123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773 |
- #include <linux/sched.h>
- #include <linux/sched/sysctl.h>
- #include <linux/sched/rt.h>
- #include <linux/sched/deadline.h>
- #include <linux/mutex.h>
- #include <linux/spinlock.h>
- #include <linux/stop_machine.h>
- #include <linux/irq_work.h>
- #include <linux/tick.h>
- #include <linux/slab.h>
- #include "cpupri.h"
- #include "cpudeadline.h"
- #include "cpuacct.h"
- struct rq;
- struct cpuidle_state;
- /* task_struct::on_rq states: */
- #define TASK_ON_RQ_QUEUED 1
- #define TASK_ON_RQ_MIGRATING 2
- extern __read_mostly int scheduler_running;
- extern unsigned long calc_load_update;
- extern atomic_long_t calc_load_tasks;
- extern void calc_global_load_tick(struct rq *this_rq);
- extern long calc_load_fold_active(struct rq *this_rq);
- #ifdef CONFIG_SMP
- extern void update_cpu_load_active(struct rq *this_rq);
- #else
- static inline void update_cpu_load_active(struct rq *this_rq) { }
- #endif
- /*
- * Helpers for converting nanosecond timing to jiffy resolution
- */
- #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
- /*
- * Increase resolution of nice-level calculations for 64-bit architectures.
- * The extra resolution improves shares distribution and load balancing of
- * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
- * hierarchies, especially on larger systems. This is not a user-visible change
- * and does not change the user-interface for setting shares/weights.
- *
- * We increase resolution only if we have enough bits to allow this increased
- * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
- * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
- * increased costs.
- */
- #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
- # define SCHED_LOAD_RESOLUTION 10
- # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
- # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
- #else
- # define SCHED_LOAD_RESOLUTION 0
- # define scale_load(w) (w)
- # define scale_load_down(w) (w)
- #endif
- #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
- #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
- #define NICE_0_LOAD SCHED_LOAD_SCALE
- #define NICE_0_SHIFT SCHED_LOAD_SHIFT
- /*
- * Single value that decides SCHED_DEADLINE internal math precision.
- * 10 -> just above 1us
- * 9 -> just above 0.5us
- */
- #define DL_SCALE (10)
- /*
- * These are the 'tuning knobs' of the scheduler:
- */
- /*
- * single value that denotes runtime == period, ie unlimited time.
- */
- #define RUNTIME_INF ((u64)~0ULL)
- static inline int fair_policy(int policy)
- {
- return policy == SCHED_NORMAL || policy == SCHED_BATCH;
- }
- static inline int rt_policy(int policy)
- {
- return policy == SCHED_FIFO || policy == SCHED_RR;
- }
- static inline int dl_policy(int policy)
- {
- return policy == SCHED_DEADLINE;
- }
- static inline int task_has_rt_policy(struct task_struct *p)
- {
- return rt_policy(p->policy);
- }
- static inline int task_has_dl_policy(struct task_struct *p)
- {
- return dl_policy(p->policy);
- }
- static inline bool dl_time_before(u64 a, u64 b)
- {
- return (s64)(a - b) < 0;
- }
- /*
- * Tells if entity @a should preempt entity @b.
- */
- static inline bool
- dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
- {
- return dl_time_before(a->deadline, b->deadline);
- }
- /*
- * This is the priority-queue data structure of the RT scheduling class:
- */
- struct rt_prio_array {
- DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
- struct list_head queue[MAX_RT_PRIO];
- };
- struct rt_bandwidth {
- /* nests inside the rq lock: */
- raw_spinlock_t rt_runtime_lock;
- ktime_t rt_period;
- u64 rt_runtime;
- struct hrtimer rt_period_timer;
- unsigned int rt_period_active;
- };
- void __dl_clear_params(struct task_struct *p);
- /*
- * To keep the bandwidth of -deadline tasks and groups under control
- * we need some place where:
- * - store the maximum -deadline bandwidth of the system (the group);
- * - cache the fraction of that bandwidth that is currently allocated.
- *
- * This is all done in the data structure below. It is similar to the
- * one used for RT-throttling (rt_bandwidth), with the main difference
- * that, since here we are only interested in admission control, we
- * do not decrease any runtime while the group "executes", neither we
- * need a timer to replenish it.
- *
- * With respect to SMP, the bandwidth is given on a per-CPU basis,
- * meaning that:
- * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
- * - dl_total_bw array contains, in the i-eth element, the currently
- * allocated bandwidth on the i-eth CPU.
- * Moreover, groups consume bandwidth on each CPU, while tasks only
- * consume bandwidth on the CPU they're running on.
- * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
- * that will be shown the next time the proc or cgroup controls will
- * be red. It on its turn can be changed by writing on its own
- * control.
