genalloc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. /*
  2. * Basic general purpose allocator for managing special purpose
  3. * memory, for example, memory that is not managed by the regular
  4. * kmalloc/kfree interface. Uses for this includes on-device special
  5. * memory, uncached memory etc.
  6. *
  7. * It is safe to use the allocator in NMI handlers and other special
  8. * unblockable contexts that could otherwise deadlock on locks. This
  9. * is implemented by using atomic operations and retries on any
  10. * conflicts. The disadvantage is that there may be livelocks in
  11. * extreme cases. For better scalability, one allocator can be used
  12. * for each CPU.
  13. *
  14. * The lockless operation only works if there is enough memory
  15. * available. If new memory is added to the pool a lock has to be
  16. * still taken. So any user relying on locklessness has to ensure
  17. * that sufficient memory is preallocated.
  18. *
  19. * The basic atomic operation of this allocator is cmpxchg on long.
  20. * On architectures that don't have NMI-safe cmpxchg implementation,
  21. * the allocator can NOT be used in NMI handler. So code uses the
  22. * allocator in NMI handler should depend on
  23. * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
  24. *
  25. * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
  26. *
  27. * This source code is licensed under the GNU General Public License,
  28. * Version 2. See the file COPYING for more details.
  29. */
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include <linux/bitmap.h>
  33. #include <linux/rculist.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/genalloc.h>
  36. #include <linux/of_device.h>
  37. static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
  38. {
  39. return chunk->end_addr - chunk->start_addr + 1;
  40. }
  41. static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
  42. {
  43. unsigned long val, nval;
  44. nval = *addr;
  45. do {
  46. val = nval;
  47. if (val & mask_to_set)
  48. return -EBUSY;
  49. cpu_relax();
  50. } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
  51. return 0;
  52. }
  53. static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
  54. {
  55. unsigned long val, nval;
  56. nval = *addr;
  57. do {
  58. val = nval;
  59. if ((val & mask_to_clear) != mask_to_clear)
  60. return -EBUSY;
  61. cpu_relax();
  62. } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
  63. return 0;
  64. }
  65. /*
  66. * bitmap_set_ll - set the specified number of bits at the specified position
  67. * @map: pointer to a bitmap
  68. * @start: a bit position in @map
  69. * @nr: number of bits to set
  70. *
  71. * Set @nr bits start from @start in @map lock-lessly. Several users
  72. * can set/clear the same bitmap simultaneously without lock. If two
  73. * users set the same bit, one user will return remain bits, otherwise
  74. * return 0.
  75. */
  76. static int bitmap_set_ll(unsigned long *map, int start, int nr)
  77. {
  78. unsigned long *p = map + BIT_WORD(start);
  79. const int size = start + nr;
  80. int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  81. unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  82. while (nr - bits_to_set >= 0) {
  83. if (set_bits_ll(p, mask_to_set))
  84. return nr;
  85. nr -= bits_to_set;
  86. bits_to_set = BITS_PER_LONG;
  87. mask_to_set = ~0UL;
  88. p++;
  89. }
  90. if (nr) {
  91. mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  92. if (set_bits_ll(p, mask_to_set))
  93. return nr;
  94. }
  95. return 0;
  96. }
  97. /*
  98. * bitmap_clear_ll - clear the specified number of bits at the specified position
  99. * @map: pointer to a bitmap
  100. * @start: a bit position in @map
  101. * @nr: number of bits to set
  102. *
  103. * Clear @nr bits start from @start in @map lock-lessly. Several users
  104. * can set/clear the same bitmap simultaneously without lock. If two
  105. * users clear the same bit, one user will return remain bits,
  106. * otherwise return 0.
