_counter(mm, i, current->rss_stat.count[i]);
  122. current->rss_stat.count[i] = 0;
  123. }
  124. }
  125. current->rss_stat.events = 0;
  126. }
  127. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  128. {
  129. struct task_struct *task = current;
  130. if (likely(task->mm == mm))
  131. task->rss_stat.count[member] += val;
  132. else
  133. add_mm_counter(mm, member, val);
  134. }
  135. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  136. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  137. /* sync counter once per 64 page faults */
  138. #define TASK_RSS_EVENTS_THRESH (64)
  139. static void check_sync_rss_stat(struct task_struct *task)
  140. {
  141. if (unlikely(task != current))
  142. return;
  143. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  144. sync_mm_rss(task->mm);
  145. }
  146. #else /* SPLIT_RSS_COUNTING */
  147. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  148. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  149. static void check_sync_rss_stat(struct task_struct *task)
  150. {
  151. }
  152. #endif /* SPLIT_RSS_COUNTING */
  153. #ifdef HAVE_GENERIC_MMU_GATHER
  154. static int tlb_next_batch(struct mmu_gather *tlb)
  155. {
  156. struct mmu_gather_batch *batch;
  157. batch = tlb->active;
  158. if (batch->next) {
  159. tlb->active = batch->next;
  160. return 1;
  161. }
  162. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  163. return 0;
  164. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  165. if (!batch)
  166. return 0;
  167. tlb->batch_count++;
  168. batch->next = NULL;
  169. batch->nr = 0;
  170. batch->max = MAX_GATHER_BATCH;
  171. tlb->active->next = batch;
  172. tlb->active = batch;
  173. return 1;
  174. }
  175. /* tlb_gather_mmu
  176. * Called to initialize an (on-stack) mmu_gather structure for page-table
  177. * tear-down from @mm. The @fullmm argument is used when @mm is without
  178. * users and we're going to destroy the full address space (exit/execve).
  179. */
  180. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  181. {
  182. tlb->mm = mm;
  183. /* Is it from 0 to ~0? */
  184. tlb->fullmm = !(start | (end+1));
  185. tlb->need_flush_all = 0;
  186. tlb->local.next = NULL;
  187. tlb->local.nr = 0;
  188. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  189. tlb->active = &tlb->local;
  190. tlb->batch_count = 0;
  191. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  192. tlb->batch = NULL;
  193. #endif
  194. __tlb_reset_range(tlb);
  195. }
  196. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  197. {
  198. if (!tlb->end)
  199. return;
  200. tlb_flush(tlb);
  201. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  202. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  203. tlb_table_flush(tlb);
  204. #endif
  205. __tlb_reset_range(tlb);
  206. }
  207. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  208. {
  209. struct mmu_gather_batch *batch;
  210. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  211. free_pages_and_swap_cache(batch->pages, batch->nr);
  212. batch->nr = 0;
  213. }
  214. tlb->active = &tlb->local;
  215. }
  216. void tlb_flush_mmu(struct mmu_gather *tlb)
  217. {
  218. tlb_flush_mmu_tlbonly(tlb);
  219. tlb_flush_mmu_free(tlb);
  220. }
  221. /* tlb_finish_mmu
  222. * Called at the end of the shootdown operation to free up any resources
  223. * that were required.
  224. */
  225. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  226. {
  227. struct mmu_gather_batch *batch, *next;
  228. tlb_flush_mmu(tlb);
  229. /* keep the page table cache within bounds */
  230. check_pgt_cache();
  231. for (batch = tlb->local.next; batch; batch = next) {
  232. next = batch->next;
  233. free_pages((unsigned long)batch, 0);
  234. }
  235. tlb->local.next = NULL;
  236. }
  237. /* __tlb_remove_page
  238. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  239. * handling the additional races in SMP caused by other CPUs caching valid
  240. * mappings in their TLBs. Returns the number of free page slots left.
  241. * When out of page slots we must call tlb_flush_mmu().
  242. */
  243. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  244. {
  245. struct mmu_gather_batch *batch;
  246. VM_BUG_ON(!tlb->end);
  247. batch = tlb->active;
  248. batch->pages[batch->nr++] = page;
  249. if (batch->nr == batch->max) {
  250. if (!tlb_next_batch(tlb))
  251. return 0;
  252. batch = tlb->active;
  253. }
  254. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  255. return batch->max - batch->nr;
  256. }
  257. #endif /* HAVE_GENERIC_MMU_GATHER */
  258. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  259. /*
  260. * See the comment near struct mmu_table_batch.
  261. */
  262. static void tlb_remove_table_smp_sync(void *arg)
  263. {
  264. /* Simply deliver the interrupt */
  265. }
  266. static void tlb_remove_table_one(void *table)
  267. {
  268. /*
  269. * This isn't an RCU grace period and hence the page-tables cannot be
  270. * assumed to be actually RCU-freed.
  271. *
  272. * It is however sufficient for software page-table walkers that rely on
  273. * IRQ disabling. See the comment near struct mmu_table_batch.
  274. */
  275. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  276. __tlb_remove_table(table);
  277. }
  278. static void tlb_remove_table_rcu(struct rcu_head *head)
  279. {
  280. struct mmu_table_batch *batch;
  281. int i;
  282. batch = container_of(head, struct mmu_table_batch, rcu);
  283. for (i = 0; i < batch->nr; i++)
  284. __tlb_remove_table(batch->tables[i]);
  285. free_page((unsigned long)batch);
  286. }
  287. void tlb_table_flush(struct mmu_gather *tlb)
  288. {
  289. struct mmu_table_batch **batch = &tlb->batch;
  290. if (*batch) {
  291. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  292. *batch = NULL;
  293. }
  294. }
  295. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  296. {
  297. struct mmu_table_batch **batch = &tlb->batch;
  298. /*
  299. * When there's less then two users of this mm there cannot be a
  300. * concurrent page-table walk.
  301. */
  302. if (atomic_read(&tlb->mm->mm_users) < 2) {
  303. __tlb_remove_table(table);
  304. return;
  305. }
  306. if (*batch == NULL) {
  307. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  308. if (*batch == NULL) {
  309. tlb_remove_table_one(table);
  310. return;
  311. }
  312. (*batch)->nr = 0;
  313. }
  314. (*batch)->tables[(*batch)->nr++] = table;
  315. if ((*batch)->nr == MAX_TABLE_BATCH)
  316. tlb_table_flush(tlb);
  317. }
  318. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  319. /*
  320. * Note: this doesn't free the actual pages themselves. That
  321. * has been handled earlier when unmapping all the memory regions.
  322. */
  323. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  324. unsigned long addr)
  325. {
  326. pgtable_t token = pmd_pgtable(*pmd);
  327. pmd_clear(pmd);
  328. pte_free_tlb(tlb, token, addr);
  329. atomic_long_dec(&tlb->mm->nr_ptes);
  330. }
  331. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  332. unsigned long addr, unsigned long end,
  333. unsigned long floor, unsigned long ceiling)
  334. {
  335. pmd_t *pmd;
  336. unsigned long next;
  337. unsigned long start;
  338. start = addr;
  339. pmd = pmd_offset(pud, addr);
  340. do {
  341. next = pmd_addr_end(addr, end);
  342. if (pmd_none_or_clear_bad(pmd))
  343. continue;
  344. free_pte_range(tlb, pmd, addr);
  345. } while (pmd++, addr = next, addr != end);
  346. start &= PUD_MASK;
  347. if (start < floor)
  348. return;
  349. if (ceiling) {
  350. ceiling &= PUD_MASK;
  351. if (!ceiling)
  352. return;
  353. }
  354. if (end - 1 > ceiling - 1)
  355. return;
  356. pmd = pmd_offset(pud, start);
  357. pud_clear(pud);
  358. pmd_free_tlb(tlb, pmd, start);
  359. mm_dec_nr_pmds(tlb->mm);
  360. }
  361. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  362. unsigned long addr, unsigned long end,
  363. unsigned long floor, unsigned long ceiling)
  364. {
  365. pud_t *pud;
  366. unsigned long next;
  367. unsigned long start;
  368. start = addr;
  369. pud = pud_offset(pgd, addr);
  370. do {
  371. next = pud_addr_end(addr, end);
  372. if (pud_none_or_clear_bad(pud))
  373. continue;
  374. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  375. } while (pud++, addr = next, addr != end);
  376. start &= PGDIR_MASK;
  377. if (start < floor)
  378. return;
  379. if (ceiling) {
  380. ceiling &= PGDIR_MASK;
  381. if (!ceiling)
  382. return;
  383. }
  384. if (end - 1 > ceiling - 1)
  385. return;
  386. pud = pud_offset(pgd, start);
  387. pgd_clear(pgd);
  388. pud_free_tlb(tlb, pud, start);
  389. }
  390. /*
  391. * This function frees user-level page tables of a process.
  392. */
  393. void free_pgd_range(struct mmu_gather *tlb,
  394. unsigned long addr, unsigned long end,
  395. unsigned long floor, unsigned long ceiling)
  396. {
  397. pgd_t *pgd;
  398. unsigned long next;
  399. /*
  400. * The next few lines have given us lots of grief...
  401. *
  402. * Why are we testing PMD* at this top level? Because often
  403. * there will be no work to do at all, and we'd prefer not to
  404. * go all the way down to the bottom just to discover that.
  405. *
  406. * Why all these "- 1"s? Because 0 represents both the bottom
  407. * of the address space and the top of it (using -1 for the
  408. * top wouldn't help much: the masks would do the wrong thing).
  409. * The rule is that addr 0 and floor 0 refer to the bottom of
  410. * the address space, but end 0 and ceiling 0 refer to the top
  411. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  412. * that end 0 case should be mythical).
  413. *
  414. * Wherever addr is brought up or ceiling brought down, we must
  415. * be careful to reject "the opposite 0" before it confuses the
  416. * subsequent tests. But what about where end is brought down
  417. * by PMD_SIZE below? no, end can't go down to 0 there.
  418. *
  419. * Whereas we round start (addr) and ceiling down, by different
  420. * masks at different levels, in order to test whether a table
  421. * now has no other vmas using it, so can be freed, we don't
  422. * bother to round floor or end up - the tests don't need that.
  423. */
  424. addr &= PMD_MASK;
  425. if (addr < floor) {
  426. addr += PMD_SIZE;
  427. if (!addr)
  428. return;
  429. }
  430. if (ceiling) {
  431. ceiling &= PMD_MASK;
  432. if (!ceiling)
  433. return;
  434. }
  435. if (end - 1 > ceiling - 1)
  436. end -= PMD_SIZE;
  437. if (addr > end - 1)
  438. return;
  439. pgd = pgd_offset(tlb->mm, addr);
  440. do {
  441. next = pgd_addr_end(addr, end);
  442. if (pgd_none_or_clear_bad(pgd))
  443. continue;
  444. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  445. } while (pgd++, addr = next, addr != end);
  446. }
  447. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  448. unsigned long floor, unsigned long ceiling)
  449. {
  450. while (vma) {
  451. struct vm_area_struct *next = vma->vm_next;
  452. unsigned long addr = vma->vm_start;
  453. /*
  454. * Hide vma from rmap and truncate_pagecache before freeing
  455. * pgtables
  456. */
  457. unlink_anon_vmas(vma);
  458. unlink_file_vma(vma);
  459. if (is_vm_hugetlb_page(vma)) {
  460. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  461. floor, next? next->vm_start: ceiling);
  462. } else {
  463. /*
  464. * Optimization: gather nearby vmas into one call down
  465. */
  466. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  467. && !is_vm_hugetlb_page(next)) {
  468. vma = next;
  469. next = vma->vm_next;
  470. unlink_anon_vmas(vma);
  471. unlink_file_vma(vma);
  472. }
  473. free_pgd_range(tlb, addr, vma->vm_end,
  474. floor, next? next->vm_start: ceiling);
  475. }
  476. vma = next;
  477. }
  478. }
  479. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  480. pmd_t *pmd, unsigned long address)
  481. {
  482. spinlock_t *ptl;
  483. pgtable_t new = pte_alloc_one(mm, address);
  484. int wait_split_huge_page;
  485. if (!new)
  486. return -ENOMEM;
  487. /*
  488. * Ensure all pte setup (eg. pte page lock and page clearing) are
  489. * visible before the pte is made visible to other CPUs by being
  490. * put into page tables.
  491. *
  492. * The other side of the story is the pointer chasing in the page
  493. * table walking code (when walking the page table without locking;
  494. * ie. most of the time). Fortunately, these data accesses consist
  495. * of a chain of data-dependent loads, meaning most CPUs (alpha
  496. * being the notable exception) will already guarantee loads are
  497. * seen in-order. See the alpha page table accessors for the
  498. * smp_read_barrier_depends() barriers in page table walking code.
  499. */
  500. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  501. ptl = pmd_lock(mm, pmd);
  502. wait_split_huge_page = 0;
  503. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  504. atomic_long_inc(&mm->nr_ptes);
  505. pmd_populate(mm, pmd, new);
  506. new = NULL;
  507. } else if (unlikely(pmd_trans_splitting(*pmd)))
  508. wait_split_huge_page = 1;
  509. spin_unlock(ptl);
  510. if (new)
  511. pte_free(mm, new);
  512. if (wait_split_huge_page)
  513. wait_split_huge_page(vma->anon_vma, pmd);
  514. return 0;
  515. }
  516. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  517. {
  518. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  519. if (!new)
  520. return -ENOMEM;
  521. smp_wmb(); /* See comment in __pte_alloc */
  522. spin_lock(&init_mm.page_table_lock);
  523. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  524. pmd_populate_kernel(&init_mm, pmd, new);
  525. new = NULL;
  526. } else
  527. VM_BUG_ON(pmd_trans_splitting(*pmd));
  528. spin_unlock(&init_mm.page_table_lock);
  529. if (new)
  530. pte_free_kernel(&init_mm, new);
  531. return 0;
  532. }
  533. static inline void init_rss_vec(int *rss)
  534. {
  535. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  536. }
  537. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  538. {
  539. int i;
  540. if (current->mm == mm)
  541. sync_mm_rss(mm);
  542. for (i = 0; i < NR_MM_COUNTERS; i++)
  543. if (rss[i])
  544. add_mm_counter(mm, i, rss[i]);
  545. }
  546. /*
  547. * This function is called to print an error when a bad pte
  548. * is found. For example, we might have a PFN-mapped pte in
  549. * a region that doesn't allow it.