- */
- struct dl_bandwidth {
- raw_spinlock_t dl_runtime_lock;
- u64 dl_runtime;
- u64 dl_period;
- };
- static inline int dl_bandwidth_enabled(void)
- {
- return sysctl_sched_rt_runtime >= 0;
- }
- extern struct dl_bw *dl_bw_of(int i);
- struct dl_bw {
- raw_spinlock_t lock;
- u64 bw, total_bw;
- };
- static inline
- void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
- {
- dl_b->total_bw -= tsk_bw;
- }
- static inline
- void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
- {
- dl_b->total_bw += tsk_bw;
- }
- static inline
- bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
- {
- return dl_b->bw != -1 &&
- dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
- }
- extern struct mutex sched_domains_mutex;
- #ifdef CONFIG_CGROUP_SCHED
- #include <linux/cgroup.h>
- struct cfs_rq;
- struct rt_rq;
- extern struct list_head task_groups;
- struct cfs_bandwidth {
- #ifdef CONFIG_CFS_BANDWIDTH
- raw_spinlock_t lock;
- ktime_t period;
- u64 quota, runtime;
- s64 hierarchical_quota;
- u64 runtime_expires;
- int idle, period_active;
- struct hrtimer period_timer, slack_timer;
- struct list_head throttled_cfs_rq;
- /* statistics */
- int nr_periods, nr_throttled;
- u64 throttled_time;
- #endif
- };
- /* task group related information */
- struct task_group {
- struct cgroup_subsys_state css;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* schedulable entities of this group on each cpu */
- struct sched_entity **se;
- /* runqueue "owned" by this group on each cpu */
- struct cfs_rq **cfs_rq;
- unsigned long shares;
- #ifdef CONFIG_SMP
- atomic_long_t load_avg;
- atomic_t runnable_avg;
- #endif
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- struct sched_rt_entity **rt_se;
- struct rt_rq **rt_rq;
- struct rt_bandwidth rt_bandwidth;
- #endif
- struct rcu_head rcu;
- struct list_head list;
- struct task_group *parent;
- struct list_head siblings;
- struct list_head children;
- #ifdef CONFIG_SCHED_AUTOGROUP
- struct autogroup *autogroup;
- #endif
- struct cfs_bandwidth cfs_bandwidth;
- };
- #ifdef CONFIG_FAIR_GROUP_SCHED
- #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
- /*
- * A weight of 0 or 1 can cause arithmetics problems.
- * A weight of a cfs_rq is the sum of weights of which entities
- * are queued on this cfs_rq, so a weight of a entity should not be
- * too large, so as the shares value of a task group.
- * (The default weight is 1024 - so there's no practical
- * limitation from this.)
- */
- #define MIN_SHARES (1UL << 1)
- #define MAX_SHARES (1UL << 18)
- #endif
- typedef int (*tg_visitor)(struct task_group *, void *);
- extern int walk_tg_tree_from(struct task_group *from,
- tg_visitor down, tg_visitor up, void *data);
- /*
- * Iterate the full tree, calling @down when first entering a node and @up when
- * leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
- static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
- {
- return walk_tg_tree_from(&root_task_group, down, up, data);
- }
- extern int tg_nop(struct task_group *tg, void *data);
- extern void free_fair_sched_group(struct task_group *tg);
- extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
- extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
- extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
- struct sched_entity *se, int cpu,
- struct sched_entity *parent);
- extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
- extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
- extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
- extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
- extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
- extern void free_rt_sched_group(struct task_group *tg);
- extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
- extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
- struct sched_rt_entity *rt_se, int cpu,
- struct sched_rt_entity *parent);
- extern struct task_group *sched_create_group(struct task_group *parent);
- extern void sched_online_group(struct task_group *tg,
- struct task_group *parent);
- extern void sched_destroy_group(struct task_group *tg);
- extern void sched_offline_group(struct task_group *tg);
- extern void sched_move_task(struct task_struct *tsk);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
- #endif
- #else /* CONFIG_CGROUP_SCHED */
- struct cfs_bandwidth { };
- #endif /* CONFIG_CGROUP_SCHED */
- /* CFS-related fields in a runqueue */
- struct cfs_rq {
- struct load_weight load;
- unsigned int nr_running, h_nr_running;
- u64 exec_clock;
- u64 min_vruntime;
- #ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
- #endif
- struct rb_root tasks_timeline;
- struct rb_node *rb_leftmost;
- /*
- * 'curr' points to currently running entity on this cfs_rq.
- * It is set to NULL otherwise (i.e when none are currently running).
- */
- struct sched_entity *curr, *next, *last, *skip;
- #ifdef CONFIG_SCHED_DEBUG
- unsigned int nr_spread_over;
- #endif
- #ifdef CONFIG_SMP
- /*
- * CFS Load tracking
- * Under CFS, load is tracked on a per-entity basis and aggregated up.
- * This allows for the description of both thread and group usage (in
- * the FAIR_GROUP_SCHED case).
- * runnable_load_avg is the sum of the load_avg_contrib of the
- * sched_entities on the rq.
- * blocked_load_avg is similar to runnable_load_avg except that its
- * the blocked sched_entities on the rq.
- * utilization_load_avg is the sum of the average running time of the
- * sched_entities on the rq.
- */
- unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
- atomic64_t decay_counter;
- u64 last_decay;
- atomic_long_t removed_load;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* Required to track per-cpu representation of a task_group */
- u32 tg_runnable_contrib;
- unsigned long tg_load_contrib;
- /*
- * h_load = weight * f(tg)
- *
- * Where f(tg) is the recursive weight fraction assigned to
- * this group.
- */
- unsigned long h_load;
- u64 last_h_load_update;
- struct sched_entity *h_load_next;
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #endif /* CONFIG_SMP */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
- /*
- * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
- * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
- * (like users, containers etc.)
- *
- * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
- * list is used during load balance.