  107. */
  108. static int bitmap_clear_ll(unsigned long *map, int start, int nr)
  109. {
  110. unsigned long *p = map + BIT_WORD(start);
  111. const int size = start + nr;
  112. int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  113. unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  114. while (nr - bits_to_clear >= 0) {
  115. if (clear_bits_ll(p, mask_to_clear))
  116. return nr;
  117. nr -= bits_to_clear;
  118. bits_to_clear = BITS_PER_LONG;
  119. mask_to_clear = ~0UL;
  120. p++;
  121. }
  122. if (nr) {
  123. mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  124. if (clear_bits_ll(p, mask_to_clear))
  125. return nr;
  126. }
  127. return 0;
  128. }
  129. /**
  130. * gen_pool_create - create a new special memory pool
  131. * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
  132. * @nid: node id of the node the pool structure should be allocated on, or -1
  133. *
  134. * Create a new special memory pool that can be used to manage special purpose
  135. * memory not managed by the regular kmalloc/kfree interface.
  136. */
  137. struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
  138. {
  139. struct gen_pool *pool;
  140. pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
  141. if (pool != NULL) {
  142. spin_lock_init(&pool->lock);
  143. INIT_LIST_HEAD(&pool->chunks);
  144. pool->min_alloc_order = min_alloc_order;
  145. pool->algo = gen_pool_first_fit;
  146. pool->data = NULL;
  147. }
  148. return pool;
  149. }
  150. EXPORT_SYMBOL(gen_pool_create);
  151. /**
  152. * gen_pool_add_virt - add a new chunk of special memory to the pool
  153. * @pool: pool to add new memory chunk to
  154. * @virt: virtual starting address of memory chunk to add to pool
  155. * @phys: physical starting address of memory chunk to add to pool
  156. * @size: size in bytes of the memory chunk to add to pool
  157. * @nid: node id of the node the chunk structure and bitmap should be
  158. * allocated on, or -1
  159. *
  160. * Add a new chunk of special memory to the specified pool.
  161. *
  162. * Returns 0 on success or a -ve errno on failure.
  163. */
  164. int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
  165. size_t size, int nid)
  166. {
  167. struct gen_pool_chunk *chunk;
  168. int nbits = size >> pool->min_alloc_order;
  169. int nbytes = sizeof(struct gen_pool_chunk) +
  170. BITS_TO_LONGS(nbits) * sizeof(long);
  171. chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
  172. if (unlikely(chunk == NULL))
  173. return -ENOMEM;
  174. chunk->phys_addr = phys;
  175. chunk->start_addr = virt;
  176. chunk->end_addr = virt + size - 1;
  177. atomic_set(&chunk->avail, size);
  178. spin_lock(&pool->lock);
  179. list_add_rcu(&chunk->next_chunk, &pool->chunks);
  180. spin_unlock(&pool->lock);
  181. return 0;
  182. }
  183. EXPORT_SYMBOL(gen_pool_add_virt);
  184. /**
  185. * gen_pool_virt_to_phys - return the physical address of memory
  186. * @pool: pool to allocate from
  187. * @addr: starting address of memory
  188. *
  189. * Returns the physical address on success, or -1 on error.
  190. */
  191. phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
  192. {
  193. struct gen_pool_chunk *chunk;
  194. phys_addr_t paddr = -1;
  195. rcu_read_lock();
  196. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  197. if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
  198. paddr = chunk->phys_addr + (addr - chunk->start_addr);
  199. break;
  200. }
  201. }
  202. rcu_read_unlock();
  203. return paddr;
  204. }
  205. EXPORT_SYMBOL(gen_pool_virt_to_phys);
  206. /**
  207. * gen_pool_destroy - destroy a special memory pool
  208. * @pool: pool to destroy
  209. *
  210. * Destroy the specified special memory pool. Verifies that there are no
  211. * outstanding allocations.
  212. */
  213. void gen_pool_destroy(struct gen_pool *pool)
  214. {
  215. struct list_head *_chunk, *_next_chunk;
  216. struct gen_pool_chunk *chunk;
  217. int order = pool->min_alloc_order;
  218. int bit, end_bit;
  219. list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
  220. chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
  221. list_del(&chunk->next_chunk);
  222. end_bit = chunk_size(chunk) >> order;
  223. bit = find_next_bit(chunk->bits, end_bit, 0);
  224. BUG_ON(bit < end_bit);
  225. kfree(chunk);
  226. }
  227. kfree(pool);
  228. return;
  229. }
  230. EXPORT_SYMBOL(gen_pool_destroy);
  231. /**
  232. * gen_pool_alloc - allocate special memory from the pool
  233. * @pool: pool to allocate from
  234. * @size: number of bytes to allocate from the pool
  235. *
  236. * Allocate the requested number of bytes from the specified pool.