  550. *
  551. * The calling function must still handle the error.
  552. */
  553. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  554. pte_t pte, struct page *page)
  555. {
  556. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  557. pud_t *pud = pud_offset(pgd, addr);
  558. pmd_t *pmd = pmd_offset(pud, addr);
  559. struct address_space *mapping;
  560. pgoff_t index;
  561. static unsigned long resume;
  562. static unsigned long nr_shown;
  563. static unsigned long nr_unshown;
  564. /*
  565. * Allow a burst of 60 reports, then keep quiet for that minute;
  566. * or allow a steady drip of one report per second.
  567. */
  568. if (nr_shown == 60) {
  569. if (time_before(jiffies, resume)) {
  570. nr_unshown++;
  571. return;
  572. }
  573. if (nr_unshown) {
  574. printk(KERN_ALERT
  575. "BUG: Bad page map: %lu messages suppressed\n",
  576. nr_unshown);
  577. nr_unshown = 0;
  578. }
  579. nr_shown = 0;
  580. }
  581. if (nr_shown++ == 0)
  582. resume = jiffies + 60 * HZ;
  583. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  584. index = linear_page_index(vma, addr);
  585. printk(KERN_ALERT
  586. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  587. current->comm,
  588. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  589. if (page)
  590. dump_page(page, "bad pte");
  591. printk(KERN_ALERT
  592. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  593. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  594. /*
  595. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  596. */
  597. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  598. vma->vm_file,
  599. vma->vm_ops ? vma->vm_ops->fault : NULL,
  600. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  601. mapping ? mapping->a_ops->readpage : NULL);
  602. dump_stack();
  603. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  604. }
  605. /*
  606. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  607. *
  608. * "Special" mappings do not wish to be associated with a "struct page" (either
  609. * it doesn't exist, or it exists but they don't want to touch it). In this
  610. * case, NULL is returned here. "Normal" mappings do have a struct page.
  611. *
  612. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  613. * pte bit, in which case this function is trivial. Secondly, an architecture
  614. * may not have a spare pte bit, which requires a more complicated scheme,
  615. * described below.
  616. *
  617. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  618. * special mapping (even if there are underlying and valid "struct pages").
  619. * COWed pages of a VM_PFNMAP are always normal.
  620. *
  621. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  622. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  623. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  624. * mapping will always honor the rule
  625. *
  626. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  627. *
  628. * And for normal mappings this is false.
  629. *
  630. * This restricts such mappings to be a linear translation from virtual address
  631. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  632. * as the vma is not a COW mapping; in that case, we know that all ptes are
  633. * special (because none can have been COWed).
  634. *
  635. *
  636. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  637. *
  638. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  639. * page" backing, however the difference is that _all_ pages with a struct
  640. * page (that is, those where pfn_valid is true) are refcounted and considered
  641. * normal pages by the VM. The disadvantage is that pages are refcounted
  642. * (which can be slower and simply not an option for some PFNMAP users). The
  643. * advantage is that we don't have to follow the strict linearity rule of
  644. * PFNMAP mappings in order to support COWable mappings.
  645. *
  646. */
  647. #ifdef __HAVE_ARCH_PTE_SPECIAL
  648. # define HAVE_PTE_SPECIAL 1
  649. #else
  650. # define HAVE_PTE_SPECIAL 0
  651. #endif
  652. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  653. pte_t pte)
  654. {
  655. unsigned long pfn = pte_pfn(pte);
  656. if (HAVE_PTE_SPECIAL) {
  657. if (likely(!pte_special(pte)))
  658. goto check_pfn;
  659. if (vma->vm_ops && vma->vm_ops->find_special_page)
  660. return vma->vm_ops->find_special_page(vma, addr);
  661. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  662. return NULL;
  663. if (!is_zero_pfn(pfn))
  664. print_bad_pte(vma, addr, pte, NULL);
  665. return NULL;
  666. }
  667. /* !HAVE_PTE_SPECIAL case follows: */
  668. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  669. if (vma->vm_flags & VM_MIXEDMAP) {
  670. if (!pfn_valid(pfn))
  671. return NULL;
  672. goto out;
  673. } else {
  674. unsigned long off;
  675. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  676. if (pfn == vma->vm_pgoff + off)
  677. return NULL;
  678. if (!is_cow_mapping(vma->vm_flags))
  679. return NULL;
  680. }
  681. }
  682. if (is_zero_pfn(pfn))
  683. return NULL;
  684. check_pfn:
  685. if (unlikely(pfn > highest_memmap_pfn)) {
  686. print_bad_pte(vma, addr, pte, NULL);
  687. return NULL;
  688. }
  689. /*
  690. * NOTE! We still have PageReserved() pages in the page tables.
  691. * eg. VDSO mappings can cause them to exist.
  692. */
  693. out:
  694. return pfn_to_page(pfn);
  695. }
  696. /*
  697. * copy one vm_area from one task to the other. Assumes the page tables
  698. * already present in the new task to be cleared in the whole range
  699. * covered by this vma.
  700. */
  701. static inline unsigned long
  702. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  703. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  704. unsigned long addr, int *rss)
  705. {
  706. unsigned long vm_flags = vma->vm_flags;
  707. pte_t pte = *src_pte;
  708. struct page *page;
  709. /* pte contains position in swap or file, so copy. */
  710. if (unlikely(!pte_present(pte))) {
  711. swp_entry_t entry = pte_to_swp_entry(pte);
  712. if (likely(!non_swap_entry(entry))) {
  713. if (swap_duplicate(entry) < 0)
  714. return entry.val;
  715. /* make sure dst_mm is on swapoff's mmlist. */
  716. if (unlikely(list_empty(&dst_mm->mmlist))) {
  717. spin_lock(&mmlist_lock);
  718. if (list_empty(&dst_mm->mmlist))
  719. list_add(&dst_mm->mmlist,
  720. &src_mm->mmlist);
  721. spin_unlock(&mmlist_lock);
  722. }
  723. rss[MM_SWAPENTS]++;
  724. } else if (is_migration_entry(entry)) {
  725. page = migration_entry_to_page(entry);
  726. if (PageAnon(page))
  727. rss[MM_ANONPAGES]++;
  728. else
  729. rss[MM_FILEPAGES]++;
  730. if (is_write_migration_entry(entry) &&
  731. is_cow_mapping(vm_flags)) {
  732. /*
  733. * COW mappings require pages in both
  734. * parent and child to be set to read.
  735. */
  736. make_migration_entry_read(&entry);
  737. pte = swp_entry_to_pte(entry);
  738. if (pte_swp_soft_dirty(*src_pte))
  739. pte = pte_swp_mksoft_dirty(pte);
  740. set_pte_at(src_mm, addr, src_pte, pte);
  741. }
  742. }
  743. goto out_set_pte;
  744. }
  745. /*
  746. * If it's a COW mapping, write protect it both
  747. * in the parent and the child
  748. */
  749. if (is_cow_mapping(vm_flags)) {
  750. ptep_set_wrprotect(src_mm, addr, src_pte);
  751. pte = pte_wrprotect(pte);
  752. }
  753. /*
  754. * If it's a shared mapping, mark it clean in
  755. * the child
  756. */
  757. if (vm_flags & VM_SHARED)
  758. pte = pte_mkclean(pte);
  759. pte = pte_mkold(pte);
  760. page = vm_normal_page(vma, addr, pte);
  761. if (page) {
  762. get_page(page);
  763. page_dup_rmap(page);
  764. if (PageAnon(page))
  765. rss[MM_ANONPAGES]++;
  766. else
  767. rss[MM_FILEPAGES]++;
  768. }
  769. out_set_pte:
  770. set_pte_at(dst_mm, addr, dst_pte, pte);
  771. return 0;
  772. }
  773. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  774. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  775. unsigned long addr, unsigned long end)
  776. {
  777. pte_t *orig_src_pte, *orig_dst_pte;
  778. pte_t *src_pte, *dst_pte;
  779. spinlock_t *src_ptl, *dst_ptl;
  780. int progress = 0;
  781. int rss[NR_MM_COUNTERS];
  782. swp_entry_t entry = (swp_entry_t){0};
  783. again:
  784. init_rss_vec(rss);
  785. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  786. if (!dst_pte)
  787. return -ENOMEM;
  788. src_pte = pte_offset_map(src_pmd, addr);
  789. src_ptl = pte_lockptr(src_mm, src_pmd);
  790. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  791. orig_src_pte = src_pte;
  792. orig_dst_pte = dst_pte;
  793. arch_enter_lazy_mmu_mode();
  794. do {
  795. /*
  796. * We are holding two locks at this point - either of them
  797. * could generate latencies in another task on another CPU.
  798. */
  799. if (progress >= 32) {
  800. progress = 0;
  801. if (need_resched() ||
  802. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  803. break;
  804. }
  805. if (pte_none(*src_pte)) {
  806. progress++;
  807. continue;
  808. }
  809. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  810. vma, addr, rss);
  811. if (entry.val)
  812. break;
  813. progress += 8;
  814. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  815. arch_leave_lazy_mmu_mode();
  816. spin_unlock(src_ptl);
  817. pte_unmap(orig_src_pte);
  818. add_mm_rss_vec(dst_mm, rss);
  819. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  820. cond_resched();
  821. if (entry.val) {
  822. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  823. return -ENOMEM;
  824. progress = 0;
  825. }
  826. if (addr != end)
  827. goto again;
  828. return 0;
  829. }
  830. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  831. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  832. unsigned long addr, unsigned long end)
  833. {
  834. pmd_t *src_pmd, *dst_pmd;
  835. unsigned long next;
  836. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  837. if (!dst_pmd)
  838. return -ENOMEM;
  839. src_pmd = pmd_offset(src_pud, addr);
  840. do {
  841. next = pmd_addr_end(addr, end);
  842. if (pmd_trans_huge(*src_pmd)) {
  843. int err;
  844. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  845. err = copy_huge_pmd(dst_mm, src_mm,
  846. dst_pmd, src_pmd, addr, vma);
  847. if (err == -ENOMEM)
  848. return -ENOMEM;
  849. if (!err)
  850. continue;
  851. /* fall through */
  852. }
  853. if (pmd_none_or_clear_bad(src_pmd))
  854. continue;
  855. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  856. vma, addr, next))
  857. return -ENOMEM;
  858. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  859. return 0;
  860. }
  861. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  862. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  863. unsigned long addr, unsigned long end)
  864. {
  865. pud_t *src_pud, *dst_pud;
  866. unsigned long next;
  867. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  868. if (!dst_pud)
  869. return -ENOMEM;
  870. src_pud = pud_offset(src_pgd, addr);
  871. do {
  872. next = pud_addr_end(addr, end);
  873. if (pud_none_or_clear_bad(src_pud))
  874. continue;
  875. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  876. vma, addr, next))
  877. return -ENOMEM;
  878. } while (dst_pud++, src_pud++, addr = next, addr != end);
  879. return 0;
  880. }
  881. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  882. struct vm_area_struct *vma)
  883. {
  884. pgd_t *src_pgd, *dst_pgd;
  885. unsigned long next;
  886. unsigned long addr = vma->vm_start;
  887. unsigned long end = vma->vm_end;
  888. unsigned long mmun_start; /* For mmu_notifiers */
  889. unsigned long mmun_end; /* For mmu_notifiers */
  890. bool is_cow;
  891. int ret;
  892. /*
  893. * Don't copy ptes where a page fault will fill them correctly.
  894. * Fork becomes much lighter when there are big shared or private
  895. * readonly mappings. The tradeoff is that copy_page_range is more
  896. * efficient than faulting.
  897. */
  898. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  899. !vma->anon_vma)
  900. return 0;
  901. if (is_vm_hugetlb_page(vma))
  902. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  903. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  904. /*
  905. * We do not free on error cases below as remove_vma
  906. * gets called on error from higher level routine
  907. */
  908. ret = track_pfn_copy(vma);
  909. if (ret)
  910. return ret;
  911. }
  912. /*
  913. * We need to invalidate the secondary MMU mappings only when
  914. * there could be a permission downgrade on the ptes of the
  915. * parent mm. And a permission downgrade will only happen if
  916. * is_cow_mapping() returns true.
  917. */
  918. is_cow = is_cow_mapping(vma->vm_flags);
  919. mmun_start = addr;
  920. mmun_end = end;
  921. if (is_cow)
  922. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  923. mmun_end);
  924. ret = 0;
  925. dst_pgd = pgd_offset(dst_mm, addr);
  926. src_pgd = pgd_offset(src_mm, addr);
  927. do {
  928. next = pgd_addr_end(addr, end);
  929. if (pgd_none_or_clear_bad(src_pgd))
  930. continue;
  931. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  932. vma, addr, next))) {
  933. ret = -ENOMEM;
  934. break;
  935. }
  936. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  937. if (is_cow)
  938. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  939. return ret;
  940. }
  941. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  942. struct vm_area_struct *vma, pmd_t *pmd,
  943. unsigned long addr, unsigned long end,
  944. struct zap_details *details)
  945. {
  946. struct mm_struct *mm = tlb->mm;
  947. int force_flush = 0;
  948. int rss[NR_MM_COUNTERS];
  949. spinlock_t *ptl;
  950. pte_t *start_pte;
  951. pte_t *pte;
  952. swp_entry_t entry;
  953. again:
  954. init_rss_vec(rss);
  955. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  956. pte = start_pte;
  957. arch_enter_lazy_mmu_mode();
  958. do {
  959. pte_t ptent = *pte;
  960. if (pte_none(ptent)) {
  961. continue;
  962. }
  963. if (pte_present(ptent)) {
  964. struct page *page;
  965. page = vm_normal_page(vma, addr, ptent);
  966. if (unlikely(details) && page) {
  967. /*
  968. * unmap_shared_mapping_pages() wants to
  969. * invalidate cache without truncating:
  970. * unmap shared but keep private pages.
