123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511 |
- /*
- * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
- *
- * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * Interactivity improvements by Mike Galbraith
- * (C) 2007 Mike Galbraith <efault@gmx.de>
- *
- * Various enhancements by Dmitry Adamushko.
- * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
- *
- * Group scheduling enhancements by Srivatsa Vaddagiri
- * Copyright IBM Corporation, 2007
- * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
- *
- * Scaled math optimizations by Thomas Gleixner
- * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
- *
- * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- */
- #include <linux/latencytop.h>
- #include <linux/sched.h>
- #include <linux/cpumask.h>
- #include <linux/cpuidle.h>
- #include <linux/slab.h>
- #include <linux/profile.h>
- #include <linux/interrupt.h>
- #include <linux/mempolicy.h>
- #include <linux/migrate.h>
- #include <linux/task_work.h>
- #include <trace/events/sched.h>
- #include "sched.h"
- /*
- * Targeted preemption latency for CPU-bound tasks:
- * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length
- * and have no persistent notion like in traditional, time-slice
- * based scheduling concepts.
- *
- * (to see the precise effective timeslice length of your workload,
- * run vmstat and monitor the context-switches (cs) field)
- */
- unsigned int sysctl_sched_latency = 6000000ULL;
- unsigned int normalized_sysctl_sched_latency = 6000000ULL;
- /*
- * The initial- and re-scaling of tunables is configurable
- * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
- *
- * Options are:
- * SCHED_TUNABLESCALING_NONE - unscaled, always *1
- * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
- * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
- */
- enum sched_tunable_scaling sysctl_sched_tunable_scaling
- = SCHED_TUNABLESCALING_LOG;
- /*
- * Minimal preemption granularity for CPU-bound tasks:
- * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
- */
- unsigned int sysctl_sched_min_granularity = 750000ULL;
- unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
- /*
- * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
- */
- static unsigned int sched_nr_latency = 8;
- /*
- * After fork, child runs first. If set to 0 (default) then
- * parent will (try to) run first.
- */
- unsigned int sysctl_sched_child_runs_first __read_mostly;
- /*
- * SCHED_OTHER wake-up granularity.
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
- unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
- unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
- const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
- /*
- * The exponential sliding window over which load is averaged for shares
- * distribution.
- * (default: 10msec)
- */
- unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
- #ifdef CONFIG_CFS_BANDWIDTH
- /*
- * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
- * each time a cfs_rq requests quota.
- *
- * Note: in the case that the slice exceeds the runtime remaining (either due
- * to consumption or the quota being specified to be smaller than the slice)
- * we will always only issue the remaining available time.
- *
- * default: 5 msec, units: microseconds
- */
- unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
- #endif
- static inline void update_load_add(struct load_weight *lw, unsigned long inc)
- {
- lw->weight += inc;
- lw->inv_weight = 0;
- }
- static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
- {
- lw->weight -= dec;
- lw->inv_weight = 0;
- }
- static inline void update_load_set(struct load_weight *lw, unsigned long w)
- {
- lw->weight = w;
- lw->inv_weight = 0;
- }
- /*
- * Increase the granularity value when there are more CPUs,
- * because with more CPUs the 'effective latency' as visible
- * to users decreases. But the relationship is not linear,
- * so pick a second-best guess by going with the log2 of the
- * number of CPUs.
- *
- * This idea comes from the SD scheduler of Con Kolivas:
- */
- static unsigned int get_update_sysctl_factor(void)
- {
- unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
- unsigned int factor;
- switch (sysctl_sched_tunable_scaling) {
- case SCHED_TUNABLESCALING_NONE:
- factor = 1;
- break;
- case SCHED_TUNABLESCALING_LINEAR:
- factor = cpus;
- break;
- case SCHED_TUNABLESCALING_LOG:
- default:
- factor = 1 + ilog2(cpus);
- break;
- }
- return factor;
- }
- static void update_sysctl(void)
- {
- unsigned int factor = get_update_sysctl_factor();
- #define SET_SYSCTL(name) \
- (sysctl_##name = (factor) * normalized_sysctl_##name)
- SET_SYSCTL(sched_min_granularity);
- SET_SYSCTL(sched_latency);
- SET_SYSCTL(sched_wakeup_granularity);
- #undef SET_SYSCTL
- }
- void sched_init_granularity(void)
- {
- update_sysctl();
- }
- #define WMULT_CONST (~0U)
- #define WMULT_SHIFT 32
- static void __update_inv_weight(struct load_weight *lw)
- {
- unsigned long w;
- if (likely(lw->inv_weight))
- return;
- w = scale_load_down(lw->weight);
- if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
- lw->inv_weight = 1;
- else if (unlikely(!w))
- lw->inv_weight = WMULT_CONST;
- else
- lw->inv_weight = WMULT_CONST / w;
- }
- /*
- * delta_exec * weight / lw.weight
- * OR
- * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
- *
- * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
- * we're guaranteed shift stays positive because inv_weight is guaranteed to
- * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
- *
- * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
- * weight/lw.weight <= 1, and therefore our shift will also be positive.
