ntp.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include <linux/rtc.h>
  19. #include "ntp_internal.h"
  20. /*
  21. * NTP timekeeping variables:
  22. *
  23. * Note: All of the NTP state is protected by the timekeeping locks.
  24. */
  25. /* USER_HZ period (usecs): */
  26. unsigned long tick_usec = TICK_USEC;
  27. /* SHIFTED_HZ period (nsecs): */
  28. unsigned long tick_nsec;
  29. static u64 tick_length;
  30. static u64 tick_length_base;
  31. #define SECS_PER_DAY 86400
  32. #define MAX_TICKADJ 500LL /* usecs */
  33. #define MAX_TICKADJ_SCALED \
  34. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  35. /*
  36. * phase-lock loop variables
  37. */
  38. /*
  39. * clock synchronization status
  40. *
  41. * (TIME_ERROR prevents overwriting the CMOS clock)
  42. */
  43. static int time_state = TIME_OK;
  44. /* clock status bits: */
  45. static int time_status = STA_UNSYNC;
  46. /* time adjustment (nsecs): */
  47. static s64 time_offset;
  48. /* pll time constant: */
  49. static long time_constant = 2;
  50. /* maximum error (usecs): */
  51. static long time_maxerror = NTP_PHASE_LIMIT;
  52. /* estimated error (usecs): */
  53. static long time_esterror = NTP_PHASE_LIMIT;
  54. /* frequency offset (scaled nsecs/secs): */
  55. static s64 time_freq;
  56. /* time at last adjustment (secs): */
  57. static long time_reftime;
  58. static long time_adjust;
  59. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  60. static s64 ntp_tick_adj;
  61. /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
  62. static time64_t ntp_next_leap_sec = TIME64_MAX;
  63. #ifdef CONFIG_NTP_PPS
  64. /*
  65. * The following variables are used when a pulse-per-second (PPS) signal
  66. * is available. They establish the engineering parameters of the clock
  67. * discipline loop when controlled by the PPS signal.
  68. */
  69. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  70. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  71. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  72. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  73. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  74. increase pps_shift or consecutive bad
  75. intervals to decrease it */
  76. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  77. static int pps_valid; /* signal watchdog counter */
  78. static long pps_tf[3]; /* phase median filter */
  79. static long pps_jitter; /* current jitter (ns) */
  80. static struct timespec pps_fbase; /* beginning of the last freq interval */
  81. static int pps_shift; /* current interval duration (s) (shift) */
  82. static int pps_intcnt; /* interval counter */
  83. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  84. static long pps_stabil; /* current stability (scaled ns/s) */
  85. /*
  86. * PPS signal quality monitors
  87. */
  88. static long pps_calcnt; /* calibration intervals */
  89. static long pps_jitcnt; /* jitter limit exceeded */
  90. static long pps_stbcnt; /* stability limit exceeded */
  91. static long pps_errcnt; /* calibration errors */
  92. /* PPS kernel consumer compensates the whole phase error immediately.
  93. * Otherwise, reduce the offset by a fixed factor times the time constant.
  94. */
  95. static inline s64 ntp_offset_chunk(s64 offset)
  96. {
  97. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  98. return offset;
  99. else
  100. return shift_right(offset, SHIFT_PLL + time_constant);
  101. }
  102. static inline void pps_reset_freq_interval(void)
  103. {
  104. /* the PPS calibration interval may end
  105. surprisingly early */
  106. pps_shift = PPS_INTMIN;
  107. pps_intcnt = 0;
  108. }
  109. /**
  110. * pps_clear - Clears the PPS state variables
  111. */
  112. static inline void pps_clear(void)
  113. {
  114. pps_reset_freq_interval();
  115. pps_tf[0] = 0;
  116. pps_tf[1] = 0;
  117. pps_tf[2] = 0;
  118. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  119. pps_freq = 0;
  120. }
  121. /* Decrease pps_valid to indicate that another second has passed since
  122. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  123. * missing.