  971. */
  972. if (details->check_mapping &&
  973. details->check_mapping != page->mapping)
  974. continue;
  975. }
  976. ptent = ptep_get_and_clear_full(mm, addr, pte,
  977. tlb->fullmm);
  978. tlb_remove_tlb_entry(tlb, pte, addr);
  979. if (unlikely(!page))
  980. continue;
  981. if (PageAnon(page))
  982. rss[MM_ANONPAGES]--;
  983. else {
  984. if (pte_dirty(ptent)) {
  985. force_flush = 1;
  986. set_page_dirty(page);
  987. }
  988. if (pte_young(ptent) &&
  989. likely(!(vma->vm_flags & VM_SEQ_READ)))
  990. mark_page_accessed(page);
  991. rss[MM_FILEPAGES]--;
  992. }
  993. page_remove_rmap(page);
  994. if (unlikely(page_mapcount(page) < 0))
  995. print_bad_pte(vma, addr, ptent, page);
  996. if (unlikely(!__tlb_remove_page(tlb, page))) {
  997. force_flush = 1;
  998. addr += PAGE_SIZE;
  999. break;
  1000. }
  1001. continue;
  1002. }
  1003. /* If details->check_mapping, we leave swap entries. */
  1004. if (unlikely(details))
  1005. continue;
  1006. entry = pte_to_swp_entry(ptent);
  1007. if (!non_swap_entry(entry))
  1008. rss[MM_SWAPENTS]--;
  1009. else if (is_migration_entry(entry)) {
  1010. struct page *page;
  1011. page = migration_entry_to_page(entry);
  1012. if (PageAnon(page))
  1013. rss[MM_ANONPAGES]--;
  1014. else
  1015. rss[MM_FILEPAGES]--;
  1016. }
  1017. if (unlikely(!free_swap_and_cache(entry)))
  1018. print_bad_pte(vma, addr, ptent, NULL);
  1019. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1020. } while (pte++, addr += PAGE_SIZE, addr != end);
  1021. add_mm_rss_vec(mm, rss);
  1022. arch_leave_lazy_mmu_mode();
  1023. /* Do the actual TLB flush before dropping ptl */
  1024. if (force_flush)
  1025. tlb_flush_mmu_tlbonly(tlb);
  1026. pte_unmap_unlock(start_pte, ptl);
  1027. /*
  1028. * If we forced a TLB flush (either due to running out of
  1029. * batch buffers or because we needed to flush dirty TLB
  1030. * entries before releasing the ptl), free the batched
  1031. * memory too. Restart if we didn't do everything.
  1032. */
  1033. if (force_flush) {
  1034. force_flush = 0;
  1035. tlb_flush_mmu_free(tlb);
  1036. if (addr != end)
  1037. goto again;
  1038. }
  1039. return addr;
  1040. }
  1041. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1042. struct vm_area_struct *vma, pud_t *pud,
  1043. unsigned long addr, unsigned long end,
  1044. struct zap_details *details)
  1045. {
  1046. pmd_t *pmd;
  1047. unsigned long next;
  1048. pmd = pmd_offset(pud, addr);
  1049. do {
  1050. next = pmd_addr_end(addr, end);
  1051. if (pmd_trans_huge(*pmd)) {
  1052. if (next - addr != HPAGE_PMD_SIZE) {
  1053. #ifdef CONFIG_DEBUG_VM
  1054. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1055. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1056. __func__, addr, end,
  1057. vma->vm_start,
  1058. vma->vm_end);
  1059. BUG();
  1060. }
  1061. #endif
  1062. split_huge_page_pmd(vma, addr, pmd);
  1063. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1064. goto next;
  1065. /* fall through */
  1066. }
  1067. /*
  1068. * Here there can be other concurrent MADV_DONTNEED or
  1069. * trans huge page faults running, and if the pmd is
  1070. * none or trans huge it can change under us. This is
  1071. * because MADV_DONTNEED holds the mmap_sem in read
  1072. * mode.
  1073. */
  1074. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1075. goto next;
  1076. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1077. next:
  1078. cond_resched();
  1079. } while (pmd++, addr = next, addr != end);
  1080. return addr;
  1081. }
  1082. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1083. struct vm_area_struct *vma, pgd_t *pgd,
  1084. unsigned long addr, unsigned long end,
  1085. struct zap_details *details)
  1086. {
  1087. pud_t *pud;
  1088. unsigned long next;
  1089. pud = pud_offset(pgd, addr);
  1090. do {
  1091. next = pud_addr_end(addr, end);
  1092. if (pud_none_or_clear_bad(pud))
  1093. continue;
  1094. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1095. } while (pud++, addr = next, addr != end);
  1096. return addr;
  1097. }
  1098. static void unmap_page_range(struct mmu_gather *tlb,
  1099. struct vm_area_struct *vma,
  1100. unsigned long addr, unsigned long end,
  1101. struct zap_details *details)
  1102. {
  1103. pgd_t *pgd;
  1104. unsigned long next;
  1105. if (details && !details->check_mapping)
  1106. details = NULL;
  1107. BUG_ON(addr >= end);
  1108. tlb_start_vma(tlb, vma);
  1109. pgd = pgd_offset(vma->vm_mm, addr);
  1110. do {
  1111. next = pgd_addr_end(addr, end);
  1112. if (pgd_none_or_clear_bad(pgd))
  1113. continue;
  1114. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1115. } while (pgd++, addr = next, addr != end);
  1116. tlb_end_vma(tlb, vma);
  1117. }
  1118. static void unmap_single_vma(struct mmu_gather *tlb,
  1119. struct vm_area_struct *vma, unsigned long start_addr,
  1120. unsigned long end_addr,
  1121. struct zap_details *details)
  1122. {
  1123. unsigned long start = max(vma->vm_start, start_addr);
  1124. unsigned long end;
  1125. if (start >= vma->vm_end)
  1126. return;
  1127. end = min(vma->vm_end, end_addr);
  1128. if (end <= vma->vm_start)
  1129. return;
  1130. if (vma->vm_file)
  1131. uprobe_munmap(vma, start, end);
  1132. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1133. untrack_pfn(vma, 0, 0);
  1134. if (start != end) {
  1135. if (unlikely(is_vm_hugetlb_page(vma))) {
  1136. /*
  1137. * It is undesirable to test vma->vm_file as it
  1138. * should be non-null for valid hugetlb area.
  1139. * However, vm_file will be NULL in the error
  1140. * cleanup path of mmap_region. When
  1141. * hugetlbfs ->mmap method fails,
  1142. * mmap_region() nullifies vma->vm_file
  1143. * before calling this function to clean up.
  1144. * Since no pte has actually been setup, it is
  1145. * safe to do nothing in this case.
  1146. */
  1147. if (vma->vm_file) {
  1148. i_mmap_lock_write(vma->vm_file->f_mapping);
  1149. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1150. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1151. }
  1152. } else
  1153. unmap_page_range(tlb, vma, start, end, details);
  1154. }
  1155. }
  1156. /**
  1157. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1158. * @tlb: address of the caller's struct mmu_gather
  1159. * @vma: the starting vma
  1160. * @start_addr: virtual address at which to start unmapping
  1161. * @end_addr: virtual address at which to end unmapping
  1162. *
  1163. * Unmap all pages in the vma list.
  1164. *
  1165. * Only addresses between `start' and `end' will be unmapped.
  1166. *
  1167. * The VMA list must be sorted in ascending virtual address order.
  1168. *
  1169. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1170. * range after unmap_vmas() returns. So the only responsibility here is to
  1171. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1172. * drops the lock and schedules.
  1173. */
  1174. void unmap_vmas(struct mmu_gather *tlb,
  1175. struct vm_area_struct *vma, unsigned long start_addr,
  1176. unsigned long end_addr)
  1177. {
  1178. struct mm_struct *mm = vma->vm_mm;
  1179. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1180. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1181. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1182. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1183. }
  1184. /**
  1185. * zap_page_range - remove user pages in a given range
  1186. * @vma: vm_area_struct holding the applicable pages
  1187. * @start: starting address of pages to zap
  1188. * @size: number of bytes to zap
  1189. * @details: details of shared cache invalidation
  1190. *
  1191. * Caller must protect the VMA list
  1192. */
  1193. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1194. unsigned long size, struct zap_details *details)
  1195. {
  1196. struct mm_struct *mm = vma->vm_mm;
  1197. struct mmu_gather tlb;
  1198. unsigned long end = start + size;
  1199. lru_add_drain();
  1200. tlb_gather_mmu(&tlb, mm, start, end);
  1201. update_hiwater_rss(mm);
  1202. mmu_notifier_invalidate_range_start(mm, start, end);
  1203. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1204. unmap_single_vma(&tlb, vma, start, end, details);
  1205. mmu_notifier_invalidate_range_end(mm, start, end);
  1206. tlb_finish_mmu(&tlb, start, end);
  1207. }
  1208. /**
  1209. * zap_page_range_single - remove user pages in a given range
  1210. * @vma: vm_area_struct holding the applicable pages
  1211. * @address: starting address of pages to zap
  1212. * @size: number of bytes to zap
  1213. * @details: details of shared cache invalidation
  1214. *
  1215. * The range must fit into one VMA.
  1216. */
  1217. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1218. unsigned long size, struct zap_details *details)
  1219. {
  1220. struct mm_struct *mm = vma->vm_mm;
  1221. struct mmu_gather tlb;
  1222. unsigned long end = address + size;
  1223. lru_add_drain();
  1224. tlb_gather_mmu(&tlb, mm, address, end);
  1225. update_hiwater_rss(mm);
  1226. mmu_notifier_invalidate_range_start(mm, address, end);
  1227. unmap_single_vma(&tlb, vma, address, end, details);
  1228. mmu_notifier_invalidate_range_end(mm, address, end);
  1229. tlb_finish_mmu(&tlb, address, end);
  1230. }
  1231. /**
  1232. * zap_vma_ptes - remove ptes mapping the vma
  1233. * @vma: vm_area_struct holding ptes to be zapped
  1234. * @address: starting address of pages to zap
  1235. * @size: number of bytes to zap
  1236. *
  1237. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1238. *
  1239. * The entire address range must be fully contained within the vma.
  1240. *
  1241. * Returns 0 if successful.
  1242. */
  1243. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1244. unsigned long size)
  1245. {
  1246. if (address < vma->vm_start || address + size > vma->vm_end ||
  1247. !(vma->vm_flags & VM_PFNMAP))
  1248. return -1;
  1249. zap_page_range_single(vma, address, size, NULL);
  1250. return 0;
  1251. }
  1252. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1253. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1254. spinlock_t **ptl)
  1255. {
  1256. pgd_t * pgd = pgd_offset(mm, addr);
  1257. pud_t * pud = pud_alloc(mm, pgd, addr);
  1258. if (pud) {
  1259. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1260. if (pmd) {
  1261. VM_BUG_ON(pmd_trans_huge(*pmd));
  1262. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1263. }
  1264. }
  1265. return NULL;
  1266. }
  1267. /*
  1268. * This is the old fallback for page remapping.
  1269. *
  1270. * For historical reasons, it only allows reserved pages. Only
  1271. * old drivers should use this, and they needed to mark their
  1272. * pages reserved for the old functions anyway.
  1273. */
  1274. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1275. struct page *page, pgprot_t prot)
  1276. {
  1277. struct mm_struct *mm = vma->vm_mm;
  1278. int retval;
  1279. pte_t *pte;
  1280. spinlock_t *ptl;
  1281. retval = -EINVAL;
  1282. if (PageAnon(page))
  1283. goto out;
  1284. retval = -ENOMEM;
  1285. flush_dcache_page(page);
  1286. pte = get_locked_pte(mm, addr, &ptl);
  1287. if (!pte)
  1288. goto out;
  1289. retval = -EBUSY;
  1290. if (!pte_none(*pte))
  1291. goto out_unlock;
  1292. /* Ok, finally just insert the thing.. */
  1293. get_page(page);
  1294. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1295. page_add_file_rmap(page);
  1296. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1297. retval = 0;
  1298. pte_unmap_unlock(pte, ptl);
  1299. return retval;
  1300. out_unlock:
  1301. pte_unmap_unlock(pte, ptl);
  1302. out:
  1303. return retval;
  1304. }
  1305. /**
  1306. * vm_insert_page - insert single page into user vma
  1307. * @vma: user vma to map to
  1308. * @addr: target user address of this page
  1309. * @page: source kernel page
  1310. *
  1311. * This allows drivers to insert individual pages they've allocated
  1312. * into a user vma.
  1313. *
  1314. * The page has to be a nice clean _individual_ kernel allocation.
  1315. * If you allocate a compound page, you need to have marked it as
  1316. * such (__GFP_COMP), or manually just split the page up yourself
  1317. * (see split_page()).
  1318. *
  1319. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1320. * took an arbitrary page protection parameter. This doesn't allow
  1321. * that. Your vma protection will have to be set up correctly, which
  1322. * means that if you want a shared writable mapping, you'd better
  1323. * ask for a shared writable mapping!
  1324. *
  1325. * The page does not need to be reserved.
  1326. *
  1327. * Usually this function is called from f_op->mmap() handler
  1328. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1329. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1330. * function from other places, for example from page-fault handler.
  1331. */
  1332. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1333. struct page *page)
  1334. {
  1335. if (addr < vma->vm_start || addr >= vma->vm_end)
  1336. return -EFAULT;
  1337. if (!page_count(page))
  1338. return -EINVAL;
  1339. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1340. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1341. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1342. vma->vm_flags |= VM_MIXEDMAP;
  1343. }
  1344. return insert_page(vma, addr, page, vma->vm_page_prot);
  1345. }
  1346. EXPORT_SYMBOL(vm_insert_page);
  1347. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1348. unsigned long pfn, pgprot_t prot)
  1349. {
  1350. struct mm_struct *mm = vma->vm_mm;
  1351. int retval;
  1352. pte_t *pte, entry;
  1353. spinlock_t *ptl;
  1354. retval = -ENOMEM;
  1355. pte = get_locked_pte(mm, addr, &ptl);
  1356. if (!pte)
  1357. goto out;
  1358. retval = -EBUSY;
  1359. if (!pte_none(*pte))
  1360. goto out_unlock;
  1361. /* Ok, finally just insert the thing.. */
  1362. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1363. set_pte_at(mm, addr, pte, entry);
  1364. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1365. retval = 0;
  1366. out_unlock:
  1367. pte_unmap_unlock(pte, ptl);
  1368. out:
  1369. return retval;
  1370. }
  1371. /**
  1372. * vm_insert_pfn - insert single pfn into user vma
  1373. * @vma: user vma to map to
  1374. * @addr: target user address of this page
  1375. * @pfn: source kernel pfn
  1376. *
  1377. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1378. * they've allocated into a user vma. Same comments apply.
  1379. *
  1380. * This function should only be called from a vm_ops->fault handler, and
  1381. * in that case the handler should return NULL.