- */
- int on_list;
- struct list_head leaf_cfs_rq_list;
- struct task_group *tg; /* group that "owns" this runqueue */
- #ifdef CONFIG_CFS_BANDWIDTH
- int runtime_enabled;
- u64 runtime_expires;
- s64 runtime_remaining;
- u64 throttled_clock, throttled_clock_task;
- u64 throttled_clock_task_time;
- int throttled, throttle_count;
- struct list_head throttled_list;
- #endif /* CONFIG_CFS_BANDWIDTH */
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- };
- static inline int rt_bandwidth_enabled(void)
- {
- return sysctl_sched_rt_runtime >= 0;
- }
- /* RT IPI pull logic requires IRQ_WORK */
- #ifdef CONFIG_IRQ_WORK
- # define HAVE_RT_PUSH_IPI
- #endif
- /* Real-Time classes' related field in a runqueue: */
- struct rt_rq {
- struct rt_prio_array active;
- unsigned int rt_nr_running;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- struct {
- int curr; /* highest queued rt task prio */
- #ifdef CONFIG_SMP
- int next; /* next highest */
- #endif
- } highest_prio;
- #endif
- #ifdef CONFIG_SMP
- unsigned long rt_nr_migratory;
- unsigned long rt_nr_total;
- int overloaded;
- struct plist_head pushable_tasks;
- #ifdef HAVE_RT_PUSH_IPI
- int push_flags;
- int push_cpu;
- struct irq_work push_work;
- raw_spinlock_t push_lock;
- #endif
- #endif /* CONFIG_SMP */
- int rt_queued;
- int rt_throttled;
- u64 rt_time;
- u64 rt_runtime;
- /* Nests inside the rq lock: */
- raw_spinlock_t rt_runtime_lock;
- #ifdef CONFIG_RT_GROUP_SCHED
- unsigned long rt_nr_boosted;
- struct rq *rq;
- struct task_group *tg;
- #endif
- };
- /* Deadline class' related fields in a runqueue */
- struct dl_rq {
- /* runqueue is an rbtree, ordered by deadline */
- struct rb_root rb_root;
- struct rb_node *rb_leftmost;
- unsigned long dl_nr_running;
- #ifdef CONFIG_SMP
- /*
- * Deadline values of the currently executing and the
- * earliest ready task on this rq. Caching these facilitates
- * the decision wether or not a ready but not running task
- * should migrate somewhere else.
- */
- struct {
- u64 curr;
- u64 next;
- } earliest_dl;
- unsigned long dl_nr_migratory;
- int overloaded;
- /*
- * Tasks on this rq that can be pushed away. They are kept in
- * an rb-tree, ordered by tasks' deadlines, with caching
- * of the leftmost (earliest deadline) element.
- */
- struct rb_root pushable_dl_tasks_root;
- struct rb_node *pushable_dl_tasks_leftmost;
- #else
- struct dl_bw dl_bw;
- #endif
- };
- #ifdef CONFIG_SMP
- /*
- * We add the notion of a root-domain which will be used to define per-domain
- * variables. Each exclusive cpuset essentially defines an island domain by
- * fully partitioning the member cpus from any other cpuset. Whenever a new
- * exclusive cpuset is created, we also create and attach a new root-domain
- * object.
- *
- */
- struct root_domain {
- atomic_t refcount;
- atomic_t rto_count;
- struct rcu_head rcu;
- cpumask_var_t span;
- cpumask_var_t online;
- /* Indicate more than one runnable task for any CPU */
- bool overload;
- /*
- * The bit corresponding to a CPU gets set here if such CPU has more
- * than one runnable -deadline task (as it is below for RT tasks).
- */
- cpumask_var_t dlo_mask;
- atomic_t dlo_count;
- struct dl_bw dl_bw;
- struct cpudl cpudl;
- /*
- * The "RT overload" flag: it gets set if a CPU has more than
- * one runnable RT task.
- */
- cpumask_var_t rto_mask;
- struct cpupri cpupri;
- };
- extern struct root_domain def_root_domain;
- #endif /* CONFIG_SMP */
- /*
- * This is the main, per-CPU runqueue data structure.
- *
- * Locking rule: those places that want to lock multiple runqueues
- * (such as the load balancing or the thread migration code), lock
- * acquire operations must be ordered by ascending &runqueue.
- */
- struct rq {
- /* runqueue lock: */
- raw_spinlock_t lock;
- /*
- * nr_running and cpu_load should be in the same cacheline because
- * remote CPUs use both these fields when doing load calculation.
- */
- unsigned int nr_running;
- #ifdef CONFIG_NUMA_BALANCING
- unsigned int nr_numa_running;
- unsigned int nr_preferred_running;
- #endif
- #define CPU_LOAD_IDX_MAX 5
- unsigned long cpu_load[CPU_LOAD_IDX_MAX];
- unsigned long last_load_update_tick;
- #ifdef CONFIG_NO_HZ_COMMON
- u64 nohz_stamp;
- unsigned long nohz_flags;
- #endif
- #ifdef CONFIG_NO_HZ_FULL
- unsigned long last_sched_tick;
- #endif
- /* capture load from *all* tasks on this cpu: */
- struct load_weight load;
- unsigned long nr_load_updates;
- u64 nr_switches;
- struct cfs_rq cfs;
- struct rt_rq rt;
- struct dl_rq dl;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* list of leaf cfs_rq on this cpu: */
- struct list_head leaf_cfs_rq_list;
- struct sched_avg avg;
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- /*
- * This is part of a global counter where only the total sum
- * over all CPUs matters. A task can increase this counter on
- * one CPU and if it got migrated afterwards it may decrease
- * it on another CPU. Always updated under the runqueue lock:
- */
- unsigned long nr_uninterruptible;
- struct task_struct *curr, *idle, *stop;
- unsigned long next_balance;
- struct mm_struct *prev_mm;
- unsigned int clock_skip_update;
- u64 clock;
- u64 clock_task;
- atomic_t nr_iowait;
- #ifdef CONFIG_SMP
- struct root_domain *rd;
- struct sched_domain *sd;