  124. */
  125. static inline void pps_dec_valid(void)
  126. {
  127. if (pps_valid > 0)
  128. pps_valid--;
  129. else {
  130. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  131. STA_PPSWANDER | STA_PPSERROR);
  132. pps_clear();
  133. }
  134. }
  135. static inline void pps_set_freq(s64 freq)
  136. {
  137. pps_freq = freq;
  138. }
  139. static inline int is_error_status(int status)
  140. {
  141. return (status & (STA_UNSYNC|STA_CLOCKERR))
  142. /* PPS signal lost when either PPS time or
  143. * PPS frequency synchronization requested
  144. */
  145. || ((status & (STA_PPSFREQ|STA_PPSTIME))
  146. && !(status & STA_PPSSIGNAL))
  147. /* PPS jitter exceeded when
  148. * PPS time synchronization requested */
  149. || ((status & (STA_PPSTIME|STA_PPSJITTER))
  150. == (STA_PPSTIME|STA_PPSJITTER))
  151. /* PPS wander exceeded or calibration error when
  152. * PPS frequency synchronization requested
  153. */
  154. || ((status & STA_PPSFREQ)
  155. && (status & (STA_PPSWANDER|STA_PPSERROR)));
  156. }
  157. static inline void pps_fill_timex(struct timex *txc)
  158. {
  159. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  160. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  161. txc->jitter = pps_jitter;
  162. if (!(time_status & STA_NANO))
  163. txc->jitter /= NSEC_PER_USEC;
  164. txc->shift = pps_shift;
  165. txc->stabil = pps_stabil;
  166. txc->jitcnt = pps_jitcnt;
  167. txc->calcnt = pps_calcnt;
  168. txc->errcnt = pps_errcnt;
  169. txc->stbcnt = pps_stbcnt;
  170. }
  171. #else /* !CONFIG_NTP_PPS */
  172. static inline s64 ntp_offset_chunk(s64 offset)
  173. {
  174. return shift_right(offset, SHIFT_PLL + time_constant);
  175. }
  176. static inline void pps_reset_freq_interval(void) {}
  177. static inline void pps_clear(void) {}
  178. static inline void pps_dec_valid(void) {}
  179. static inline void pps_set_freq(s64 freq) {}
  180. static inline int is_error_status(int status)
  181. {
  182. return status & (STA_UNSYNC|STA_CLOCKERR);
  183. }
  184. static inline void pps_fill_timex(struct timex *txc)
  185. {
  186. /* PPS is not implemented, so these are zero */
  187. txc->ppsfreq = 0;
  188. txc->jitter = 0;
  189. txc->shift = 0;
  190. txc->stabil = 0;
  191. txc->jitcnt = 0;
  192. txc->calcnt = 0;
  193. txc->errcnt = 0;
  194. txc->stbcnt = 0;
  195. }
  196. #endif /* CONFIG_NTP_PPS */
  197. /**
  198. * ntp_synced - Returns 1 if the NTP status is not UNSYNC
  199. *
  200. */
  201. static inline int ntp_synced(void)
  202. {
  203. return !(time_status & STA_UNSYNC);
  204. }
  205. /*
  206. * NTP methods:
  207. */
  208. /*
  209. * Update (tick_length, tick_length_base, tick_nsec), based
  210. * on (tick_usec, ntp_tick_adj, time_freq):
  211. */
  212. static void ntp_update_frequency(void)
  213. {
  214. u64 second_length;
  215. u64 new_base;
  216. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  217. << NTP_SCALE_SHIFT;
  218. second_length += ntp_tick_adj;
  219. second_length += time_freq;
  220. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  221. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  222. /*
  223. * Don't wait for the next second_overflow, apply
  224. * the change to the tick length immediately:
  225. */
  226. tick_length += new_base - tick_length_base;
  227. tick_length_base = new_base;
  228. }
  229. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  230. {
  231. time_status &= ~STA_MODE;
  232. if (secs < MINSEC)
  233. return 0;
  234. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  235. return 0;
  236. time_status |= STA_MODE;
  237. return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  238. }
  239. static void ntp_update_offset(long offset)
  240. {
  241. s64 freq_adj;
  242. s64 offset64;
  243. long secs;
  244. if (!(time_status & STA_PLL))
  245. return;
  246. if (!(time_status & STA_NANO))
  247. offset *= NSEC_PER_USEC;
  248. /*
  249. * Scale the phase adjustment and
  250. * clamp to the operating range.
  251. */
  252. offset = min(offset, MAXPHASE);
  253. offset = max(offset, -MAXPHASE);
  254. /*
  255. * Select how the frequency is to be controlled
  256. * and in which mode (PLL or FLL).