  1382. *
  1383. * vma cannot be a COW mapping.
  1384. *
  1385. * As this is called only for pages that do not currently exist, we
  1386. * do not need to flush old virtual caches or the TLB.
  1387. */
  1388. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1389. unsigned long pfn)
  1390. {
  1391. int ret;
  1392. pgprot_t pgprot = vma->vm_page_prot;
  1393. /*
  1394. * Technically, architectures with pte_special can avoid all these
  1395. * restrictions (same for remap_pfn_range). However we would like
  1396. * consistency in testing and feature parity among all, so we should
  1397. * try to keep these invariants in place for everybody.
  1398. */
  1399. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1400. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1401. (VM_PFNMAP|VM_MIXEDMAP));
  1402. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1403. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1404. if (addr < vma->vm_start || addr >= vma->vm_end)
  1405. return -EFAULT;
  1406. if (track_pfn_insert(vma, &pgprot, pfn))
  1407. return -EINVAL;
  1408. ret = insert_pfn(vma, addr, pfn, pgprot);
  1409. return ret;
  1410. }
  1411. EXPORT_SYMBOL(vm_insert_pfn);
  1412. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1413. unsigned long pfn)
  1414. {
  1415. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1416. if (addr < vma->vm_start || addr >= vma->vm_end)
  1417. return -EFAULT;
  1418. /*
  1419. * If we don't have pte special, then we have to use the pfn_valid()
  1420. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1421. * refcount the page if pfn_valid is true (hence insert_page rather
  1422. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1423. * without pte special, it would there be refcounted as a normal page.
  1424. */
  1425. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1426. struct page *page;
  1427. page = pfn_to_page(pfn);
  1428. return insert_page(vma, addr, page, vma->vm_page_prot);
  1429. }
  1430. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1431. }
  1432. EXPORT_SYMBOL(vm_insert_mixed);
  1433. /*
  1434. * maps a range of physical memory into the requested pages. the old
  1435. * mappings are removed. any references to nonexistent pages results
  1436. * in null mappings (currently treated as "copy-on-access")
  1437. */
  1438. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1439. unsigned long addr, unsigned long end,
  1440. unsigned long pfn, pgprot_t prot)
  1441. {
  1442. pte_t *pte;
  1443. spinlock_t *ptl;
  1444. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1445. if (!pte)
  1446. return -ENOMEM;
  1447. arch_enter_lazy_mmu_mode();
  1448. do {
  1449. BUG_ON(!pte_none(*pte));
  1450. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1451. pfn++;
  1452. } while (pte++, addr += PAGE_SIZE, addr != end);
  1453. arch_leave_lazy_mmu_mode();
  1454. pte_unmap_unlock(pte - 1, ptl);
  1455. return 0;
  1456. }
  1457. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1458. unsigned long addr, unsigned long end,
  1459. unsigned long pfn, pgprot_t prot)
  1460. {
  1461. pmd_t *pmd;
  1462. unsigned long next;
  1463. pfn -= addr >> PAGE_SHIFT;
  1464. pmd = pmd_alloc(mm, pud, addr);
  1465. if (!pmd)
  1466. return -ENOMEM;
  1467. VM_BUG_ON(pmd_trans_huge(*pmd));
  1468. do {
  1469. next = pmd_addr_end(addr, end);
  1470. if (remap_pte_range(mm, pmd, addr, next,
  1471. pfn + (addr >> PAGE_SHIFT), prot))
  1472. return -ENOMEM;
  1473. } while (pmd++, addr = next, addr != end);
  1474. return 0;
  1475. }
  1476. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1477. unsigned long addr, unsigned long end,
  1478. unsigned long pfn, pgprot_t prot)
  1479. {
  1480. pud_t *pud;
  1481. unsigned long next;
  1482. pfn -= addr >> PAGE_SHIFT;
  1483. pud = pud_alloc(mm, pgd, addr);
  1484. if (!pud)
  1485. return -ENOMEM;
  1486. do {
  1487. next = pud_addr_end(addr, end);
  1488. if (remap_pmd_range(mm, pud, addr, next,
  1489. pfn + (addr >> PAGE_SHIFT), prot))
  1490. return -ENOMEM;
  1491. } while (pud++, addr = next, addr != end);
  1492. return 0;
  1493. }
  1494. /**
  1495. * remap_pfn_range - remap kernel memory to userspace
  1496. * @vma: user vma to map to
  1497. * @addr: target user address to start at
  1498. * @pfn: physical address of kernel memory
  1499. * @size: size of map area
  1500. * @prot: page protection flags for this mapping
  1501. *
  1502. * Note: this is only safe if the mm semaphore is held when called.
  1503. */
  1504. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1505. unsigned long pfn, unsigned long size, pgprot_t prot)
  1506. {
  1507. pgd_t *pgd;
  1508. unsigned long next;
  1509. unsigned long end = addr + PAGE_ALIGN(size);
  1510. struct mm_struct *mm = vma->vm_mm;
  1511. int err;
  1512. /*
  1513. * Physically remapped pages are special. Tell the
  1514. * rest of the world about it:
  1515. * VM_IO tells people not to look at these pages
  1516. * (accesses can have side effects).
  1517. * VM_PFNMAP tells the core MM that the base pages are just
  1518. * raw PFN mappings, and do not have a "struct page" associated
  1519. * with them.
  1520. * VM_DONTEXPAND
  1521. * Disable vma merging and expanding with mremap().
  1522. * VM_DONTDUMP
  1523. * Omit vma from core dump, even when VM_IO turned off.
  1524. *
  1525. * There's a horrible special case to handle copy-on-write
  1526. * behaviour that some programs depend on. We mark the "original"
  1527. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1528. * See vm_normal_page() for details.
  1529. */
  1530. if (is_cow_mapping(vma->vm_flags)) {
  1531. if (addr != vma->vm_start || end != vma->vm_end)
  1532. return -EINVAL;
  1533. vma->vm_pgoff = pfn;
  1534. }
  1535. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1536. if (err)
  1537. return -EINVAL;
  1538. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1539. BUG_ON(addr >= end);
  1540. pfn -= addr >> PAGE_SHIFT;
  1541. pgd = pgd_offset(mm, addr);
  1542. flush_cache_range(vma, addr, end);
  1543. do {
  1544. next = pgd_addr_end(addr, end);
  1545. err = remap_pud_range(mm, pgd, addr, next,
  1546. pfn + (addr >> PAGE_SHIFT), prot);
  1547. if (err)
  1548. break;
  1549. } while (pgd++, addr = next, addr != end);
  1550. if (err)
  1551. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1552. return err;
  1553. }
  1554. EXPORT_SYMBOL(remap_pfn_range);
  1555. /**
  1556. * vm_iomap_memory - remap memory to userspace
  1557. * @vma: user vma to map to
  1558. * @start: start of area
  1559. * @len: size of area
  1560. *
  1561. * This is a simplified io_remap_pfn_range() for common driver use. The
  1562. * driver just needs to give us the physical memory range to be mapped,
  1563. * we'll figure out the rest from the vma information.
  1564. *
  1565. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1566. * whatever write-combining details or similar.
  1567. */
  1568. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1569. {
  1570. unsigned long vm_len, pfn, pages;
  1571. /* Check that the physical memory area passed in looks valid */
  1572. if (start + len < start)
  1573. return -EINVAL;
  1574. /*
  1575. * You *really* shouldn't map things that aren't page-aligned,
  1576. * but we've historically allowed it because IO memory might
  1577. * just have smaller alignment.
  1578. */
  1579. len += start & ~PAGE_MASK;
  1580. pfn = start >> PAGE_SHIFT;
  1581. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1582. if (pfn + pages < pfn)
  1583. return -EINVAL;
  1584. /* We start the mapping 'vm_pgoff' pages into the area */
  1585. if (vma->vm_pgoff > pages)
  1586. return -EINVAL;
  1587. pfn += vma->vm_pgoff;
  1588. pages -= vma->vm_pgoff;
  1589. /* Can we fit all of the mapping? */
  1590. vm_len = vma->vm_end - vma->vm_start;
  1591. if (vm_len >> PAGE_SHIFT > pages)
  1592. return -EINVAL;
  1593. /* Ok, let it rip */
  1594. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1595. }
  1596. EXPORT_SYMBOL(vm_iomap_memory);
  1597. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1598. unsigned long addr, unsigned long end,
  1599. pte_fn_t fn, void *data)
  1600. {
  1601. pte_t *pte;
  1602. int err;
  1603. pgtable_t token;
  1604. spinlock_t *uninitialized_var(ptl);
  1605. pte = (mm == &init_mm) ?
  1606. pte_alloc_kernel(pmd, addr) :
  1607. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1608. if (!pte)
  1609. return -ENOMEM;
  1610. BUG_ON(pmd_huge(*pmd));
  1611. arch_enter_lazy_mmu_mode();
  1612. token = pmd_pgtable(*pmd);
  1613. do {
  1614. err = fn(pte++, token, addr, data);
  1615. if (err)
  1616. break;
  1617. } while (addr += PAGE_SIZE, addr != end);
  1618. arch_leave_lazy_mmu_mode();
  1619. if (mm != &init_mm)
  1620. pte_unmap_unlock(pte-1, ptl);
  1621. return err;
  1622. }
  1623. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1624. unsigned long addr, unsigned long end,
  1625. pte_fn_t fn, void *data)
  1626. {
  1627. pmd_t *pmd;
  1628. unsigned long next;
  1629. int err;
  1630. BUG_ON(pud_huge(*pud));
  1631. pmd = pmd_alloc(mm, pud, addr);
  1632. if (!pmd)
  1633. return -ENOMEM;
  1634. do {
  1635. next = pmd_addr_end(addr, end);
  1636. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1637. if (err)
  1638. break;
  1639. } while (pmd++, addr = next, addr != end);
  1640. return err;
  1641. }
  1642. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1643. unsigned long addr, unsigned long end,
  1644. pte_fn_t fn, void *data)
  1645. {
  1646. pud_t *pud;
  1647. unsigned long next;
  1648. int err;
  1649. pud = pud_alloc(mm, pgd, addr);
  1650. if (!pud)
  1651. return -ENOMEM;
  1652. do {
  1653. next = pud_addr_end(addr, end);
  1654. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1655. if (err)
  1656. break;
  1657. } while (pud++, addr = next, addr != end);
  1658. return err;
  1659. }
  1660. /*
  1661. * Scan a region of virtual memory, filling in page tables as necessary
  1662. * and calling a provided function on each leaf page table.
  1663. */
  1664. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1665. unsigned long size, pte_fn_t fn, void *data)
  1666. {
  1667. pgd_t *pgd;
  1668. unsigned long next;
  1669. unsigned long end = addr + size;
  1670. int err;
  1671. BUG_ON(addr >= end);
  1672. pgd = pgd_offset(mm, addr);
  1673. do {
  1674. next = pgd_addr_end(addr, end);
  1675. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1676. if (err)
  1677. break;
  1678. } while (pgd++, addr = next, addr != end);
  1679. return err;
  1680. }
  1681. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1682. /*
  1683. * handle_pte_fault chooses page fault handler according to an entry which was
  1684. * read non-atomically. Before making any commitment, on those architectures
  1685. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1686. * parts, do_swap_page must check under lock before unmapping the pte and
  1687. * proceeding (but do_wp_page is only called after already making such a check;
  1688. * and do_anonymous_page can safely check later on).
  1689. */
  1690. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1691. pte_t *page_table, pte_t orig_pte)
  1692. {
  1693. int same = 1;
  1694. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1695. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1696. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1697. spin_lock(ptl);
  1698. same = pte_same(*page_table, orig_pte);
  1699. spin_unlock(ptl);
  1700. }
  1701. #endif
  1702. pte_unmap(page_table);
  1703. return same;
  1704. }
  1705. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1706. {
  1707. debug_dma_assert_idle(src);
  1708. /*
  1709. * If the source page was a PFN mapping, we don't have
  1710. * a "struct page" for it. We do a best-effort copy by
  1711. * just copying from the original user address. If that
  1712. * fails, we just zero-fill it. Live with it.
  1713. */
  1714. if (unlikely(!src)) {
  1715. void *kaddr = kmap_atomic(dst);
  1716. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1717. /*
  1718. * This really shouldn't fail, because the page is there
  1719. * in the page tables. But it might just be unreadable,
  1720. * in which case we just give up and fill the result with
  1721. * zeroes.
  1722. */
  1723. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1724. clear_page(kaddr);
  1725. kunmap_atomic(kaddr);
  1726. flush_dcache_page(dst);
  1727. } else
  1728. copy_user_highpage(dst, src, va, vma);
  1729. }
  1730. /*
  1731. * Notify the address space that the page is about to become writable so that
  1732. * it can prohibit this or wait for the page to get into an appropriate state.
  1733. *
  1734. * We do this without the lock held, so that it can sleep if it needs to.
  1735. */
  1736. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1737. unsigned long address)
  1738. {
  1739. struct vm_fault vmf;
  1740. int ret;
  1741. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1742. vmf.pgoff = page->index;
  1743. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1744. vmf.page = page;
  1745. vmf.cow_page = NULL;
  1746. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1747. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1748. return ret;
  1749. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1750. lock_page(page);
  1751. if (!page->mapping) {
  1752. unlock_page(page);
  1753. return 0; /* retry */
  1754. }
  1755. ret |= VM_FAULT_LOCKED;
  1756. } else
  1757. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1758. return ret;
  1759. }
  1760. /*
  1761. * Handle write page faults for pages that can be reused in the current vma
  1762. *
  1763. * This can happen either due to the mapping being with the VM_SHARED flag,
  1764. * or due to us being the last reference standing to the page. In either
  1765. * case, all we need to do here is to mark the page as writable and update
  1766. * any related book-keeping.
  1767. */
  1768. static inline int wp_page_reuse(struct mm_struct *mm,
  1769. struct vm_area_struct *vma, unsigned long address,
  1770. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1771. struct page *page, int page_mkwrite,
  1772. int dirty_shared)
  1773. __releases(ptl)
  1774. {
  1775. pte_t entry;
  1776. /*
  1777. * Clear the pages cpupid information as the existing
  1778. * information potentially belongs to a now completely
  1779. * unrelated process.