- unsigned long cpu_capacity;
- unsigned long cpu_capacity_orig;
- struct callback_head *balance_callback;
- unsigned char idle_balance;
- /* For active balancing */
- int active_balance;
- int push_cpu;
- struct cpu_stop_work active_balance_work;
- /* cpu of this runqueue: */
- int cpu;
- int online;
- struct list_head cfs_tasks;
- u64 rt_avg;
- u64 age_stamp;
- u64 idle_stamp;
- u64 avg_idle;
- /* This is used to determine avg_idle's max value */
- u64 max_idle_balance_cost;
- #endif
- #ifdef CONFIG_IRQ_TIME_ACCOUNTING
- u64 prev_irq_time;
- #endif
- #ifdef CONFIG_PARAVIRT
- u64 prev_steal_time;
- #endif
- #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
- u64 prev_steal_time_rq;
- #endif
- /* calc_load related fields */
- unsigned long calc_load_update;
- long calc_load_active;
- #ifdef CONFIG_SCHED_HRTICK
- #ifdef CONFIG_SMP
- int hrtick_csd_pending;
- struct call_single_data hrtick_csd;
- #endif
- struct hrtimer hrtick_timer;
- #endif
- #ifdef CONFIG_SCHEDSTATS
- /* latency stats */
- struct sched_info rq_sched_info;
- unsigned long long rq_cpu_time;
- /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
- /* sys_sched_yield() stats */
- unsigned int yld_count;
- /* schedule() stats */
- unsigned int sched_count;
- unsigned int sched_goidle;
- /* try_to_wake_up() stats */
- unsigned int ttwu_count;
- unsigned int ttwu_local;
- #endif
- #ifdef CONFIG_SMP
- struct llist_head wake_list;
- #endif
- #ifdef CONFIG_CPU_IDLE
- /* Must be inspected within a rcu lock section */
- struct cpuidle_state *idle_state;
- #endif
- };
- static inline int cpu_of(struct rq *rq)
- {
- #ifdef CONFIG_SMP
- return rq->cpu;
- #else
- return 0;
- #endif
- }
- DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
- #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
- #define this_rq() this_cpu_ptr(&runqueues)
- #define task_rq(p) cpu_rq(task_cpu(p))
- #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
- #define raw_rq() raw_cpu_ptr(&runqueues)
- static inline u64 __rq_clock_broken(struct rq *rq)
- {
- return READ_ONCE(rq->clock);
- }
- static inline u64 rq_clock(struct rq *rq)
- {
- lockdep_assert_held(&rq->lock);
- return rq->clock;
- }
- static inline u64 rq_clock_task(struct rq *rq)
- {
- lockdep_assert_held(&rq->lock);
- return rq->clock_task;
- }
- #define RQCF_REQ_SKIP 0x01
- #define RQCF_ACT_SKIP 0x02
- static inline void rq_clock_skip_update(struct rq *rq, bool skip)
- {
- lockdep_assert_held(&rq->lock);
- if (skip)
- rq->clock_skip_update |= RQCF_REQ_SKIP;
- else
- rq->clock_skip_update &= ~RQCF_REQ_SKIP;
- }
- #ifdef CONFIG_NUMA
- enum numa_topology_type {
- NUMA_DIRECT,
- NUMA_GLUELESS_MESH,
- NUMA_BACKPLANE,
- };
- extern enum numa_topology_type sched_numa_topology_type;
- extern int sched_max_numa_distance;
- extern bool find_numa_distance(int distance);
- #endif
- #ifdef CONFIG_NUMA_BALANCING
- /* The regions in numa_faults array from task_struct */
- enum numa_faults_stats {
- NUMA_MEM = 0,
- NUMA_CPU,
- NUMA_MEMBUF,
- NUMA_CPUBUF
- };
- extern void sched_setnuma(struct task_struct *p, int node);
- extern int migrate_task_to(struct task_struct *p, int cpu);
- extern int migrate_swap(struct task_struct *, struct task_struct *);
- #endif /* CONFIG_NUMA_BALANCING */
- #ifdef CONFIG_SMP
- static inline void
- queue_balance_callback(struct rq *rq,
- struct callback_head *head,
- void (*func)(struct rq *rq))
- {
- lockdep_assert_held(&rq->lock);
- if (unlikely(head->next))
- return;
- head->func = (void (*)(struct callback_head *))func;
- head->next = rq->balance_callback;
- rq->balance_callback = head;
- }
- extern void sched_ttwu_pending(void);
- #define rcu_dereference_check_sched_domain(p) \
- rcu_dereference_check((p), \
- lockdep_is_held(&sched_domains_mutex))
- /*
- * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
- * See detach_destroy_domains: synchronize_sched for details.
- *
- * The domain tree of any CPU may only be accessed from within
- * preempt-disabled sections.
- */
- #define for_each_domain(cpu, __sd) \
- for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
- __sd; __sd = __sd->parent)
- #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
- /**
- * highest_flag_domain - Return highest sched_domain containing flag.
- * @cpu: The cpu whose highest level of sched domain is to
- * be returned.
- * @flag: The flag to check for the highest sched_domain
- * for the given cpu.
- *
- * Returns the highest sched_domain of a cpu which contains the given flag.
- */
- static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
- {
- struct sched_domain *sd, *hsd = NULL;
- for_each_domain(cpu, sd) {
- if (!(sd->flags & flag))
- break;
- hsd = sd;
- }
- return hsd;
- }
- static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
- {
- struct sched_domain *sd;
- for_each_domain(cpu, sd) {
- if (sd->flags & flag)
- break;
- }
- return sd;
- }
- DECLARE_PER_CPU(struct sched_domain *, sd_llc);
- DECLARE_PER_CPU(int, sd_llc_size);
- DECLARE_PER_CPU(int, sd_llc_id);
- DECLARE_PER_CPU(struct sched_domain *, sd_numa);
- DECLARE_PER_CPU(struct sched_domain *, sd_busy);
- DECLARE_PER_CPU(struct sched_domain *, sd_asym);
- struct sched_group_capacity {
- atomic_t ref;
- /*
- * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
- * for a single CPU.