  257. */
  258. secs = get_seconds() - time_reftime;
  259. if (unlikely(time_status & STA_FREQHOLD))
  260. secs = 0;
  261. time_reftime = get_seconds();
  262. offset64 = offset;
  263. freq_adj = ntp_update_offset_fll(offset64, secs);
  264. /*
  265. * Clamp update interval to reduce PLL gain with low
  266. * sampling rate (e.g. intermittent network connection)
  267. * to avoid instability.
  268. */
  269. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  270. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  271. freq_adj += (offset64 * secs) <<
  272. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  273. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  274. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  275. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  276. }
  277. /**
  278. * ntp_clear - Clears the NTP state variables
  279. */
  280. void ntp_clear(void)
  281. {
  282. time_adjust = 0; /* stop active adjtime() */
  283. time_status |= STA_UNSYNC;
  284. time_maxerror = NTP_PHASE_LIMIT;
  285. time_esterror = NTP_PHASE_LIMIT;
  286. ntp_update_frequency();
  287. tick_length = tick_length_base;
  288. time_offset = 0;
  289. ntp_next_leap_sec = TIME64_MAX;
  290. /* Clear PPS state variables */
  291. pps_clear();
  292. }
  293. u64 ntp_tick_length(void)
  294. {
  295. return tick_length;
  296. }
  297. /**
  298. * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
  299. *
  300. * Provides the time of the next leapsecond against CLOCK_REALTIME in
  301. * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
  302. */
  303. ktime_t ntp_get_next_leap(void)
  304. {
  305. ktime_t ret;
  306. if ((time_state == TIME_INS) && (time_status & STA_INS))
  307. return ktime_set(ntp_next_leap_sec, 0);
  308. ret.tv64 = KTIME_MAX;
  309. return ret;
  310. }
  311. /*
  312. * this routine handles the overflow of the microsecond field
  313. *
  314. * The tricky bits of code to handle the accurate clock support
  315. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  316. * They were originally developed for SUN and DEC kernels.
  317. * All the kudos should go to Dave for this stuff.
  318. *
  319. * Also handles leap second processing, and returns leap offset
  320. */
  321. int second_overflow(unsigned long secs)
  322. {
  323. s64 delta;
  324. int leap = 0;
  325. /*
  326. * Leap second processing. If in leap-insert state at the end of the
  327. * day, the system clock is set back one second; if in leap-delete
  328. * state, the system clock is set ahead one second.
  329. */
  330. switch (time_state) {
  331. case TIME_OK:
  332. if (time_status & STA_INS) {
  333. time_state = TIME_INS;
  334. ntp_next_leap_sec = secs + SECS_PER_DAY -
  335. (secs % SECS_PER_DAY);
  336. } else if (time_status & STA_DEL) {
  337. time_state = TIME_DEL;
  338. ntp_next_leap_sec = secs + SECS_PER_DAY -
  339. ((secs+1) % SECS_PER_DAY);
  340. }
  341. break;
  342. case TIME_INS:
  343. if (!(time_status & STA_INS)) {
  344. ntp_next_leap_sec = TIME64_MAX;
  345. time_state = TIME_OK;
  346. } else if (secs % SECS_PER_DAY == 0) {
  347. leap = -1;
  348. time_state = TIME_OOP;
  349. printk(KERN_NOTICE
  350. "Clock: inserting leap second 23:59:60 UTC\n");
  351. }
  352. break;
  353. case TIME_DEL:
  354. if (!(time_status & STA_DEL)) {
  355. ntp_next_leap_sec = TIME64_MAX;
  356. time_state = TIME_OK;
  357. } else if ((secs + 1) % SECS_PER_DAY == 0) {
  358. leap = 1;
  359. ntp_next_leap_sec = TIME64_MAX;
  360. time_state = TIME_WAIT;
  361. printk(KERN_NOTICE
  362. "Clock: deleting leap second 23:59:59 UTC\n");
  363. }
  364. break;
  365. case TIME_OOP:
  366. ntp_next_leap_sec = TIME64_MAX;
  367. time_state = TIME_WAIT;
  368. break;
  369. case TIME_WAIT:
  370. if (!(time_status & (STA_INS | STA_DEL)))
  371. time_state = TIME_OK;