  1780. */
  1781. if (page)
  1782. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1783. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1784. entry = pte_mkyoung(orig_pte);
  1785. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1786. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1787. update_mmu_cache(vma, address, page_table);
  1788. pte_unmap_unlock(page_table, ptl);
  1789. if (dirty_shared) {
  1790. struct address_space *mapping;
  1791. int dirtied;
  1792. if (!page_mkwrite)
  1793. lock_page(page);
  1794. dirtied = set_page_dirty(page);
  1795. VM_BUG_ON_PAGE(PageAnon(page), page);
  1796. mapping = page->mapping;
  1797. unlock_page(page);
  1798. page_cache_release(page);
  1799. if ((dirtied || page_mkwrite) && mapping) {
  1800. /*
  1801. * Some device drivers do not set page.mapping
  1802. * but still dirty their pages
  1803. */
  1804. balance_dirty_pages_ratelimited(mapping);
  1805. }
  1806. if (!page_mkwrite)
  1807. file_update_time(vma->vm_file);
  1808. }
  1809. return VM_FAULT_WRITE;
  1810. }
  1811. /*
  1812. * Handle the case of a page which we actually need to copy to a new page.
  1813. *
  1814. * Called with mmap_sem locked and the old page referenced, but
  1815. * without the ptl held.
  1816. *
  1817. * High level logic flow:
  1818. *
  1819. * - Allocate a page, copy the content of the old page to the new one.
  1820. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1821. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1822. * - If the pte is still the way we remember it, update the page table and all
  1823. * relevant references. This includes dropping the reference the page-table
  1824. * held to the old page, as well as updating the rmap.
  1825. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1826. */
  1827. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1828. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1829. pte_t orig_pte, struct page *old_page)
  1830. {
  1831. struct page *new_page = NULL;
  1832. spinlock_t *ptl = NULL;
  1833. pte_t entry;
  1834. int page_copied = 0;
  1835. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1836. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1837. struct mem_cgroup *memcg;
  1838. if (unlikely(anon_vma_prepare(vma)))
  1839. goto oom;
  1840. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1841. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1842. if (!new_page)
  1843. goto oom;
  1844. } else {
  1845. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1846. if (!new_page)
  1847. goto oom;
  1848. cow_user_page(new_page, old_page, address, vma);
  1849. }
  1850. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
  1851. goto oom_free_new;
  1852. __SetPageUptodate(new_page);
  1853. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1854. /*
  1855. * Re-check the pte - we dropped the lock
  1856. */
  1857. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1858. if (likely(pte_same(*page_table, orig_pte))) {
  1859. if (old_page) {
  1860. if (!PageAnon(old_page)) {
  1861. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1862. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1863. }
  1864. } else {
  1865. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1866. }
  1867. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1868. entry = mk_pte(new_page, vma->vm_page_prot);
  1869. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1870. /*
  1871. * Clear the pte entry and flush it first, before updating the
  1872. * pte with the new entry. This will avoid a race condition
  1873. * seen in the presence of one thread doing SMC and another
  1874. * thread doing COW.
  1875. */
  1876. ptep_clear_flush_notify(vma, address, page_table);
  1877. page_add_new_anon_rmap(new_page, vma, address);
  1878. mem_cgroup_commit_charge(new_page, memcg, false);
  1879. lru_cache_add_active_or_unevictable(new_page, vma);
  1880. /*
  1881. * We call the notify macro here because, when using secondary
  1882. * mmu page tables (such as kvm shadow page tables), we want the
  1883. * new page to be mapped directly into the secondary page table.
  1884. */
  1885. set_pte_at_notify(mm, address, page_table, entry);
  1886. update_mmu_cache(vma, address, page_table);
  1887. if (old_page) {
  1888. /*
  1889. * Only after switching the pte to the new page may
  1890. * we remove the mapcount here. Otherwise another
  1891. * process may come and find the rmap count decremented
  1892. * before the pte is switched to the new page, and
  1893. * "reuse" the old page writing into it while our pte
  1894. * here still points into it and can be read by other
  1895. * threads.
  1896. *
  1897. * The critical issue is to order this
  1898. * page_remove_rmap with the ptp_clear_flush above.
  1899. * Those stores are ordered by (if nothing else,)
  1900. * the barrier present in the atomic_add_negative
  1901. * in page_remove_rmap.
  1902. *
  1903. * Then the TLB flush in ptep_clear_flush ensures that
  1904. * no process can access the old page before the
  1905. * decremented mapcount is visible. And the old page
  1906. * cannot be reused until after the decremented
  1907. * mapcount is visible. So transitively, TLBs to
  1908. * old page will be flushed before it can be reused.
  1909. */
  1910. page_remove_rmap(old_page);
  1911. }
  1912. /* Free the old page.. */
  1913. new_page = old_page;
  1914. page_copied = 1;
  1915. } else {
  1916. mem_cgroup_cancel_charge(new_page, memcg);
  1917. }
  1918. if (new_page)
  1919. page_cache_release(new_page);
  1920. pte_unmap_unlock(page_table, ptl);
  1921. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1922. if (old_page) {
  1923. /*
  1924. * Don't let another task, with possibly unlocked vma,
  1925. * keep the mlocked page.
  1926. */
  1927. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1928. lock_page(old_page); /* LRU manipulation */
  1929. munlock_vma_page(old_page);
  1930. unlock_page(old_page);
  1931. }
  1932. page_cache_release(old_page);
  1933. }
  1934. return page_copied ? VM_FAULT_WRITE : 0;
  1935. oom_free_new:
  1936. page_cache_release(new_page);
  1937. oom:
  1938. if (old_page)
  1939. page_cache_release(old_page);
  1940. return VM_FAULT_OOM;
  1941. }
  1942. /*
  1943. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1944. * mapping
  1945. */
  1946. static int wp_pfn_shared(struct mm_struct *mm,
  1947. struct vm_area_struct *vma, unsigned long address,
  1948. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1949. pmd_t *pmd)
  1950. {
  1951. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1952. struct vm_fault vmf = {
  1953. .page = NULL,
  1954. .pgoff = linear_page_index(vma, address),
  1955. .virtual_address = (void __user *)(address & PAGE_MASK),
  1956. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1957. };
  1958. int ret;
  1959. pte_unmap_unlock(page_table, ptl);
  1960. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1961. if (ret & VM_FAULT_ERROR)
  1962. return ret;
  1963. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1964. /*
  1965. * We might have raced with another page fault while we
  1966. * released the pte_offset_map_lock.
  1967. */
  1968. if (!pte_same(*page_table, orig_pte)) {
  1969. pte_unmap_unlock(page_table, ptl);
  1970. return 0;
  1971. }
  1972. }
  1973. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  1974. NULL, 0, 0);
  1975. }
  1976. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  1977. unsigned long address, pte_t *page_table,
  1978. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  1979. struct page *old_page)
  1980. __releases(ptl)
  1981. {
  1982. int page_mkwrite = 0;
  1983. page_cache_get(old_page);
  1984. /*
  1985. * Only catch write-faults on shared writable pages,
  1986. * read-only shared pages can get COWed by
  1987. * get_user_pages(.write=1, .force=1).
  1988. */
  1989. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1990. int tmp;
  1991. pte_unmap_unlock(page_table, ptl);
  1992. tmp = do_page_mkwrite(vma, old_page, address);
  1993. if (unlikely(!tmp || (tmp &
  1994. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1995. page_cache_release(old_page);
  1996. return tmp;
  1997. }
  1998. /*
  1999. * Since we dropped the lock we need to revalidate
  2000. * the PTE as someone else may have changed it. If
  2001. * they did, we just return, as we can count on the
  2002. * MMU to tell us if they didn't also make it writable.
  2003. */
  2004. page_table = pte_offset_map_lock(mm, pmd, address,
  2005. &ptl);
  2006. if (!pte_same(*page_table, orig_pte)) {
  2007. unlock_page(old_page);
  2008. pte_unmap_unlock(page_table, ptl);
  2009. page_cache_release(old_page);
  2010. return 0;
  2011. }
  2012. page_mkwrite = 1;
  2013. }
  2014. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2015. orig_pte, old_page, page_mkwrite, 1);
  2016. }
  2017. /*
  2018. * This routine handles present pages, when users try to write
  2019. * to a shared page. It is done by copying the page to a new address
  2020. * and decrementing the shared-page counter for the old page.
  2021. *
  2022. * Note that this routine assumes that the protection checks have been
  2023. * done by the caller (the low-level page fault routine in most cases).
  2024. * Thus we can safely just mark it writable once we've done any necessary
  2025. * COW.
  2026. *
  2027. * We also mark the page dirty at this point even though the page will
  2028. * change only once the write actually happens. This avoids a few races,
  2029. * and potentially makes it more efficient.
  2030. *
  2031. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2032. * but allow concurrent faults), with pte both mapped and locked.
  2033. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2034. */
  2035. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2036. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2037. spinlock_t *ptl, pte_t orig_pte)
  2038. __releases(ptl)
  2039. {
  2040. struct page *old_page;
  2041. old_page = vm_normal_page(vma, address, orig_pte);
  2042. if (!old_page) {
  2043. /*
  2044. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2045. * VM_PFNMAP VMA.
  2046. *
  2047. * We should not cow pages in a shared writeable mapping.
  2048. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2049. */
  2050. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2051. (VM_WRITE|VM_SHARED))
  2052. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2053. orig_pte, pmd);
  2054. pte_unmap_unlock(page_table, ptl);
  2055. return wp_page_copy(mm, vma, address, page_table, pmd,
  2056. orig_pte, old_page);
  2057. }
  2058. /*
  2059. * Take out anonymous pages first, anonymous shared vmas are
  2060. * not dirty accountable.
  2061. */
  2062. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2063. if (!trylock_page(old_page)) {
  2064. page_cache_get(old_page);
  2065. pte_unmap_unlock(page_table, ptl);
  2066. lock_page(old_page);
  2067. page_table = pte_offset_map_lock(mm, pmd, address,
  2068. &ptl);
  2069. if (!pte_same(*page_table, orig_pte)) {
  2070. unlock_page(old_page);
  2071. pte_unmap_unlock(page_table, ptl);
  2072. page_cache_release(old_page);
  2073. return 0;
  2074. }
  2075. page_cache_release(old_page);
  2076. }
  2077. if (reuse_swap_page(old_page)) {
  2078. /*
  2079. * The page is all ours. Move it to our anon_vma so
  2080. * the rmap code will not search our parent or siblings.
  2081. * Protected against the rmap code by the page lock.
  2082. */
  2083. page_move_anon_rmap(old_page, vma, address);
  2084. unlock_page(old_page);
  2085. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2086. orig_pte, old_page, 0, 0);
  2087. }
  2088. unlock_page(old_page);
  2089. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2090. (VM_WRITE|VM_SHARED))) {
  2091. return wp_page_shared(mm, vma, address, page_table, pmd,
  2092. ptl, orig_pte, old_page);
  2093. }
  2094. /*
  2095. * Ok, we need to copy. Oh, well..
  2096. */
  2097. page_cache_get(old_page);
  2098. pte_unmap_unlock(page_table, ptl);
  2099. return wp_page_copy(mm, vma, address, page_table, pmd,
  2100. orig_pte, old_page);
  2101. }
  2102. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2103. unsigned long start_addr, unsigned long end_addr,
  2104. struct zap_details *details)
  2105. {
  2106. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2107. }
  2108. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2109. struct zap_details *details)
  2110. {
  2111. struct vm_area_struct *vma;
  2112. pgoff_t vba, vea, zba, zea;
  2113. vma_interval_tree_foreach(vma, root,
  2114. details->first_index, details->last_index) {
  2115. vba = vma->vm_pgoff;
  2116. vea = vba + vma_pages(vma) - 1;
  2117. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2118. zba = details->first_index;
  2119. if (zba < vba)
  2120. zba = vba;
  2121. zea = details->last_index;
  2122. if (zea > vea)
  2123. zea = vea;
  2124. unmap_mapping_range_vma(vma,
  2125. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2126. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2127. details);
  2128. }
  2129. }
  2130. /**
  2131. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2132. * address_space corresponding to the specified page range in the underlying
  2133. * file.
  2134. *
  2135. * @mapping: the address space containing mmaps to be unmapped.
  2136. * @holebegin: byte in first page to unmap, relative to the start of
  2137. * the underlying file. This will be rounded down to a PAGE_SIZE
  2138. * boundary. Note that this is different from truncate_pagecache(), which
  2139. * must keep the partial page. In contrast, we must get rid of
  2140. * partial pages.
  2141. * @holelen: size of prospective hole in bytes. This will be rounded
  2142. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2143. * end of the file.
  2144. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2145. * but 0 when invalidating pagecache, don't throw away private data.
  2146. */
  2147. void unmap_mapping_range(struct address_space *mapping,
  2148. loff_t const holebegin, loff_t const holelen, int even_cows)
  2149. {
  2150. struct zap_details details;
  2151. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2152. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2153. /* Check for overflow. */
  2154. if (sizeof(holelen) > sizeof(hlen)) {
  2155. long long holeend =
  2156. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2157. if (holeend & ~(long long)ULONG_MAX)
  2158. hlen = ULONG_MAX - hba + 1;
  2159. }
  2160. details.check_mapping = even_cows? NULL: mapping;
  2161. details.first_index = hba;
  2162. details.last_index = hba + hlen - 1;
  2163. if (details.last_index < details.first_index)
  2164. details.last_index = ULONG_MAX;
  2165. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2166. i_mmap_lock_write(mapping);
  2167. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2168. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2169. i_mmap_unlock_write(mapping);
  2170. }
  2171. EXPORT_SYMBOL(unmap_mapping_range);
  2172. /*
  2173. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2174. * but allow concurrent faults), and pte mapped but not yet locked.
  2175. * We return with pte unmapped and unlocked.
  2176. *
  2177. * We return with the mmap_sem locked or unlocked in the same cases
  2178. * as does filemap_fault().