- */
- unsigned int capacity;
- unsigned long next_update;
- int imbalance; /* XXX unrelated to capacity but shared group state */
- /*
- * Number of busy cpus in this group.
- */
- atomic_t nr_busy_cpus;
- unsigned long cpumask[0]; /* iteration mask */
- };
- struct sched_group {
- struct sched_group *next; /* Must be a circular list */
- atomic_t ref;
- unsigned int group_weight;
- struct sched_group_capacity *sgc;
- /*
- * The CPUs this group covers.
- *
- * NOTE: this field is variable length. (Allocated dynamically
- * by attaching extra space to the end of the structure,
- * depending on how many CPUs the kernel has booted up with)
- */
- unsigned long cpumask[0];
- };
- static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
- {
- return to_cpumask(sg->cpumask);
- }
- /*
- * cpumask masking which cpus in the group are allowed to iterate up the domain
- * tree.
- */
- static inline struct cpumask *sched_group_mask(struct sched_group *sg)
- {
- return to_cpumask(sg->sgc->cpumask);
- }
- /**
- * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
- * @group: The group whose first cpu is to be returned.
- */
- static inline unsigned int group_first_cpu(struct sched_group *group)
- {
- return cpumask_first(sched_group_cpus(group));
- }
- extern int group_balance_cpu(struct sched_group *sg);
- #else
- static inline void sched_ttwu_pending(void) { }
- #endif /* CONFIG_SMP */
- #include "stats.h"
- #include "auto_group.h"
- #ifdef CONFIG_CGROUP_SCHED
- /*
- * Return the group to which this tasks belongs.
- *
- * We cannot use task_css() and friends because the cgroup subsystem
- * changes that value before the cgroup_subsys::attach() method is called,
- * therefore we cannot pin it and might observe the wrong value.
- *
- * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
- * core changes this before calling sched_move_task().
- *
- * Instead we use a 'copy' which is updated from sched_move_task() while
- * holding both task_struct::pi_lock and rq::lock.
- */
- static inline struct task_group *task_group(struct task_struct *p)
- {
- return p->sched_task_group;
- }
- /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
- static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
- {
- #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
- struct task_group *tg = task_group(p);
- #endif
- #ifdef CONFIG_FAIR_GROUP_SCHED
- p->se.cfs_rq = tg->cfs_rq[cpu];
- p->se.parent = tg->se[cpu];
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- p->rt.rt_rq = tg->rt_rq[cpu];
- p->rt.parent = tg->rt_se[cpu];
- #endif
- }
- #else /* CONFIG_CGROUP_SCHED */
- static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
- static inline struct task_group *task_group(struct task_struct *p)
- {
- return NULL;
- }
- #endif /* CONFIG_CGROUP_SCHED */
- static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
- {
- set_task_rq(p, cpu);
- #ifdef CONFIG_SMP
- /*
- * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
- * successfuly executed on another CPU. We must ensure that updates of
- * per-task data have been completed by this moment.
- */
- smp_wmb();
- task_thread_info(p)->cpu = cpu;
- p->wake_cpu = cpu;
- #endif
- }
- /*
- * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
- */
- #ifdef CONFIG_SCHED_DEBUG
- # include <linux/static_key.h>
- # define const_debug __read_mostly
- #else
- # define const_debug const
- #endif
- extern const_debug unsigned int sysctl_sched_features;
- #define SCHED_FEAT(name, enabled) \
- __SCHED_FEAT_##name ,
- enum {
- #include "features.h"
- __SCHED_FEAT_NR,
- };
- #undef SCHED_FEAT
- #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
- #define SCHED_FEAT(name, enabled) \
- static __always_inline bool static_branch_##name(struct static_key *key) \
- { \
- return static_key_##enabled(key); \
- }
- #include "features.h"
- #undef SCHED_FEAT
- extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
- #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
- #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
- #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
- #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
- #ifdef CONFIG_NUMA_BALANCING
- #define sched_feat_numa(x) sched_feat(x)
- #ifdef CONFIG_SCHED_DEBUG
- #define numabalancing_enabled sched_feat_numa(NUMA)
- #else
- extern bool numabalancing_enabled;
- #endif /* CONFIG_SCHED_DEBUG */
- #else
- #define sched_feat_numa(x) (0)
- #define numabalancing_enabled (0)
- #endif /* CONFIG_NUMA_BALANCING */
- static inline u64 global_rt_period(void)
- {
- return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
- }
- static inline u64 global_rt_runtime(void)
- {
- if (sysctl_sched_rt_runtime < 0)
- return RUNTIME_INF;
- return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
- }
- static inline int task_current(struct rq *rq, struct task_struct *p)
- {
- return rq->curr == p;
- }
- static inline int task_running(struct rq *rq, struct task_struct *p)
- {
- #ifdef CONFIG_SMP
- return p->on_cpu;
- #else
- return task_current(rq, p);
- #endif
- }
- static inline int task_on_rq_queued(struct task_struct *p)
- {
- return p->on_rq == TASK_ON_RQ_QUEUED;
- }
- static inline int task_on_rq_migrating(struct task_struct *p)
- {
- return p->on_rq == TASK_ON_RQ_MIGRATING;
- }
- #ifndef prepare_arch_switch
- # define prepare_arch_switch(next) do { } while (0)
- #endif
- #ifndef finish_arch_switch
- # define finish_arch_switch(prev) do { } while (0)
- #endif
- #ifndef finish_arch_post_lock_switch
- # define finish_arch_post_lock_switch() do { } while (0)
- #endif
- static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
- {
- #ifdef CONFIG_SMP
- /*
- * We can optimise this out completely for !SMP, because the
- * SMP rebalancing from interrupt is the only thing that cares
- * here.