  372. break;
  373. }
  374. /* Bump the maxerror field */
  375. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  376. if (time_maxerror > NTP_PHASE_LIMIT) {
  377. time_maxerror = NTP_PHASE_LIMIT;
  378. time_status |= STA_UNSYNC;
  379. }
  380. /* Compute the phase adjustment for the next second */
  381. tick_length = tick_length_base;
  382. delta = ntp_offset_chunk(time_offset);
  383. time_offset -= delta;
  384. tick_length += delta;
  385. /* Check PPS signal */
  386. pps_dec_valid();
  387. if (!time_adjust)
  388. goto out;
  389. if (time_adjust > MAX_TICKADJ) {
  390. time_adjust -= MAX_TICKADJ;
  391. tick_length += MAX_TICKADJ_SCALED;
  392. goto out;
  393. }
  394. if (time_adjust < -MAX_TICKADJ) {
  395. time_adjust += MAX_TICKADJ;
  396. tick_length -= MAX_TICKADJ_SCALED;
  397. goto out;
  398. }
  399. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  400. << NTP_SCALE_SHIFT;
  401. time_adjust = 0;
  402. out:
  403. return leap;
  404. }
  405. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  406. int __weak update_persistent_clock64(struct timespec64 now64)
  407. {
  408. struct timespec now;
  409. now = timespec64_to_timespec(now64);
  410. return update_persistent_clock(now);
  411. }
  412. #endif
  413. #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
  414. static void sync_cmos_clock(struct work_struct *work);
  415. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  416. static void sync_cmos_clock(struct work_struct *work)
  417. {
  418. struct timespec64 now;
  419. struct timespec next;
  420. int fail = 1;
  421. /*
  422. * If we have an externally synchronized Linux clock, then update
  423. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  424. * called as close as possible to 500 ms before the new second starts.
  425. * This code is run on a timer. If the clock is set, that timer
  426. * may not expire at the correct time. Thus, we adjust...
  427. * We want the clock to be within a couple of ticks from the target.
  428. */
  429. if (!ntp_synced()) {
  430. /*
  431. * Not synced, exit, do not restart a timer (if one is
  432. * running, let it run out).
  433. */
  434. return;
  435. }
  436. getnstimeofday64(&now);
  437. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
  438. struct timespec64 adjust = now;
  439. fail = -ENODEV;
  440. if (persistent_clock_is_local)
  441. adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
  442. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  443. fail = update_persistent_clock64(adjust);
  444. #endif
  445. #ifdef CONFIG_RTC_SYSTOHC
  446. if (fail == -ENODEV)
  447. fail = rtc_set_ntp_time(adjust);
  448. #endif
  449. }
  450. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  451. if (next.tv_nsec <= 0)
  452. next.tv_nsec += NSEC_PER_SEC;
  453. if (!fail || fail == -ENODEV)
  454. next.tv_sec = 659;
  455. else
  456. next.tv_sec = 0;
  457. if (next.tv_nsec >= NSEC_PER_SEC) {
  458. next.tv_sec++;
  459. next.tv_nsec -= NSEC_PER_SEC;
  460. }
  461. queue_delayed_work(system_power_efficient_wq,
  462. &sync_cmos_work, timespec_to_jiffies(&next));
  463. }
  464. void ntp_notify_cmos_timer(void)
  465. {
  466. queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
  467. }
  468. #else
  469. void ntp_notify_cmos_timer(void) { }
  470. #endif
  471. /*
  472. * Propagate a new txc->status value into the NTP state:
  473. */
  474. static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
  475. {
  476. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  477. time_state = TIME_OK;
  478. time_status = STA_UNSYNC;
  479. ntp_next_leap_sec = TIME64_MAX;
  480. /* restart PPS frequency calibration */
  481. pps_reset_freq_interval();
  482. }
  483. /*
  484. * If we turn on PLL adjustments then reset the
  485. * reference time to current time.