  2179. */
  2180. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2181. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2182. unsigned int flags, pte_t orig_pte)
  2183. {
  2184. spinlock_t *ptl;
  2185. struct page *page, *swapcache;
  2186. struct mem_cgroup *memcg;
  2187. swp_entry_t entry;
  2188. pte_t pte;
  2189. int locked;
  2190. int exclusive = 0;
  2191. int ret = 0;
  2192. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2193. goto out;
  2194. entry = pte_to_swp_entry(orig_pte);
  2195. if (unlikely(non_swap_entry(entry))) {
  2196. if (is_migration_entry(entry)) {
  2197. migration_entry_wait(mm, pmd, address);
  2198. } else if (is_hwpoison_entry(entry)) {
  2199. ret = VM_FAULT_HWPOISON;
  2200. } else {
  2201. print_bad_pte(vma, address, orig_pte, NULL);
  2202. ret = VM_FAULT_SIGBUS;
  2203. }
  2204. goto out;
  2205. }
  2206. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2207. page = lookup_swap_cache(entry);
  2208. if (!page) {
  2209. page = swapin_readahead(entry,
  2210. GFP_HIGHUSER_MOVABLE, vma, address);
  2211. if (!page) {
  2212. /*
  2213. * Back out if somebody else faulted in this pte
  2214. * while we released the pte lock.
  2215. */
  2216. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2217. if (likely(pte_same(*page_table, orig_pte)))
  2218. ret = VM_FAULT_OOM;
  2219. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2220. goto unlock;
  2221. }
  2222. /* Had to read the page from swap area: Major fault */
  2223. ret = VM_FAULT_MAJOR;
  2224. count_vm_event(PGMAJFAULT);
  2225. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2226. } else if (PageHWPoison(page)) {
  2227. /*
  2228. * hwpoisoned dirty swapcache pages are kept for killing
  2229. * owner processes (which may be unknown at hwpoison time)
  2230. */
  2231. ret = VM_FAULT_HWPOISON;
  2232. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2233. swapcache = page;
  2234. goto out_release;
  2235. }
  2236. swapcache = page;
  2237. locked = lock_page_or_retry(page, mm, flags);
  2238. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2239. if (!locked) {
  2240. ret |= VM_FAULT_RETRY;
  2241. goto out_release;
  2242. }
  2243. /*
  2244. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2245. * release the swapcache from under us. The page pin, and pte_same
  2246. * test below, are not enough to exclude that. Even if it is still
  2247. * swapcache, we need to check that the page's swap has not changed.
  2248. */
  2249. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2250. goto out_page;
  2251. page = ksm_might_need_to_copy(page, vma, address);
  2252. if (unlikely(!page)) {
  2253. ret = VM_FAULT_OOM;
  2254. page = swapcache;
  2255. goto out_page;
  2256. }
  2257. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
  2258. ret = VM_FAULT_OOM;
  2259. goto out_page;
  2260. }
  2261. /*
  2262. * Back out if somebody else already faulted in this pte.
  2263. */
  2264. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2265. if (unlikely(!pte_same(*page_table, orig_pte)))
  2266. goto out_nomap;
  2267. if (unlikely(!PageUptodate(page))) {
  2268. ret = VM_FAULT_SIGBUS;
  2269. goto out_nomap;
  2270. }
  2271. /*
  2272. * The page isn't present yet, go ahead with the fault.
  2273. *
  2274. * Be careful about the sequence of operations here.
  2275. * To get its accounting right, reuse_swap_page() must be called
  2276. * while the page is counted on swap but not yet in mapcount i.e.
  2277. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2278. * must be called after the swap_free(), or it will never succeed.
  2279. */
  2280. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2281. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2282. pte = mk_pte(page, vma->vm_page_prot);
  2283. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2284. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2285. flags &= ~FAULT_FLAG_WRITE;
  2286. ret |= VM_FAULT_WRITE;
  2287. exclusive = 1;
  2288. }
  2289. flush_icache_page(vma, page);
  2290. if (pte_swp_soft_dirty(orig_pte))
  2291. pte = pte_mksoft_dirty(pte);
  2292. set_pte_at(mm, address, page_table, pte);
  2293. if (page == swapcache) {
  2294. do_page_add_anon_rmap(page, vma, address, exclusive);
  2295. mem_cgroup_commit_charge(page, memcg, true);
  2296. } else { /* ksm created a completely new copy */
  2297. page_add_new_anon_rmap(page, vma, address);
  2298. mem_cgroup_commit_charge(page, memcg, false);
  2299. lru_cache_add_active_or_unevictable(page, vma);
  2300. }
  2301. swap_free(entry);
  2302. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2303. try_to_free_swap(page);
  2304. unlock_page(page);
  2305. if (page != swapcache) {
  2306. /*
  2307. * Hold the lock to avoid the swap entry to be reused
  2308. * until we take the PT lock for the pte_same() check
  2309. * (to avoid false positives from pte_same). For
  2310. * further safety release the lock after the swap_free
  2311. * so that the swap count won't change under a
  2312. * parallel locked swapcache.
  2313. */
  2314. unlock_page(swapcache);
  2315. page_cache_release(swapcache);
  2316. }
  2317. if (flags & FAULT_FLAG_WRITE) {
  2318. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2319. if (ret & VM_FAULT_ERROR)
  2320. ret &= VM_FAULT_ERROR;
  2321. goto out;
  2322. }
  2323. /* No need to invalidate - it was non-present before */
  2324. update_mmu_cache(vma, address, page_table);
  2325. unlock:
  2326. pte_unmap_unlock(page_table, ptl);
  2327. out:
  2328. return ret;
  2329. out_nomap:
  2330. mem_cgroup_cancel_charge(page, memcg);
  2331. pte_unmap_unlock(page_table, ptl);
  2332. out_page:
  2333. unlock_page(page);
  2334. out_release:
  2335. page_cache_release(page);
  2336. if (page != swapcache) {
  2337. unlock_page(swapcache);
  2338. page_cache_release(swapcache);
  2339. }
  2340. return ret;
  2341. }
  2342. /*
  2343. * This is like a special single-page "expand_{down|up}wards()",
  2344. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2345. * doesn't hit another vma.
  2346. */
  2347. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2348. {
  2349. address &= PAGE_MASK;
  2350. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2351. struct vm_area_struct *prev = vma->vm_prev;
  2352. /*
  2353. * Is there a mapping abutting this one below?
  2354. *
  2355. * That's only ok if it's the same stack mapping
  2356. * that has gotten split..
  2357. */
  2358. if (prev && prev->vm_end == address)
  2359. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2360. return expand_downwards(vma, address - PAGE_SIZE);
  2361. }
  2362. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2363. struct vm_area_struct *next = vma->vm_next;
  2364. /* As VM_GROWSDOWN but s/below/above/ */
  2365. if (next && next->vm_start == address + PAGE_SIZE)
  2366. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2367. return expand_upwards(vma, address + PAGE_SIZE);
  2368. }
  2369. return 0;
  2370. }
  2371. /*
  2372. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2373. * but allow concurrent faults), and pte mapped but not yet locked.
  2374. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2375. */
  2376. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2377. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2378. unsigned int flags)
  2379. {
  2380. struct mem_cgroup *memcg;
  2381. struct page *page;
  2382. spinlock_t *ptl;
  2383. pte_t entry;
  2384. pte_unmap(page_table);
  2385. /* Check if we need to add a guard page to the stack */
  2386. if (check_stack_guard_page(vma, address) < 0)
  2387. return VM_FAULT_SIGSEGV;
  2388. /* Use the zero-page for reads */
  2389. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2390. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2391. vma->vm_page_prot));
  2392. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2393. if (!pte_none(*page_table))
  2394. goto unlock;
  2395. goto setpte;
  2396. }
  2397. /* Allocate our own private page. */
  2398. if (unlikely(anon_vma_prepare(vma)))
  2399. goto oom;
  2400. page = alloc_zeroed_user_highpage_movable(vma, address);
  2401. if (!page)
  2402. goto oom;
  2403. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
  2404. goto oom_free_page;
  2405. /*
  2406. * The memory barrier inside __SetPageUptodate makes sure that
  2407. * preceeding stores to the page contents become visible before
  2408. * the set_pte_at() write.
  2409. */
  2410. __SetPageUptodate(page);
  2411. entry = mk_pte(page, vma->vm_page_prot);
  2412. if (vma->vm_flags & VM_WRITE)
  2413. entry = pte_mkwrite(pte_mkdirty(entry));
  2414. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2415. if (!pte_none(*page_table))
  2416. goto release;
  2417. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2418. page_add_new_anon_rmap(page, vma, address);
  2419. mem_cgroup_commit_charge(page, memcg, false);
  2420. lru_cache_add_active_or_unevictable(page, vma);
  2421. setpte:
  2422. set_pte_at(mm, address, page_table, entry);
  2423. /* No need to invalidate - it was non-present before */
  2424. update_mmu_cache(vma, address, page_table);
  2425. unlock:
  2426. pte_unmap_unlock(page_table, ptl);
  2427. return 0;
  2428. release:
  2429. mem_cgroup_cancel_charge(page, memcg);
  2430. page_cache_release(page);
  2431. goto unlock;
  2432. oom_free_page:
  2433. page_cache_release(page);
  2434. oom:
  2435. return VM_FAULT_OOM;
  2436. }
  2437. /*
  2438. * The mmap_sem must have been held on entry, and may have been
  2439. * released depending on flags and vma->vm_ops->fault() return value.
  2440. * See filemap_fault() and __lock_page_retry().
  2441. */
  2442. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2443. pgoff_t pgoff, unsigned int flags,
  2444. struct page *cow_page, struct page **page)
  2445. {
  2446. struct vm_fault vmf;
  2447. int ret;
  2448. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2449. vmf.pgoff = pgoff;
  2450. vmf.flags = flags;
  2451. vmf.page = NULL;
  2452. vmf.cow_page = cow_page;
  2453. ret = vma->vm_ops->fault(vma, &vmf);
  2454. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2455. return ret;
  2456. if (!vmf.page)
  2457. goto out;
  2458. if (unlikely(PageHWPoison(vmf.page))) {
  2459. if (ret & VM_FAULT_LOCKED)
  2460. unlock_page(vmf.page);
  2461. page_cache_release(vmf.page);
  2462. return VM_FAULT_HWPOISON;
  2463. }
  2464. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2465. lock_page(vmf.page);
  2466. else
  2467. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2468. out:
  2469. *page = vmf.page;
  2470. return ret;
  2471. }
  2472. /**
  2473. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2474. *
  2475. * @vma: virtual memory area
  2476. * @address: user virtual address
  2477. * @page: page to map
  2478. * @pte: pointer to target page table entry
  2479. * @write: true, if new entry is writable
  2480. * @anon: true, if it's anonymous page
  2481. *
  2482. * Caller must hold page table lock relevant for @pte.
  2483. *
  2484. * Target users are page handler itself and implementations of
  2485. * vm_ops->map_pages.
  2486. */
  2487. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2488. struct page *page, pte_t *pte, bool write, bool anon)
  2489. {
  2490. pte_t entry;
  2491. flush_icache_page(vma, page);
  2492. entry = mk_pte(page, vma->vm_page_prot);
  2493. if (write)
  2494. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2495. if (anon) {
  2496. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2497. page_add_new_anon_rmap(page, vma, address);
  2498. } else {
  2499. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2500. page_add_file_rmap(page);
  2501. }
  2502. set_pte_at(vma->vm_mm, address, pte, entry);
  2503. /* no need to invalidate: a not-present page won't be cached */
  2504. update_mmu_cache(vma, address, pte);
  2505. }
  2506. static unsigned long fault_around_bytes __read_mostly =
  2507. rounddown_pow_of_two(65536);
  2508. #ifdef CONFIG_DEBUG_FS
  2509. static int fault_around_bytes_get(void *data, u64 *val)
  2510. {
  2511. *val = fault_around_bytes;
  2512. return 0;
  2513. }
  2514. /*
  2515. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2516. * rounded down to nearest page order. It's what do_fault_around() expects to
  2517. * see.
  2518. */
  2519. static int fault_around_bytes_set(void *data, u64 val)
  2520. {
  2521. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2522. return -EINVAL;
  2523. if (val > PAGE_SIZE)
  2524. fault_around_bytes = rounddown_pow_of_two(val);
  2525. else
  2526. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2527. return 0;
  2528. }
  2529. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2530. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2531. static int __init fault_around_debugfs(void)
  2532. {
  2533. void *ret;
  2534. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2535. &fault_around_bytes_fops);
  2536. if (!ret)
  2537. pr_warn("Failed to create fault_around_bytes in debugfs");
  2538. return 0;
  2539. }
  2540. late_initcall(fault_around_debugfs);
  2541. #endif
  2542. /*
  2543. * do_fault_around() tries to map few pages around the fault address. The hope
  2544. * is that the pages will be needed soon and this will lower the number of
  2545. * faults to handle.
  2546. *
  2547. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2548. * not ready to be mapped: not up-to-date, locked, etc.
  2549. *
  2550. * This function is called with the page table lock taken. In the split ptlock
  2551. * case the page table lock only protects only those entries which belong to
  2552. * the page table corresponding to the fault address.
  2553. *
  2554. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2555. * only once.
  2556. *
  2557. * fault_around_pages() defines how many pages we'll try to map.
  2558. * do_fault_around() expects it to return a power of two less than or equal to
  2559. * PTRS_PER_PTE.
  2560. *
  2561. * The virtual address of the area that we map is naturally aligned to the
  2562. * fault_around_pages() value (and therefore to page order). This way it's
  2563. * easier to guarantee that we don't cross page table boundaries.
  2564. */
  2565. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2566. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2567. {
  2568. unsigned long start_addr, nr_pages, mask;
  2569. pgoff_t max_pgoff;
  2570. struct vm_fault vmf;
  2571. int off;
  2572. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2573. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2574. start_addr = max(address & mask, vma->vm_start);
  2575. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2576. pte -= off;
  2577. pgoff -= off;
  2578. /*
  2579. * max_pgoff is either end of page table or end of vma
  2580. * or fault_around_pages() from pgoff, depending what is nearest.
  2581. */
  2582. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2583. PTRS_PER_PTE - 1;
  2584. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2585. pgoff + nr_pages - 1);
  2586. /* Check if it makes any sense to call ->map_pages */
  2587. while (!pte_none(*pte)) {
  2588. if (++pgoff > max_pgoff)
  2589. return;
  2590. start_addr += PAGE_SIZE;
  2591. if (start_addr >= vma->vm_end)
  2592. return;
  2593. pte++;
  2594. }
  2595. vmf.virtual_address = (void __user *) start_addr;
  2596. vmf.pte = pte;
  2597. vmf.pgoff = pgoff;
  2598. vmf.max_pgoff = max_pgoff;
  2599. vmf.flags = flags;
  2600. vma->vm_ops->map_pages(vma, &vmf);
  2601. }
  2602. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2603. unsigned long address, pmd_t *pmd,
  2604. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2605. {
  2606. struct page *fault_page;
  2607. spinlock_t *ptl;
  2608. pte_t *pte;
  2609. int ret = 0;
  2610. /*
  2611. * Let's call ->map_pages() first and use ->fault() as fallback
  2612. * if page by the offset is not ready to be mapped (cold cache or
  2613. * something).