  237. * Uses the pool allocation function (with first-fit algorithm by default).
  238. * Can not be used in NMI handler on architectures without
  239. * NMI-safe cmpxchg implementation.
  240. */
  241. unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
  242. {
  243. struct gen_pool_chunk *chunk;
  244. unsigned long addr = 0;
  245. int order = pool->min_alloc_order;
  246. int nbits, start_bit = 0, end_bit, remain;
  247. #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
  248. BUG_ON(in_nmi());
  249. #endif
  250. if (size == 0)
  251. return 0;
  252. nbits = (size + (1UL << order) - 1) >> order;
  253. rcu_read_lock();
  254. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  255. if (size > atomic_read(&chunk->avail))
  256. continue;
  257. end_bit = chunk_size(chunk) >> order;
  258. retry:
  259. start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
  260. pool->data);
  261. if (start_bit >= end_bit)
  262. continue;
  263. remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
  264. if (remain) {
  265. remain = bitmap_clear_ll(chunk->bits, start_bit,
  266. nbits - remain);
  267. BUG_ON(remain);
  268. goto retry;
  269. }
  270. addr = chunk->start_addr + ((unsigned long)start_bit << order);
  271. size = nbits << order;
  272. atomic_sub(size, &chunk->avail);
  273. break;
  274. }
  275. rcu_read_unlock();
  276. return addr;
  277. }
  278. EXPORT_SYMBOL(gen_pool_alloc);
  279. /**
  280. * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
  281. * @pool: pool to allocate from
  282. * @size: number of bytes to allocate from the pool
  283. * @dma: dma-view physical address return value. Use NULL if unneeded.
  284. *
  285. * Allocate the requested number of bytes from the specified pool.
  286. * Uses the pool allocation function (with first-fit algorithm by default).
  287. * Can not be used in NMI handler on architectures without
  288. * NMI-safe cmpxchg implementation.
  289. */
  290. void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
  291. {
  292. unsigned long vaddr;
  293. if (!pool)
  294. return NULL;
  295. vaddr = gen_pool_alloc(pool, size);
  296. if (!vaddr)
  297. return NULL;
  298. if (dma)
  299. *dma = gen_pool_virt_to_phys(pool, vaddr);
  300. return (void *)vaddr;
  301. }
  302. EXPORT_SYMBOL(gen_pool_dma_alloc);
  303. /**
  304. * gen_pool_free - free allocated special memory back to the pool
  305. * @pool: pool to free to
  306. * @addr: starting address of memory to free back to pool
  307. * @size: size in bytes of memory to free
  308. *
  309. * Free previously allocated special memory back to the specified
  310. * pool. Can not be used in NMI handler on architectures without
  311. * NMI-safe cmpxchg implementation.
  312. */
  313. void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
  314. {
  315. struct gen_pool_chunk *chunk;
  316. int order = pool->min_alloc_order;
  317. int start_bit, nbits, remain;
  318. #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
  319. BUG_ON(in_nmi());
  320. #endif
  321. nbits = (size + (1UL << order) - 1) >> order;
  322. rcu_read_lock();
  323. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  324. if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
  325. BUG_ON(addr + size - 1 > chunk->end_addr);
  326. start_bit = (addr - chunk->start_addr) >> order;
  327. remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
  328. BUG_ON(remain);
  329. size = nbits << order;
  330. atomic_add(size, &chunk->avail);
  331. rcu_read_unlock();
  332. return;
  333. }
  334. }
  335. rcu_read_unlock();
  336. BUG();
  337. }
  338. EXPORT_SYMBOL(gen_pool_free);
  339. /**
  340. * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
  341. * @pool: the generic memory pool
  342. * @func: func to call
  343. * @data: additional data used by @func
  344. *
  345. * Call @func for every chunk of generic memory pool. The @func is
  346. * called with rcu_read_lock held.