  486. */
  487. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  488. time_reftime = get_seconds();
  489. /* only set allowed bits */
  490. time_status &= STA_RONLY;
  491. time_status |= txc->status & ~STA_RONLY;
  492. }
  493. static inline void process_adjtimex_modes(struct timex *txc,
  494. struct timespec64 *ts,
  495. s32 *time_tai)
  496. {
  497. if (txc->modes & ADJ_STATUS)
  498. process_adj_status(txc, ts);
  499. if (txc->modes & ADJ_NANO)
  500. time_status |= STA_NANO;
  501. if (txc->modes & ADJ_MICRO)
  502. time_status &= ~STA_NANO;
  503. if (txc->modes & ADJ_FREQUENCY) {
  504. time_freq = txc->freq * PPM_SCALE;
  505. time_freq = min(time_freq, MAXFREQ_SCALED);
  506. time_freq = max(time_freq, -MAXFREQ_SCALED);
  507. /* update pps_freq */
  508. pps_set_freq(time_freq);
  509. }
  510. if (txc->modes & ADJ_MAXERROR)
  511. time_maxerror = txc->maxerror;
  512. if (txc->modes & ADJ_ESTERROR)
  513. time_esterror = txc->esterror;
  514. if (txc->modes & ADJ_TIMECONST) {
  515. time_constant = txc->constant;
  516. if (!(time_status & STA_NANO))
  517. time_constant += 4;
  518. time_constant = min(time_constant, (long)MAXTC);
  519. time_constant = max(time_constant, 0l);
  520. }
  521. if (txc->modes & ADJ_TAI && txc->constant > 0)
  522. *time_tai = txc->constant;
  523. if (txc->modes & ADJ_OFFSET)
  524. ntp_update_offset(txc->offset);
  525. if (txc->modes & ADJ_TICK)
  526. tick_usec = txc->tick;
  527. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  528. ntp_update_frequency();
  529. }
  530. /**
  531. * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
  532. */
  533. int ntp_validate_timex(struct timex *txc)
  534. {
  535. if (txc->modes & ADJ_ADJTIME) {
  536. /* singleshot must not be used with any other mode bits */
  537. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  538. return -EINVAL;
  539. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  540. !capable(CAP_SYS_TIME))
  541. return -EPERM;
  542. } else {
  543. /* In order to modify anything, you gotta be super-user! */
  544. if (txc->modes && !capable(CAP_SYS_TIME))
  545. return -EPERM;
  546. /*
  547. * if the quartz is off by more than 10% then
  548. * something is VERY wrong!
  549. */
  550. if (txc->modes & ADJ_TICK &&
  551. (txc->tick < 900000/USER_HZ ||
  552. txc->tick > 1100000/USER_HZ))
  553. return -EINVAL;
  554. }
  555. if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
  556. return -EPERM;
  557. /*
  558. * Check for potential multiplication overflows that can
  559. * only happen on 64-bit systems:
  560. */
  561. if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
  562. if (LLONG_MIN / PPM_SCALE > txc->freq)
  563. return -EINVAL;
  564. if (LLONG_MAX / PPM_SCALE < txc->freq)
  565. return -EINVAL;
  566. }
  567. return 0;
  568. }
  569. /*
  570. * adjtimex mainly allows reading (and writing, if superuser) of
  571. * kernel time-keeping variables. used by xntpd.