  2614. */
  2615. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2616. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2617. do_fault_around(vma, address, pte, pgoff, flags);
  2618. if (!pte_same(*pte, orig_pte))
  2619. goto unlock_out;
  2620. pte_unmap_unlock(pte, ptl);
  2621. }
  2622. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2623. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2624. return ret;
  2625. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2626. if (unlikely(!pte_same(*pte, orig_pte))) {
  2627. pte_unmap_unlock(pte, ptl);
  2628. unlock_page(fault_page);
  2629. page_cache_release(fault_page);
  2630. return ret;
  2631. }
  2632. do_set_pte(vma, address, fault_page, pte, false, false);
  2633. unlock_page(fault_page);
  2634. unlock_out:
  2635. pte_unmap_unlock(pte, ptl);
  2636. return ret;
  2637. }
  2638. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2639. unsigned long address, pmd_t *pmd,
  2640. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2641. {
  2642. struct page *fault_page, *new_page;
  2643. struct mem_cgroup *memcg;
  2644. spinlock_t *ptl;
  2645. pte_t *pte;
  2646. int ret;
  2647. if (unlikely(anon_vma_prepare(vma)))
  2648. return VM_FAULT_OOM;
  2649. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2650. if (!new_page)
  2651. return VM_FAULT_OOM;
  2652. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
  2653. page_cache_release(new_page);
  2654. return VM_FAULT_OOM;
  2655. }
  2656. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2657. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2658. goto uncharge_out;
  2659. if (fault_page)
  2660. copy_user_highpage(new_page, fault_page, address, vma);
  2661. __SetPageUptodate(new_page);
  2662. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2663. if (unlikely(!pte_same(*pte, orig_pte))) {
  2664. pte_unmap_unlock(pte, ptl);
  2665. if (fault_page) {
  2666. unlock_page(fault_page);
  2667. page_cache_release(fault_page);
  2668. } else {
  2669. /*
  2670. * The fault handler has no page to lock, so it holds
  2671. * i_mmap_lock for read to protect against truncate.
  2672. */
  2673. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2674. }
  2675. goto uncharge_out;
  2676. }
  2677. do_set_pte(vma, address, new_page, pte, true, true);
  2678. mem_cgroup_commit_charge(new_page, memcg, false);
  2679. lru_cache_add_active_or_unevictable(new_page, vma);
  2680. pte_unmap_unlock(pte, ptl);
  2681. if (fault_page) {
  2682. unlock_page(fault_page);
  2683. page_cache_release(fault_page);
  2684. } else {
  2685. /*
  2686. * The fault handler has no page to lock, so it holds
  2687. * i_mmap_lock for read to protect against truncate.
  2688. */
  2689. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2690. }
  2691. return ret;
  2692. uncharge_out:
  2693. mem_cgroup_cancel_charge(new_page, memcg);
  2694. page_cache_release(new_page);
  2695. return ret;
  2696. }
  2697. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2698. unsigned long address, pmd_t *pmd,
  2699. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2700. {
  2701. struct page *fault_page;
  2702. struct address_space *mapping;
  2703. spinlock_t *ptl;
  2704. pte_t *pte;
  2705. int dirtied = 0;
  2706. int ret, tmp;
  2707. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2708. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2709. return ret;
  2710. /*
  2711. * Check if the backing address space wants to know that the page is
  2712. * about to become writable
  2713. */
  2714. if (vma->vm_ops->page_mkwrite) {
  2715. unlock_page(fault_page);
  2716. tmp = do_page_mkwrite(vma, fault_page, address);
  2717. if (unlikely(!tmp ||
  2718. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2719. page_cache_release(fault_page);
  2720. return tmp;
  2721. }
  2722. }
  2723. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2724. if (unlikely(!pte_same(*pte, orig_pte))) {
  2725. pte_unmap_unlock(pte, ptl);
  2726. unlock_page(fault_page);
  2727. page_cache_release(fault_page);
  2728. return ret;
  2729. }
  2730. do_set_pte(vma, address, fault_page, pte, true, false);
  2731. pte_unmap_unlock(pte, ptl);
  2732. if (set_page_dirty(fault_page))
  2733. dirtied = 1;
  2734. /*
  2735. * Take a local copy of the address_space - page.mapping may be zeroed
  2736. * by truncate after unlock_page(). The address_space itself remains
  2737. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2738. * release semantics to prevent the compiler from undoing this copying.
  2739. */
  2740. mapping = fault_page->mapping;
  2741. unlock_page(fault_page);
  2742. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2743. /*
  2744. * Some device drivers do not set page.mapping but still
  2745. * dirty their pages
  2746. */
  2747. balance_dirty_pages_ratelimited(mapping);
  2748. }
  2749. if (!vma->vm_ops->page_mkwrite)
  2750. file_update_time(vma->vm_file);
  2751. return ret;
  2752. }
  2753. /*
  2754. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2755. * but allow concurrent faults).
  2756. * The mmap_sem may have been released depending on flags and our
  2757. * return value. See filemap_fault() and __lock_page_or_retry().
  2758. */
  2759. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2760. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2761. unsigned int flags, pte_t orig_pte)
  2762. {
  2763. pgoff_t pgoff = (((address & PAGE_MASK)
  2764. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2765. pte_unmap(page_table);
  2766. if (!(flags & FAULT_FLAG_WRITE))
  2767. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2768. orig_pte);
  2769. if (!(vma->vm_flags & VM_SHARED))
  2770. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2771. orig_pte);
  2772. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2773. }
  2774. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2775. unsigned long addr, int page_nid,
  2776. int *flags)
  2777. {
  2778. get_page(page);
  2779. count_vm_numa_event(NUMA_HINT_FAULTS);
  2780. if (page_nid == numa_node_id()) {
  2781. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2782. *flags |= TNF_FAULT_LOCAL;
  2783. }
  2784. return mpol_misplaced(page, vma, addr);
  2785. }
  2786. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2787. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2788. {
  2789. struct page *page = NULL;
  2790. spinlock_t *ptl;
  2791. int page_nid = -1;
  2792. int last_cpupid;
  2793. int target_nid;
  2794. bool migrated = false;
  2795. bool was_writable = pte_write(pte);
  2796. int flags = 0;
  2797. /* A PROT_NONE fault should not end up here */
  2798. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2799. /*
  2800. * The "pte" at this point cannot be used safely without
  2801. * validation through pte_unmap_same(). It's of NUMA type but
  2802. * the pfn may be screwed if the read is non atomic.
  2803. *
  2804. * We can safely just do a "set_pte_at()", because the old
  2805. * page table entry is not accessible, so there would be no
  2806. * concurrent hardware modifications to the PTE.
  2807. */
  2808. ptl = pte_lockptr(mm, pmd);
  2809. spin_lock(ptl);
  2810. if (unlikely(!pte_same(*ptep, pte))) {
  2811. pte_unmap_unlock(ptep, ptl);
  2812. goto out;
  2813. }
  2814. /* Make it present again */
  2815. pte = pte_modify(pte, vma->vm_page_prot);
  2816. pte = pte_mkyoung(pte);
  2817. if (was_writable)
  2818. pte = pte_mkwrite(pte);
  2819. set_pte_at(mm, addr, ptep, pte);
  2820. update_mmu_cache(vma, addr, ptep);
  2821. page = vm_normal_page(vma, addr, pte);
  2822. if (!page) {
  2823. pte_unmap_unlock(ptep, ptl);
  2824. return 0;
  2825. }
  2826. /*
  2827. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2828. * much anyway since they can be in shared cache state. This misses
  2829. * the case where a mapping is writable but the process never writes
  2830. * to it but pte_write gets cleared during protection updates and
  2831. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2832. * background writeback, dirty balancing and application behaviour.
  2833. */
  2834. if (!(vma->vm_flags & VM_WRITE))
  2835. flags |= TNF_NO_GROUP;
  2836. /*
  2837. * Flag if the page is shared between multiple address spaces. This
  2838. * is later used when determining whether to group tasks together
  2839. */
  2840. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2841. flags |= TNF_SHARED;
  2842. last_cpupid = page_cpupid_last(page);
  2843. page_nid = page_to_nid(page);
  2844. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2845. pte_unmap_unlock(ptep, ptl);
  2846. if (target_nid == -1) {
  2847. put_page(page);
  2848. goto out;
  2849. }
  2850. /* Migrate to the requested node */
  2851. migrated = migrate_misplaced_page(page, vma, target_nid);
  2852. if (migrated) {
  2853. page_nid = target_nid;
  2854. flags |= TNF_MIGRATED;
  2855. } else
  2856. flags |= TNF_MIGRATE_FAIL;
  2857. out:
  2858. if (page_nid != -1)
  2859. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2860. return 0;
  2861. }
  2862. /*
  2863. * These routines also need to handle stuff like marking pages dirty
  2864. * and/or accessed for architectures that don't do it in hardware (most
  2865. * RISC architectures). The early dirtying is also good on the i386.
  2866. *
  2867. * There is also a hook called "update_mmu_cache()" that architectures
  2868. * with external mmu caches can use to update those (ie the Sparc or
  2869. * PowerPC hashed page tables that act as extended TLBs).
  2870. *
  2871. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2872. * but allow concurrent faults), and pte mapped but not yet locked.
  2873. * We return with pte unmapped and unlocked.
  2874. *
  2875. * The mmap_sem may have been released depending on flags and our
  2876. * return value. See filemap_fault() and __lock_page_or_retry().
  2877. */
  2878. static int handle_pte_fault(struct mm_struct *mm,
  2879. struct vm_area_struct *vma, unsigned long address,
  2880. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2881. {
  2882. pte_t entry;
  2883. spinlock_t *ptl;
  2884. /*
  2885. * some architectures can have larger ptes than wordsize,
  2886. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2887. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2888. * The code below just needs a consistent view for the ifs and
  2889. * we later double check anyway with the ptl lock held. So here
  2890. * a barrier will do.
  2891. */
  2892. entry = *pte;
  2893. barrier();
  2894. if (!pte_present(entry)) {
  2895. if (pte_none(entry)) {
  2896. if (vma->vm_ops) {
  2897. if (likely(vma->vm_ops->fault))
  2898. return do_fault(mm, vma, address, pte,
  2899. pmd, flags, entry);
  2900. }
  2901. return do_anonymous_page(mm, vma, address,
  2902. pte, pmd, flags);
  2903. }
  2904. return do_swap_page(mm, vma, address,
  2905. pte, pmd, flags, entry);
  2906. }
  2907. if (pte_protnone(entry))
  2908. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2909. ptl = pte_lockptr(mm, pmd);
  2910. spin_lock(ptl);
  2911. if (unlikely(!pte_same(*pte, entry)))
  2912. goto unlock;
  2913. if (flags & FAULT_FLAG_WRITE) {
  2914. if (!pte_write(entry))
  2915. return do_wp_page(mm, vma, address,
  2916. pte, pmd, ptl, entry);
  2917. entry = pte_mkdirty(entry);
  2918. }
  2919. entry = pte_mkyoung(entry);
  2920. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2921. update_mmu_cache(vma, address, pte);
  2922. } else {
  2923. /*
  2924. * This is needed only for protection faults but the arch code
  2925. * is not yet telling us if this is a protection fault or not.
  2926. * This still avoids useless tlb flushes for .text page faults
  2927. * with threads.
  2928. */
  2929. if (flags & FAULT_FLAG_WRITE)
  2930. flush_tlb_fix_spurious_fault(vma, address);
  2931. }
  2932. unlock:
  2933. pte_unmap_unlock(pte, ptl);
  2934. return 0;
  2935. }
  2936. /*
  2937. * By the time we get here, we already hold the mm semaphore
  2938. *
  2939. * The mmap_sem may have been released depending on flags and our
  2940. * return value. See filemap_fault() and __lock_page_or_retry().
  2941. */
  2942. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2943. unsigned long address, unsigned int flags)
  2944. {
  2945. pgd_t *pgd;
  2946. pud_t *pud;
  2947. pmd_t *pmd;
  2948. pte_t *pte;
  2949. if (unlikely(is_vm_hugetlb_page(vma)))
  2950. return hugetlb_fault(mm, vma, address, flags);
  2951. pgd = pgd_offset(mm, address);
  2952. pud = pud_alloc(mm, pgd, address);
  2953. if (!pud)
  2954. return VM_FAULT_OOM;
  2955. pmd = pmd_alloc(mm, pud, address);
  2956. if (!pmd)
  2957. return VM_FAULT_OOM;
  2958. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2959. int ret = VM_FAULT_FALLBACK;
  2960. if (!vma->vm_ops)
  2961. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  2962. pmd, flags);
  2963. if (!(ret & VM_FAULT_FALLBACK))
  2964. return ret;
  2965. } else {
  2966. pmd_t orig_pmd = *pmd;
  2967. int ret;
  2968. barrier();
  2969. if (pmd_trans_huge(orig_pmd)) {
  2970. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  2971. /*
  2972. * If the pmd is splitting, return and retry the
  2973. * the fault. Alternative: wait until the split
  2974. * is done, and goto retry.
  2975. */
  2976. if (pmd_trans_splitting(orig_pmd))
  2977. return 0;
  2978. if (pmd_protnone(orig_pmd))
  2979. return do_huge_pmd_numa_page(mm, vma, address,
  2980. orig_pmd, pmd);
  2981. if (dirty && !pmd_write(orig_pmd)) {
  2982. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  2983. orig_pmd);
  2984. if (!(ret & VM_FAULT_FALLBACK))
  2985. return ret;
  2986. } else {
  2987. huge_pmd_set_accessed(mm, vma, address, pmd,
  2988. orig_pmd, dirty);
  2989. return 0;
  2990. }
  2991. }
  2992. }
  2993. /*
  2994. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2995. * run pte_offset_map on the pmd, if an huge pmd could
  2996. * materialize from under us from a different thread.