  347. */
  348. void gen_pool_for_each_chunk(struct gen_pool *pool,
  349. void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
  350. void *data)
  351. {
  352. struct gen_pool_chunk *chunk;
  353. rcu_read_lock();
  354. list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
  355. func(pool, chunk, data);
  356. rcu_read_unlock();
  357. }
  358. EXPORT_SYMBOL(gen_pool_for_each_chunk);
  359. /**
  360. * addr_in_gen_pool - checks if an address falls within the range of a pool
  361. * @pool: the generic memory pool
  362. * @start: start address
  363. * @size: size of the region
  364. *
  365. * Check if the range of addresses falls within the specified pool. Returns
  366. * true if the entire range is contained in the pool and false otherwise.
  367. */
  368. bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
  369. size_t size)
  370. {
  371. bool found = false;
  372. unsigned long end = start + size - 1;
  373. struct gen_pool_chunk *chunk;
  374. rcu_read_lock();
  375. list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
  376. if (start >= chunk->start_addr && start <= chunk->end_addr) {
  377. if (end <= chunk->end_addr) {
  378. found = true;
  379. break;
  380. }
  381. }
  382. }
  383. rcu_read_unlock();
  384. return found;
  385. }
  386. /**
  387. * gen_pool_avail - get available free space of the pool
  388. * @pool: pool to get available free space
  389. *
  390. * Return available free space of the specified pool.
  391. */
  392. size_t gen_pool_avail(struct gen_pool *pool)
  393. {
  394. struct gen_pool_chunk *chunk;
  395. size_t avail = 0;
  396. rcu_read_lock();
  397. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
  398. avail += atomic_read(&chunk->avail);
  399. rcu_read_unlock();
  400. return avail;
  401. }
  402. EXPORT_SYMBOL_GPL(gen_pool_avail);
  403. /**
  404. * gen_pool_size - get size in bytes of memory managed by the pool
  405. * @pool: pool to get size
  406. *
  407. * Return size in bytes of memory managed by the pool.
  408. */
  409. size_t gen_pool_size(struct gen_pool *pool)
  410. {
  411. struct gen_pool_chunk *chunk;
  412. size_t size = 0;
  413. rcu_read_lock();
  414. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
  415. size += chunk_size(chunk);
  416. rcu_read_unlock();
  417. return size;
  418. }
  419. EXPORT_SYMBOL_GPL(gen_pool_size);
  420. /**
  421. * gen_pool_set_algo - set the allocation algorithm
  422. * @pool: pool to change allocation algorithm
  423. * @algo: custom algorithm function
  424. * @data: additional data used by @algo
  425. *
  426. * Call @algo for each memory allocation in the pool.
  427. * If @algo is NULL use gen_pool_first_fit as default
  428. * memory allocation function.
  429. */
  430. void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
  431. {
  432. rcu_read_lock();
  433. pool->algo = algo;
  434. if (!pool->algo)
  435. pool->algo = gen_pool_first_fit;
  436. pool->data = data;
  437. rcu_read_unlock();
  438. }
  439. EXPORT_SYMBOL(gen_pool_set_algo);
  440. /**
  441. * gen_pool_first_fit - find the first available region
  442. * of memory matching the size requirement (no alignment constraint)
  443. * @map: The address to base the search on
  444. * @size: The bitmap size in bits
  445. * @start: The bitnumber to start searching at
  446. * @nr: The number of zeroed bits we're looking for
  447. * @data: additional data - unused
  448. */
  449. unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
  450. unsigned long start, unsigned int nr, void *data)
  451. {
  452. return bitmap_find_next_zero_area(map, size, start, nr, 0);
  453. }
  454. EXPORT_SYMBOL(gen_pool_first_fit);
  455. /**
  456. * gen_pool_first_fit_order_align - find the first available region
  457. * of memory matching the size requirement. The region will be aligned
  458. * to the order of the size specified.