  572. */
  573. int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
  574. {
  575. int result;
  576. if (txc->modes & ADJ_ADJTIME) {
  577. long save_adjust = time_adjust;
  578. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  579. /* adjtime() is independent from ntp_adjtime() */
  580. time_adjust = txc->offset;
  581. ntp_update_frequency();
  582. }
  583. txc->offset = save_adjust;
  584. } else {
  585. /* If there are input parameters, then process them: */
  586. if (txc->modes)
  587. process_adjtimex_modes(txc, ts, time_tai);
  588. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  589. NTP_SCALE_SHIFT);
  590. if (!(time_status & STA_NANO))
  591. txc->offset /= NSEC_PER_USEC;
  592. }
  593. result = time_state; /* mostly `TIME_OK' */
  594. /* check for errors */
  595. if (is_error_status(time_status))
  596. result = TIME_ERROR;
  597. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  598. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  599. txc->maxerror = time_maxerror;
  600. txc->esterror = time_esterror;
  601. txc->status = time_status;
  602. txc->constant = time_constant;
  603. txc->precision = 1;
  604. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  605. txc->tick = tick_usec;
  606. txc->tai = *time_tai;
  607. /* fill PPS status fields */
  608. pps_fill_timex(txc);
  609. txc->time.tv_sec = (time_t)ts->tv_sec;
  610. txc->time.tv_usec = ts->tv_nsec;
  611. if (!(time_status & STA_NANO))
  612. txc->time.tv_usec /= NSEC_PER_USEC;
  613. /* Handle leapsec adjustments */
  614. if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
  615. if ((time_state == TIME_INS) && (time_status & STA_INS)) {
  616. result = TIME_OOP;
  617. txc->tai++;
  618. txc->time.tv_sec--;
  619. }
  620. if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
  621. result = TIME_WAIT;
  622. txc->tai--;
  623. txc->time.tv_sec++;
  624. }
  625. if ((time_state == TIME_OOP) &&
  626. (ts->tv_sec == ntp_next_leap_sec)) {
  627. result = TIME_WAIT;
  628. }
  629. }
  630. return result;
  631. }
  632. #ifdef CONFIG_NTP_PPS
  633. /* actually struct pps_normtime is good old struct timespec, but it is
  634. * semantically different (and it is the reason why it was invented):
  635. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  636. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  637. struct pps_normtime {
  638. __kernel_time_t sec; /* seconds */
  639. long nsec; /* nanoseconds */
  640. };
  641. /* normalize the timestamp so that nsec is in the
  642. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  643. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  644. {
  645. struct pps_normtime norm = {
  646. .sec = ts.tv_sec,
  647. .nsec = ts.tv_nsec
  648. };
  649. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  650. norm.nsec -= NSEC_PER_SEC;
  651. norm.sec++;
  652. }
  653. return norm;
  654. }
  655. /* get current phase correction and jitter */
  656. static inline long pps_phase_filter_get(long *jitter)
  657. {
  658. *jitter = pps_tf[0] - pps_tf[1];
  659. if (*jitter < 0)
  660. *jitter = -*jitter;
  661. /* TODO: test various filters */
  662. return pps_tf[0];
  663. }
  664. /* add the sample to the phase filter */
  665. static inline void pps_phase_filter_add(long err)
  666. {
  667. pps_tf[2] = pps_tf[1];
  668. pps_tf[1] = pps_tf[0];
  669. pps_tf[0] = err;
  670. }
  671. /* decrease frequency calibration interval length.
  672. * It is halved after four consecutive unstable intervals.
  673. */
  674. static inline void pps_dec_freq_interval(void)
  675. {
  676. if (--pps_intcnt <= -PPS_INTCOUNT) {
  677. pps_intcnt = -PPS_INTCOUNT;
  678. if (pps_shift > PPS_INTMIN) {
  679. pps_shift--;
  680. pps_intcnt = 0;
  681. }
  682. }
  683. }
  684. /* increase frequency calibration interval length.
  685. * It is doubled after four consecutive stable intervals.
  686. */
  687. static inline void pps_inc_freq_interval(void)
  688. {
  689. if (++pps_intcnt >= PPS_INTCOUNT) {
  690. pps_intcnt = PPS_INTCOUNT;
  691. if (pps_shift < PPS_INTMAX) {
  692. pps_shift++;
  693. pps_intcnt = 0;
  694. }
  695. }
  696. }
  697. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  698. * timestamps
  699. *
  700. * At the end of the calibration interval the difference between the
  701. * first and last MONOTONIC_RAW clock timestamps divided by the length
  702. * of the interval becomes the frequency update. If the interval was
  703. * too long, the data are discarded.
  704. * Returns the difference between old and new frequency values.
  705. */
  706. static long hardpps_update_freq(struct pps_normtime freq_norm)
  707. {
  708. long delta, delta_mod;
  709. s64 ftemp;
  710. /* check if the frequency interval was too long */
  711. if (freq_norm.sec > (2 << pps_shift)) {
  712. time_status |= STA_PPSERROR;
  713. pps_errcnt++;
  714. pps_dec_freq_interval();
  715. printk_deferred(KERN_ERR
  716. "hardpps: PPSERROR: interval too long - %ld s\n",
  717. freq_norm.sec);
  718. return 0;
  719. }
  720. /* here the raw frequency offset and wander (stability) is
  721. * calculated. If the wander is less than the wander threshold
  722. * the interval is increased; otherwise it is decreased.