  2997. */
  2998. if (unlikely(pmd_none(*pmd)) &&
  2999. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3000. return VM_FAULT_OOM;
  3001. /* if an huge pmd materialized from under us just retry later */
  3002. if (unlikely(pmd_trans_huge(*pmd)))
  3003. return 0;
  3004. /*
  3005. * A regular pmd is established and it can't morph into a huge pmd
  3006. * from under us anymore at this point because we hold the mmap_sem
  3007. * read mode and khugepaged takes it in write mode. So now it's
  3008. * safe to run pte_offset_map().
  3009. */
  3010. pte = pte_offset_map(pmd, address);
  3011. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3012. }
  3013. /*
  3014. * By the time we get here, we already hold the mm semaphore
  3015. *
  3016. * The mmap_sem may have been released depending on flags and our
  3017. * return value. See filemap_fault() and __lock_page_or_retry().
  3018. */
  3019. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3020. unsigned long address, unsigned int flags)
  3021. {
  3022. int ret;
  3023. __set_current_state(TASK_RUNNING);
  3024. count_vm_event(PGFAULT);
  3025. mem_cgroup_count_vm_event(mm, PGFAULT);
  3026. /* do counter updates before entering really critical section. */
  3027. check_sync_rss_stat(current);
  3028. /*
  3029. * Enable the memcg OOM handling for faults triggered in user
  3030. * space. Kernel faults are handled more gracefully.
  3031. */
  3032. if (flags & FAULT_FLAG_USER)
  3033. mem_cgroup_oom_enable();
  3034. ret = __handle_mm_fault(mm, vma, address, flags);
  3035. if (flags & FAULT_FLAG_USER) {
  3036. mem_cgroup_oom_disable();
  3037. /*
  3038. * The task may have entered a memcg OOM situation but
  3039. * if the allocation error was handled gracefully (no
  3040. * VM_FAULT_OOM), there is no need to kill anything.
  3041. * Just clean up the OOM state peacefully.
  3042. */
  3043. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3044. mem_cgroup_oom_synchronize(false);
  3045. }
  3046. return ret;
  3047. }
  3048. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3049. #ifndef __PAGETABLE_PUD_FOLDED
  3050. /*
  3051. * Allocate page upper directory.
  3052. * We've already handled the fast-path in-line.
  3053. */
  3054. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3055. {
  3056. pud_t *new = pud_alloc_one(mm, address);
  3057. if (!new)
  3058. return -ENOMEM;
  3059. smp_wmb(); /* See comment in __pte_alloc */
  3060. spin_lock(&mm->page_table_lock);
  3061. if (pgd_present(*pgd)) /* Another has populated it */
  3062. pud_free(mm, new);
  3063. else
  3064. pgd_populate(mm, pgd, new);
  3065. spin_unlock(&mm->page_table_lock);
  3066. return 0;
  3067. }
  3068. #endif /* __PAGETABLE_PUD_FOLDED */
  3069. #ifndef __PAGETABLE_PMD_FOLDED
  3070. /*
  3071. * Allocate page middle directory.
  3072. * We've already handled the fast-path in-line.
  3073. */
  3074. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3075. {
  3076. pmd_t *new = pmd_alloc_one(mm, address);
  3077. if (!new)
  3078. return -ENOMEM;
  3079. smp_wmb(); /* See comment in __pte_alloc */
  3080. spin_lock(&mm->page_table_lock);
  3081. #ifndef __ARCH_HAS_4LEVEL_HACK
  3082. if (!pud_present(*pud)) {
  3083. mm_inc_nr_pmds(mm);
  3084. pud_populate(mm, pud, new);
  3085. } else /* Another has populated it */
  3086. pmd_free(mm, new);
  3087. #else
  3088. if (!pgd_present(*pud)) {
  3089. mm_inc_nr_pmds(mm);
  3090. pgd_populate(mm, pud, new);
  3091. } else /* Another has populated it */
  3092. pmd_free(mm, new);
  3093. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3094. spin_unlock(&mm->page_table_lock);
  3095. return 0;
  3096. }
  3097. #endif /* __PAGETABLE_PMD_FOLDED */
  3098. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3099. pte_t **ptepp, spinlock_t **ptlp)
  3100. {
  3101. pgd_t *pgd;
  3102. pud_t *pud;
  3103. pmd_t *pmd;
  3104. pte_t *ptep;
  3105. pgd = pgd_offset(mm, address);
  3106. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3107. goto out;
  3108. pud = pud_offset(pgd, address);
  3109. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3110. goto out;
  3111. pmd = pmd_offset(pud, address);
  3112. VM_BUG_ON(pmd_trans_huge(*pmd));
  3113. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3114. goto out;
  3115. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3116. if (pmd_huge(*pmd))
  3117. goto out;
  3118. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3119. if (!ptep)
  3120. goto out;
  3121. if (!pte_present(*ptep))
  3122. goto unlock;
  3123. *ptepp = ptep;
  3124. return 0;
  3125. unlock:
  3126. pte_unmap_unlock(ptep, *ptlp);
  3127. out:
  3128. return -EINVAL;
  3129. }
  3130. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3131. pte_t **ptepp, spinlock_t **ptlp)
  3132. {
  3133. int res;
  3134. /* (void) is needed to make gcc happy */
  3135. (void) __cond_lock(*ptlp,
  3136. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3137. return res;
  3138. }
  3139. /**
  3140. * follow_pfn - look up PFN at a user virtual address
  3141. * @vma: memory mapping
  3142. * @address: user virtual address
  3143. * @pfn: location to store found PFN
  3144. *
  3145. * Only IO mappings and raw PFN mappings are allowed.
  3146. *
  3147. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3148. */
  3149. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3150. unsigned long *pfn)
  3151. {
  3152. int ret = -EINVAL;
  3153. spinlock_t *ptl;
  3154. pte_t *ptep;
  3155. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3156. return ret;
  3157. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3158. if (ret)
  3159. return ret;
  3160. *pfn = pte_pfn(*ptep);
  3161. pte_unmap_unlock(ptep, ptl);
  3162. return 0;
  3163. }
  3164. EXPORT_SYMBOL(follow_pfn);
  3165. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3166. int follow_phys(struct vm_area_struct *vma,
  3167. unsigned long address, unsigned int flags,
  3168. unsigned long *prot, resource_size_t *phys)
  3169. {
  3170. int ret = -EINVAL;
  3171. pte_t *ptep, pte;
  3172. spinlock_t *ptl;
  3173. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3174. goto out;
  3175. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3176. goto out;
  3177. pte = *ptep;
  3178. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3179. goto unlock;
  3180. *prot = pgprot_val(pte_pgprot(pte));
  3181. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3182. ret = 0;
  3183. unlock:
  3184. pte_unmap_unlock(ptep, ptl);
  3185. out:
  3186. return ret;
  3187. }
  3188. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3189. void *buf, int len, int write)
  3190. {
  3191. resource_size_t phys_addr;
  3192. unsigned long prot = 0;
  3193. void __iomem *maddr;
  3194. int offset = addr & (PAGE_SIZE-1);
  3195. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3196. return -EINVAL;
  3197. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3198. if (write)
  3199. memcpy_toio(maddr + offset, buf, len);
  3200. else
  3201. memcpy_fromio(buf, maddr + offset, len);
  3202. iounmap(maddr);
  3203. return len;
  3204. }
  3205. EXPORT_SYMBOL_GPL(generic_access_phys);
  3206. #endif
  3207. /*
  3208. * Access another process' address space as given in mm. If non-NULL, use the
  3209. * given task for page fault accounting.
  3210. */
  3211. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3212. unsigned long addr, void *buf, int len, int write)
  3213. {
  3214. struct vm_area_struct *vma;
  3215. void *old_buf = buf;
  3216. down_read(&mm->mmap_sem);
  3217. /* ignore errors, just check how much was successfully transferred */
  3218. while (len) {
  3219. int bytes, ret, offset;
  3220. void *maddr;
  3221. struct page *page = NULL;
  3222. ret = get_user_pages(tsk, mm, addr, 1,
  3223. write, 1, &page, &vma);
  3224. if (ret <= 0) {
  3225. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3226. break;
  3227. #else
  3228. /*
  3229. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3230. * we can access using slightly different code.
  3231. */
  3232. vma = find_vma(mm, addr);
  3233. if (!vma || vma->vm_start > addr)
  3234. break;
  3235. if (vma->vm_ops && vma->vm_ops->access)
  3236. ret = vma->vm_ops->access(vma, addr, buf,
  3237. len, write);
  3238. if (ret <= 0)
  3239. break;
  3240. bytes = ret;
  3241. #endif
  3242. } else {
  3243. bytes = len;
  3244. offset = addr & (PAGE_SIZE-1);
  3245. if (bytes > PAGE_SIZE-offset)
  3246. bytes = PAGE_SIZE-offset;
  3247. maddr = kmap(page);
  3248. if (write) {
  3249. copy_to_user_page(vma, page, addr,
  3250. maddr + offset, buf, bytes);
  3251. set_page_dirty_lock(page);
  3252. } else {
  3253. copy_from_user_page(vma, page, addr,
  3254. buf, maddr + offset, bytes);
  3255. }
  3256. kunmap(page);
  3257. page_cache_release(page);
  3258. }
  3259. len -= bytes;
  3260. buf += bytes;
  3261. addr += bytes;
  3262. }
  3263. up_read(&mm->mmap_sem);
  3264. return buf - old_buf;
  3265. }
  3266. /**
  3267. * access_remote_vm - access another process' address space
  3268. * @mm: the mm_struct of the target address space
  3269. * @addr: start address to access
  3270. * @buf: source or destination buffer
  3271. * @len: number of bytes to transfer
  3272. * @write: whether the access is a write
  3273. *
  3274. * The caller must hold a reference on @mm.
  3275. */
  3276. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3277. void *buf, int len, int write)
  3278. {
  3279. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3280. }
  3281. /*
  3282. * Access another process' address space.
  3283. * Source/target buffer must be kernel space,
  3284. * Do not walk the page table directly, use get_user_pages
  3285. */
  3286. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3287. void *buf, int len, int write)
  3288. {
  3289. struct mm_struct *mm;
  3290. int ret;
  3291. mm = get_task_mm(tsk);
  3292. if (!mm)
  3293. return 0;
  3294. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3295. mmput(mm);
  3296. return ret;
  3297. }
  3298. /*
  3299. * Print the name of a VMA.
  3300. */
  3301. void print_vma_addr(char *prefix, unsigned long ip)
  3302. {
  3303. struct mm_struct *mm = current->mm;
  3304. struct vm_area_struct *vma;
  3305. /*
  3306. * Do not print if we are in atomic
  3307. * contexts (in exception stacks, etc.):
  3308. */
  3309. if (preempt_count())
  3310. return;
  3311. down_read(&mm->mmap_sem);
  3312. vma = find_vma(mm, ip);
  3313. if (vma && vma->vm_file) {
  3314. struct file *f = vma->vm_file;
  3315. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3316. if (buf) {
  3317. char *p;
  3318. p = file_path(f, buf, PAGE_SIZE);
  3319. if (IS_ERR(p))
  3320. p = "?";
  3321. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3322. vma->vm_start,
  3323. vma->vm_end - vma->vm_start);
  3324. free_page((unsigned long)buf);
  3325. }
  3326. }
  3327. up_read(&mm->mmap_sem);
  3328. }
  3329. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3330. void __might_fault(const char *file, int line)
  3331. {
  3332. /*
  3333. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3334. * holding the mmap_sem, this is safe because kernel memory doesn't
  3335. * get paged out, therefore we'll never actually fault, and the
  3336. * below annotations will generate false positives.
  3337. */
  3338. if (segment_eq(get_fs(), KERNEL_DS))
  3339. return;
  3340. if (pagefault_disabled())
  3341. return;
  3342. __might_sleep(file, line, 0);
  3343. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3344. if (current->mm)
  3345. might_lock_read(&current->mm->mmap_sem);
  3346. #endif
  3347. }
  3348. EXPORT_SYMBOL(__might_fault);
  3349. #endif
  3350. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3351. static void clear_gigantic_page(struct page *page,
  3352. unsigned long addr,
  3353. unsigned int pages_per_huge_page)
  3354. {
  3355. int i;
  3356. struct page *p = page;
  3357. might_sleep();
  3358. for (i = 0; i < pages_per_huge_page;
  3359. i++, p = mem_map_next(p, page, i)) {
  3360. cond_resched();
  3361. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3362. }
  3363. }
  3364. void clear_huge_page(struct page *page,
  3365. unsigned long addr, unsigned int pages_per_huge_page)
  3366. {
  3367. int i;
  3368. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3369. clear_gigantic_page(page, addr, pages_per_huge_page);
  3370. return;
  3371. }
  3372. might_sleep();
  3373. for (i = 0; i < pages_per_huge_page; i++) {
  3374. cond_resched();
  3375. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3376. }
  3377. }
  3378. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3379. unsigned long addr,
  3380. struct vm_area_struct *vma,
  3381. unsigned int pages_per_huge_page)
  3382. {
  3383. int i;
  3384. struct page *dst_base = dst;
  3385. struct page *src_base = src;
  3386. for (i = 0; i < pages_per_huge_page; ) {
  3387. cond_resched();
  3388. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3389. i++;
  3390. dst = mem_map_next(dst, dst_base, i);
  3391. src = mem_map_next(src, src_base, i);
  3392. }
  3393. }
  3394. void copy_user_huge_page(struct page *dst, struct page *src,
  3395. unsigned long addr, struct vm_area_struct *vma,
  3396. unsigned int pages_per_huge_page)
  3397. {
  3398. int i;
  3399. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3400. copy_user_gigantic_page(dst, src, addr, vma,
  3401. pages_per_huge_page);
  3402. return;
  3403. }
  3404. might_sleep();
  3405. for (i = 0; i < pages_per_huge_page; i++) {
  3406. cond_resched();
  3407. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3408. }
  3409. }
  3410. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3411. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3412. static struct kmem_cache *page_ptl_cachep;
  3413. void __init ptlock_cache_init(void)
  3414. {
  3415. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3416. SLAB_PANIC, NULL);
  3417. }
  3418. bool ptlock_alloc(struct page *page)
  3419. {
  3420. spinlock_t *ptl;
  3421. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3422. if (!ptl)
  3423. return false;
  3424. page->ptl = ptl;
  3425. return true;
  3426. }
  3427. void ptlock_free(struct page *page)
  3428. {
  3429. kmem_cache_free(page_ptl_cachep, page->ptl);
  3430. }
  3431. #endif