- */
- next->on_cpu = 1;
- #endif
- }
- static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
- {
- #ifdef CONFIG_SMP
- /*
- * After ->on_cpu is cleared, the task can be moved to a different CPU.
- * We must ensure this doesn't happen until the switch is completely
- * finished.
- */
- smp_wmb();
- prev->on_cpu = 0;
- #endif
- #ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- rq->lock.owner = current;
- #endif
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
- raw_spin_unlock_irq(&rq->lock);
- }
- /*
- * wake flags
- */
- #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
- #define WF_FORK 0x02 /* child wakeup after fork */
- #define WF_MIGRATED 0x4 /* internal use, task got migrated */
- /*
- * To aid in avoiding the subversion of "niceness" due to uneven distribution
- * of tasks with abnormal "nice" values across CPUs the contribution that
- * each task makes to its run queue's load is weighted according to its
- * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
- * scaled version of the new time slice allocation that they receive on time
- * slice expiry etc.
- */
- #define WEIGHT_IDLEPRIO 3
- #define WMULT_IDLEPRIO 1431655765
- /*
- * Nice levels are multiplicative, with a gentle 10% change for every
- * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
- * nice 1, it will get ~10% less CPU time than another CPU-bound task
- * that remained on nice 0.
- *
- * The "10% effect" is relative and cumulative: from _any_ nice level,
- * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
- * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
- * If a task goes up by ~10% and another task goes down by ~10% then
- * the relative distance between them is ~25%.)
- */
- static const int prio_to_weight[40] = {
- /* -20 */ 88761, 71755, 56483, 46273, 36291,
- /* -15 */ 29154, 23254, 18705, 14949, 11916,
- /* -10 */ 9548, 7620, 6100, 4904, 3906,
- /* -5 */ 3121, 2501, 1991, 1586, 1277,
- /* 0 */ 1024, 820, 655, 526, 423,
- /* 5 */ 335, 272, 215, 172, 137,
- /* 10 */ 110, 87, 70, 56, 45,
- /* 15 */ 36, 29, 23, 18, 15,
- };
- /*
- * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
- *
- * In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
- * into multiplications:
- */
- static const u32 prio_to_wmult[40] = {
- /* -20 */ 48388, 59856, 76040, 92818, 118348,
- /* -15 */ 147320, 184698, 229616, 287308, 360437,
- /* -10 */ 449829, 563644, 704093, 875809, 1099582,
- /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
- /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
- /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
- /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
- /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
- };
- #define ENQUEUE_WAKEUP 1
- #define ENQUEUE_HEAD 2
- #ifdef CONFIG_SMP
- #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
- #else
- #define ENQUEUE_WAKING 0
- #endif
- #define ENQUEUE_REPLENISH 8
- #define DEQUEUE_SLEEP 1
- #define RETRY_TASK ((void *)-1UL)
- struct sched_class {
- const struct sched_class *next;
- void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
- void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
- void (*yield_task) (struct rq *rq);
- bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
- void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
- /*
- * It is the responsibility of the pick_next_task() method that will
- * return the next task to call put_prev_task() on the @prev task or
- * something equivalent.
- *
- * May return RETRY_TASK when it finds a higher prio class has runnable
- * tasks.
- */
- struct task_struct * (*pick_next_task) (struct rq *rq,
- struct task_struct *prev);
- void (*put_prev_task) (struct rq *rq, struct task_struct *p);
- #ifdef CONFIG_SMP
- int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
- void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
- void (*task_waking) (struct task_struct *task);
- void (*task_woken) (struct rq *this_rq, struct task_struct *task);
- void (*set_cpus_allowed)(struct task_struct *p,
- const struct cpumask *newmask);
- void (*rq_online)(struct rq *rq);
- void (*rq_offline)(struct rq *rq);
- #endif
- void (*set_curr_task) (struct rq *rq);
- void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
- void (*task_fork) (struct task_struct *p);
- void (*task_dead) (struct task_struct *p);
- /*
- * The switched_from() call is allowed to drop rq->lock, therefore we
- * cannot assume the switched_from/switched_to pair is serliazed by
- * rq->lock. They are however serialized by p->pi_lock.