  459. * @map: The address to base the search on
  460. * @size: The bitmap size in bits
  461. * @start: The bitnumber to start searching at
  462. * @nr: The number of zeroed bits we're looking for
  463. * @data: additional data - unused
  464. */
  465. unsigned long gen_pool_first_fit_order_align(unsigned long *map,
  466. unsigned long size, unsigned long start,
  467. unsigned int nr, void *data)
  468. {
  469. unsigned long align_mask = roundup_pow_of_two(nr) - 1;
  470. return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
  471. }
  472. EXPORT_SYMBOL(gen_pool_first_fit_order_align);
  473. /**
  474. * gen_pool_best_fit - find the best fitting region of memory
  475. * macthing the size requirement (no alignment constraint)
  476. * @map: The address to base the search on
  477. * @size: The bitmap size in bits
  478. * @start: The bitnumber to start searching at
  479. * @nr: The number of zeroed bits we're looking for
  480. * @data: additional data - unused
  481. *
  482. * Iterate over the bitmap to find the smallest free region
  483. * which we can allocate the memory.
  484. */
  485. unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
  486. unsigned long start, unsigned int nr, void *data)
  487. {
  488. unsigned long start_bit = size;
  489. unsigned long len = size + 1;
  490. unsigned long index;
  491. index = bitmap_find_next_zero_area(map, size, start, nr, 0);
  492. while (index < size) {
  493. int next_bit = find_next_bit(map, size, index + nr);
  494. if ((next_bit - index) < len) {
  495. len = next_bit - index;
  496. start_bit = index;
  497. if (len == nr)
  498. return start_bit;
  499. }
  500. index = bitmap_find_next_zero_area(map, size,
  501. next_bit + 1, nr, 0);
  502. }
  503. return start_bit;
  504. }
  505. EXPORT_SYMBOL(gen_pool_best_fit);
  506. static void devm_gen_pool_release(struct device *dev, void *res)
  507. {
  508. gen_pool_destroy(*(struct gen_pool **)res);
  509. }
  510. /**
  511. * devm_gen_pool_create - managed gen_pool_create
  512. * @dev: device that provides the gen_pool
  513. * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
  514. * @nid: node id of the node the pool structure should be allocated on, or -1
  515. *
  516. * Create a new special memory pool that can be used to manage special purpose
  517. * memory not managed by the regular kmalloc/kfree interface. The pool will be
  518. * automatically destroyed by the device management code.
  519. */
  520. struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
  521. int nid)
  522. {
  523. struct gen_pool **ptr, *pool;
  524. ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
  525. if (!ptr)
  526. return NULL;
  527. pool = gen_pool_create(min_alloc_order, nid);
  528. if (pool) {
  529. *ptr = pool;
  530. devres_add(dev, ptr);
  531. } else {
  532. devres_free(ptr);
  533. }
  534. return pool;
  535. }
  536. EXPORT_SYMBOL(devm_gen_pool_create);
  537. /**
  538. * gen_pool_get - Obtain the gen_pool (if any) for a device
  539. * @dev: device to retrieve the gen_pool from
  540. *
  541. * Returns the gen_pool for the device if one is present, or NULL.
  542. */
  543. struct gen_pool *gen_pool_get(struct device *dev)
  544. {
  545. struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
  546. NULL);
  547. if (!p)
  548. return NULL;
  549. return *p;
  550. }
  551. EXPORT_SYMBOL_GPL(gen_pool_get);
  552. #ifdef CONFIG_OF
  553. /**
  554. * of_gen_pool_get - find a pool by phandle property
  555. * @np: device node
  556. * @propname: property name containing phandle(s)
  557. * @index: index into the phandle array
  558. *
  559. * Returns the pool that contains the chunk starting at the physical
  560. * address of the device tree node pointed at by the phandle property,
  561. * or NULL if not found.
  562. */
  563. struct gen_pool *of_gen_pool_get(struct device_node *np,
  564. const char *propname, int index)
  565. {
  566. struct platform_device *pdev;
  567. struct device_node *np_pool;
  568. np_pool = of_parse_phandle(np, propname, index);
  569. if (!np_pool)
  570. return NULL;
  571. pdev = of_find_device_by_node(np_pool);
  572. of_node_put(np_pool);
  573. if (!pdev)
  574. return NULL;
  575. return gen_pool_get(&pdev->dev);
  576. }
  577. EXPORT_SYMBOL_GPL(of_gen_pool_get);
  578. #endif /* CONFIG_OF */