  723. */
  724. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  725. freq_norm.sec);
  726. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  727. pps_freq = ftemp;
  728. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  729. printk_deferred(KERN_WARNING
  730. "hardpps: PPSWANDER: change=%ld\n", delta);
  731. time_status |= STA_PPSWANDER;
  732. pps_stbcnt++;
  733. pps_dec_freq_interval();
  734. } else { /* good sample */
  735. pps_inc_freq_interval();
  736. }
  737. /* the stability metric is calculated as the average of recent
  738. * frequency changes, but is used only for performance
  739. * monitoring
  740. */
  741. delta_mod = delta;
  742. if (delta_mod < 0)
  743. delta_mod = -delta_mod;
  744. pps_stabil += (div_s64(((s64)delta_mod) <<
  745. (NTP_SCALE_SHIFT - SHIFT_USEC),
  746. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  747. /* if enabled, the system clock frequency is updated */
  748. if ((time_status & STA_PPSFREQ) != 0 &&
  749. (time_status & STA_FREQHOLD) == 0) {
  750. time_freq = pps_freq;
  751. ntp_update_frequency();
  752. }
  753. return delta;
  754. }
  755. /* correct REALTIME clock phase error against PPS signal */
  756. static void hardpps_update_phase(long error)
  757. {
  758. long correction = -error;
  759. long jitter;
  760. /* add the sample to the median filter */
  761. pps_phase_filter_add(correction);
  762. correction = pps_phase_filter_get(&jitter);
  763. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  764. * threshold, the sample is discarded; otherwise, if so enabled,
  765. * the time offset is updated.
  766. */
  767. if (jitter > (pps_jitter << PPS_POPCORN)) {
  768. printk_deferred(KERN_WARNING
  769. "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  770. jitter, (pps_jitter << PPS_POPCORN));
  771. time_status |= STA_PPSJITTER;
  772. pps_jitcnt++;
  773. } else if (time_status & STA_PPSTIME) {
  774. /* correct the time using the phase offset */
  775. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  776. NTP_INTERVAL_FREQ);
  777. /* cancel running adjtime() */
  778. time_adjust = 0;
  779. }
  780. /* update jitter */
  781. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  782. }
  783. /*
  784. * __hardpps() - discipline CPU clock oscillator to external PPS signal
  785. *
  786. * This routine is called at each PPS signal arrival in order to
  787. * discipline the CPU clock oscillator to the PPS signal. It takes two
  788. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  789. * is used to correct clock phase error and the latter is used to
  790. * correct the frequency.
  791. *
  792. * This code is based on David Mills's reference nanokernel
  793. * implementation. It was mostly rewritten but keeps the same idea.
  794. */
  795. void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  796. {
  797. struct pps_normtime pts_norm, freq_norm;
  798. pts_norm = pps_normalize_ts(*phase_ts);
  799. /* clear the error bits, they will be set again if needed */
  800. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  801. /* indicate signal presence */
  802. time_status |= STA_PPSSIGNAL;
  803. pps_valid = PPS_VALID;
  804. /* when called for the first time,
  805. * just start the frequency interval */
  806. if (unlikely(pps_fbase.tv_sec == 0)) {
  807. pps_fbase = *raw_ts;
  808. return;
  809. }
  810. /* ok, now we have a base for frequency calculation */
  811. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  812. /* check that the signal is in the range
  813. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  814. if ((freq_norm.sec == 0) ||
  815. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  816. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  817. time_status |= STA_PPSJITTER;
  818. /* restart the frequency calibration interval */
  819. pps_fbase = *raw_ts;
  820. printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
  821. return;
  822. }
  823. /* signal is ok */
  824. /* check if the current frequency interval is finished */
  825. if (freq_norm.sec >= (1 << pps_shift)) {
  826. pps_calcnt++;
  827. /* restart the frequency calibration interval */
  828. pps_fbase = *raw_ts;
  829. hardpps_update_freq(freq_norm);
  830. }
  831. hardpps_update_phase(pts_norm.nsec);
  832. }
  833. #endif /* CONFIG_NTP_PPS */
  834. static int __init ntp_tick_adj_setup(char *str)
  835. {
  836. int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
  837. if (rc)
  838. return rc;
  839. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  840. return 1;
  841. }
  842. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  843. void __init ntp_init(void)
  844. {
  845. ntp_clear();
  846. }