- */
- void (*switched_from) (struct rq *this_rq, struct task_struct *task);
- void (*switched_to) (struct rq *this_rq, struct task_struct *task);
- void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
- int oldprio);
- unsigned int (*get_rr_interval) (struct rq *rq,
- struct task_struct *task);
- void (*update_curr) (struct rq *rq);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- void (*task_move_group) (struct task_struct *p, int on_rq);
- #endif
- };
- static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
- {
- prev->sched_class->put_prev_task(rq, prev);
- }
- #define sched_class_highest (&stop_sched_class)
- #define for_each_class(class) \
- for (class = sched_class_highest; class; class = class->next)
- extern const struct sched_class stop_sched_class;
- extern const struct sched_class dl_sched_class;
- extern const struct sched_class rt_sched_class;
- extern const struct sched_class fair_sched_class;
- extern const struct sched_class idle_sched_class;
- #ifdef CONFIG_SMP
- extern void update_group_capacity(struct sched_domain *sd, int cpu);
- extern void trigger_load_balance(struct rq *rq);
- extern void idle_enter_fair(struct rq *this_rq);
- extern void idle_exit_fair(struct rq *this_rq);
- #else
- static inline void idle_enter_fair(struct rq *rq) { }
- static inline void idle_exit_fair(struct rq *rq) { }
- #endif
- #ifdef CONFIG_CPU_IDLE
- static inline void idle_set_state(struct rq *rq,
- struct cpuidle_state *idle_state)
- {
- rq->idle_state = idle_state;
- }
- static inline struct cpuidle_state *idle_get_state(struct rq *rq)
- {
- WARN_ON(!rcu_read_lock_held());
- return rq->idle_state;
- }
- #else
- static inline void idle_set_state(struct rq *rq,
- struct cpuidle_state *idle_state)
- {
- }
- static inline struct cpuidle_state *idle_get_state(struct rq *rq)
- {
- return NULL;
- }
- #endif
- extern void sysrq_sched_debug_show(void);
- extern void sched_init_granularity(void);
- extern void update_max_interval(void);
- extern void init_sched_dl_class(void);
- extern void init_sched_rt_class(void);
- extern void init_sched_fair_class(void);
- extern void resched_curr(struct rq *rq);
- extern void resched_cpu(int cpu);
- extern struct rt_bandwidth def_rt_bandwidth;
- extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
- extern struct dl_bandwidth def_dl_bandwidth;
- extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
- extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
- unsigned long to_ratio(u64 period, u64 runtime);
- extern void init_task_runnable_average(struct task_struct *p);
- static inline void add_nr_running(struct rq *rq, unsigned count)
- {
- unsigned prev_nr = rq->nr_running;
- rq->nr_running = prev_nr + count;
- if (prev_nr < 2 && rq->nr_running >= 2) {
- #ifdef CONFIG_SMP
- if (!rq->rd->overload)
- rq->rd->overload = true;
- #endif
- #ifdef CONFIG_NO_HZ_FULL
- if (tick_nohz_full_cpu(rq->cpu)) {
- /*
- * Tick is needed if more than one task runs on a CPU.
- * Send the target an IPI to kick it out of nohz mode.
- *
- * We assume that IPI implies full memory barrier and the
- * new value of rq->nr_running is visible on reception
- * from the target.
- */
- tick_nohz_full_kick_cpu(rq->cpu);
- }
- #endif
- }
- }
- static inline void sub_nr_running(struct rq *rq, unsigned count)
- {
- rq->nr_running -= count;
- }
- static inline void rq_last_tick_reset(struct rq *rq)
- {
- #ifdef CONFIG_NO_HZ_FULL
- rq->last_sched_tick = jiffies;
- #endif
- }
- extern void update_rq_clock(struct rq *rq);
- extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
- extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
- extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
- extern const_debug unsigned int sysctl_sched_time_avg;
- extern const_debug unsigned int sysctl_sched_nr_migrate;
- extern const_debug unsigned int sysctl_sched_migration_cost;
- static inline u64 sched_avg_period(void)
- {
- return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
- }
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * Use hrtick when:
- * - enabled by features
- * - hrtimer is actually high res
- */
- static inline int hrtick_enabled(struct rq *rq)
- {
- if (!sched_feat(HRTICK))
- return 0;
- if (!cpu_active(cpu_of(rq)))
- return 0;
- return hrtimer_is_hres_active(&rq->hrtick_timer);
- }
- void hrtick_start(struct rq *rq, u64 delay);
- #else
- static inline int hrtick_enabled(struct rq *rq)
- {
- return 0;
- }
- #endif /* CONFIG_SCHED_HRTICK */
- #ifdef CONFIG_SMP
- extern void sched_avg_update(struct rq *rq);
- #ifndef arch_scale_freq_capacity
- static __always_inline
- unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
- {
- return SCHED_CAPACITY_SCALE;
- }
- #endif
- static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
- {
- rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
- sched_avg_update(rq);
- }
- #else
- static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
- static inline void sched_avg_update(struct rq *rq) { }
- #endif
- /*
- * __task_rq_lock - lock the rq @p resides on.
- */
- static inline struct rq *__task_rq_lock(struct task_struct *p)
- __acquires(rq->lock)
- {
- struct rq *rq;
- lockdep_assert_held(&p->pi_lock);
- for (;;) {
- rq = task_rq(p);
- raw_spin_lock(&rq->lock);
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- lockdep_pin_lock(&rq->lock);
- return rq;
- }
- raw_spin_unlock(&rq->lock);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- /*
- * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
- */
- static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
- __acquires(p->pi_lock)
- __acquires(rq->lock)
- {
- struct rq *rq;
- for (;;) {
- raw_spin_lock_irqsave(&p->pi_lock, *flags);
- rq = task_rq(p);
- raw_spin_lock(&rq->lock);
- /*
- * move_queued_task() task_rq_lock()
- *
- * ACQUIRE (rq->lock)
- * [S] ->on_rq = MIGRATING [L] rq = task_rq()
- * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
- * [S] ->cpu = new_cpu [L] task_rq()
- * [L] ->on_rq
- * RELEASE (rq->lock)
- *
- * If we observe the old cpu in task_rq_lock, the acquire of
- * the old rq->lock will fully serialize against the stores.
- *
- * If we observe the new cpu in task_rq_lock, the acquire will
- * pair with the WMB to ensure we must then also see migrating.
- */
- if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
- lockdep_pin_lock(&rq->lock);
- return rq;
- }
- raw_spin_unlock(&rq->lock);
- raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
- while (unlikely(task_on_rq_migrating(p)))
- cpu_relax();
- }
- }
- static inline void __task_rq_unlock(struct rq *rq)
- __releases(rq->lock)
- {
- lockdep_unpin_lock(&rq->lock);
- raw_spin_unlock(&rq->lock);
- }
- static inline void
- task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
- __releases(rq->lock)
- __releases(p->pi_lock)
- {
- lockdep_unpin_lock(&rq->lock);
- raw_spin_unlock(&rq->lock);
- raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
- }
- #ifdef CONFIG_SMP
- #ifdef CONFIG_PREEMPT
- static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
- /*
- * fair double_lock_balance: Safely acquires both rq->locks in a fair
- * way at the expense of forcing extra atomic operations in all
- * invocations. This assures that the double_lock is acquired using the
- * same underlying policy as the spinlock_t on this architecture, which
- * reduces latency compared to the unfair variant below. However, it
- * also adds more overhead and therefore may reduce throughput.
- */
- static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
- __releases(this_rq->lock)
- __acquires(busiest->lock)
- __acquires(this_rq->lock)
- {
- raw_spin_unlock(&this_rq->lock);
- double_rq_lock(this_rq, busiest);
- return 1;
- }
- #else
- /*
- * Unfair double_lock_balance: Optimizes throughput at the expense of
- * latency by eliminating extra atomic operations when the locks are
- * already in proper order on entry. This favors lower cpu-ids and will
- * grant the double lock to lower cpus over higher ids under contention,
- * regardless of entry order into the function.
- */
- static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
- __releases(this_rq->lock)
- __acquires(busiest->lock)
- __acquires(this_rq->lock)
- {
- int ret = 0;
- if (unlikely(!raw_spin_trylock(&busiest->lock))) {
- if (busiest < this_rq) {
- raw_spin_unlock(&this_rq->lock);
- raw_spin_lock(&busiest->lock);
- raw_spin_lock_nested(&this_rq->lock,
- SINGLE_DEPTH_NESTING);
- ret = 1;
- } else
- raw_spin_lock_nested(&busiest->lock,
- SINGLE_DEPTH_NESTING);
- }
- return ret;
- }
- #endif /* CONFIG_PREEMPT */
- /*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
- */
- static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
- {
- if (unlikely(!irqs_disabled())) {
- /* printk() doesn't work good under rq->lock */
- raw_spin_unlock(&this_rq->lock);
- BUG_ON(1);
- }
- return _double_lock_balance(this_rq, busiest);
- }
- static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
- __releases(busiest->lock)
- {
- raw_spin_unlock(&busiest->lock);
- lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
- }
- static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
- {
- if (l1 > l2)
- swap(l1, l2);
- spin_lock(l1);
- spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
- }
- static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
- {
- if (l1 > l2)
- swap(l1, l2);
- spin_lock_irq(l1);
- spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
- }
- static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
- {
- if (l1 > l2)
- swap(l1, l2);
- raw_spin_lock(l1);
- raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
- }
- /*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
- static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
- {
- BUG_ON(!irqs_disabled());
- if (rq1 == rq2) {
- raw_spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
- } else {
- if (rq1 < rq2) {
- raw_spin_lock(&rq1->lock);
- raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
- } else {
- raw_spin_lock(&rq2->lock);
- raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
- }
- }
- }
- /*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
- static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
- {
- raw_spin_unlock(&rq1->lock);
- if (rq1 != rq2)
- raw_spin_unlock(&rq2->lock);
- else
- __release(rq2->lock);
- }
- #else /* CONFIG_SMP */
- /*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
- static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
- {
- BUG_ON(!irqs_disabled());
- BUG_ON(rq1 != rq2);
- raw_spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
- }
- /*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
- static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
- {
- BUG_ON(rq1 != rq2);
- raw_spin_unlock(&rq1->lock);
- __release(rq2->lock);
- }
- #endif
- extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
- extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
- #ifdef CONFIG_SCHED_DEBUG
- extern void print_cfs_stats(struct seq_file *m, int cpu);
- extern void print_rt_stats(struct seq_file *m, int cpu);
- extern void print_dl_stats(struct seq_file *m, int cpu);
- extern void
- print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
- #ifdef CONFIG_NUMA_BALANCING
- extern void
- show_numa_stats(struct task_struct *p, struct seq_file *m);
- extern void
- print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
- unsigned long tpf, unsigned long gsf, unsigned long gpf);
- #endif /* CONFIG_NUMA_BALANCING */
- #endif /* CONFIG_SCHED_DEBUG */
- extern void init_cfs_rq(struct cfs_rq *cfs_rq);
- extern void init_rt_rq(struct rt_rq *rt_rq);
- extern void init_dl_rq(struct dl_rq *dl_rq);
- extern void cfs_bandwidth_usage_inc(void);
- extern void cfs_bandwidth_usage_dec(void);
- #ifdef CONFIG_NO_HZ_COMMON
- enum rq_nohz_flag_bits {
- NOHZ_TICK_STOPPED,
- NOHZ_BALANCE_KICK,
- };
- #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
- #endif
- #ifdef CONFIG_IRQ_TIME_ACCOUNTING
- DECLARE_PER_CPU(u64, cpu_hardirq_time);
- DECLARE_PER_CPU(u64, cpu_softirq_time);
- #ifndef CONFIG_64BIT
- DECLARE_PER_CPU(seqcount_t, irq_time_seq);
- static inline void irq_time_write_begin(void)
- {
- __this_cpu_inc(irq_time_seq.sequence);
- smp_wmb();
- }
- static inline void irq_time_write_end(void)
- {
- smp_wmb();
- __this_cpu_inc(irq_time_seq.sequence);
- }
- static inline u64 irq_time_read(int cpu)
- {
- u64 irq_time;
- unsigned seq;
- do {
- seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
- irq_time = per_cpu(cpu_softirq_time, cpu) +
- per_cpu(cpu_hardirq_time, cpu);
- } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
- return irq_time;
- }
- #else /* CONFIG_64BIT */
- static inline void irq_time_write_begin(void)
- {
- }
- static inline void irq_time_write_end(void)
- {
- }
- static inline u64 irq_time_read(int cpu)
- {
- return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
- }
- #endif /* CONFIG_64BIT */
- #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|