- */
- static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
- {
- u64 fact = scale_load_down(weight);
- int shift = WMULT_SHIFT;
- __update_inv_weight(lw);
- if (unlikely(fact >> 32)) {
- while (fact >> 32) {
- fact >>= 1;
- shift--;
- }
- }
- /* hint to use a 32x32->64 mul */
- fact = (u64)(u32)fact * lw->inv_weight;
- while (fact >> 32) {
- fact >>= 1;
- shift--;
- }
- return mul_u64_u32_shr(delta_exec, fact, shift);
- }
- const struct sched_class fair_sched_class;
- /**************************************************************
- * CFS operations on generic schedulable entities:
- */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* cpu runqueue to which this cfs_rq is attached */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rq;
- }
- /* An entity is a task if it doesn't "own" a runqueue */
- #define entity_is_task(se) (!se->my_q)
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- #ifdef CONFIG_SCHED_DEBUG
- WARN_ON_ONCE(!entity_is_task(se));
- #endif
- return container_of(se, struct task_struct, se);
- }
- /* Walk up scheduling entities hierarchy */
- #define for_each_sched_entity(se) \
- for (; se; se = se->parent)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return p->se.cfs_rq;
- }
- /* runqueue on which this entity is (to be) queued */
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- return se->cfs_rq;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return grp->my_q;
- }
- static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update);
- static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- if (!cfs_rq->on_list) {
- /*
- * Ensure we either appear before our parent (if already
- * enqueued) or force our parent to appear after us when it is
- * enqueued. The fact that we always enqueue bottom-up
- * reduces this to two cases.
- */
- if (cfs_rq->tg->parent &&
- cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
- list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
- } else {
- list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
- }
- cfs_rq->on_list = 1;
- /* We should have no load, but we need to update last_decay. */
- update_cfs_rq_blocked_load(cfs_rq, 0);
- }
- }
- static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- if (cfs_rq->on_list) {
- list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
- cfs_rq->on_list = 0;
- }
- }
- /* Iterate thr' all leaf cfs_rq's on a runqueue */
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
- /* Do the two (enqueued) entities belong to the same group ? */
- static inline struct cfs_rq *
- is_same_group(struct sched_entity *se, struct sched_entity *pse)
- {
- if (se->cfs_rq == pse->cfs_rq)
- return se->cfs_rq;
- return NULL;
- }
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return se->parent;
- }
- static void
- find_matching_se(struct sched_entity **se, struct sched_entity **pse)
- {
- int se_depth, pse_depth;
- /*
- * preemption test can be made between sibling entities who are in the
- * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
- * both tasks until we find their ancestors who are siblings of common
- * parent.
- */
- /* First walk up until both entities are at same depth */
- se_depth = (*se)->depth;
- pse_depth = (*pse)->depth;
- while (se_depth > pse_depth) {
- se_depth--;
- *se = parent_entity(*se);
- }
- while (pse_depth > se_depth) {
- pse_depth--;
- *pse = parent_entity(*pse);
- }
- while (!is_same_group(*se, *pse)) {
- *se = parent_entity(*se);
- *pse = parent_entity(*pse);
- }
- }
- #else /* !CONFIG_FAIR_GROUP_SCHED */
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- return container_of(se, struct task_struct, se);
- }
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return container_of(cfs_rq, struct rq, cfs);
- }
- #define entity_is_task(se) 1
- #define for_each_sched_entity(se) \
- for (; se; se = NULL)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return &task_rq(p)->cfs;
- }
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- struct task_struct *p = task_of(se);
- struct rq *rq = task_rq(p);
- return &rq->cfs;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return NULL;
- }
- static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- }
- static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- }
- #define for_each_leaf_cfs_rq(rq, cfs_rq) \
- for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return NULL;
- }
- static inline void
- find_matching_se(struct sched_entity **se, struct sched_entity **pse)
- {
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static __always_inline
- void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
- /**************************************************************
- * Scheduling class tree data structure manipulation methods:
- */
- static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - max_vruntime);
- if (delta > 0)
- max_vruntime = vruntime;
- return max_vruntime;
- }
- static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - min_vruntime);
- if (delta < 0)
- min_vruntime = vruntime;
- return min_vruntime;
- }
- static inline int entity_before(struct sched_entity *a,
- struct sched_entity *b)
- {
- return (s64)(a->vruntime - b->vruntime) < 0;
- }
- static void update_min_vruntime(struct cfs_rq *cfs_rq)
- {
- u64 vruntime = cfs_rq->min_vruntime;
- if (cfs_rq->curr)
- vruntime = cfs_rq->curr->vruntime;
- if (cfs_rq->rb_leftmost) {
- struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
- struct sched_entity,
- run_node);
- if (!cfs_rq->curr)
- vruntime = se->vruntime;
- else
- vruntime = min_vruntime(vruntime, se->vruntime);
- }
- /* ensure we never gain time by being placed backwards. */
- cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
- #ifndef CONFIG_64BIT
- smp_wmb();
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
- #endif
- }
- /*
- * Enqueue an entity into the rb-tree:
- */
- static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
- struct rb_node *parent = NULL;
- struct sched_entity *entry;
- int leftmost = 1;
- /*
- * Find the right place in the rbtree:
- */
- while (*link) {
- parent = *link;
- entry = rb_entry(parent, struct sched_entity, run_node);
- /*
- * We dont care about collisions. Nodes with
- * the same key stay together.
- */
- if (entity_before(se, entry)) {
- link = &parent->rb_left;
- } else {
- link = &parent->rb_right;
- leftmost = 0;
- }
- }
- /*
- * Maintain a cache of leftmost tree entries (it is frequently
- * used):
- */
- if (leftmost)
- cfs_rq->rb_leftmost = &se->run_node;
- rb_link_node(&se->run_node, parent, link);
- rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
- }
- static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (cfs_rq->rb_leftmost == &se->run_node) {
- struct rb_node *next_node;
- next_node = rb_next(&se->run_node);
- cfs_rq->rb_leftmost = next_node;
- }
- rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
- }
- struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
- {
- struct rb_node *left = cfs_rq->rb_leftmost;
- if (!left)
- return NULL;
- return rb_entry(left, struct sched_entity, run_node);
- }
- static struct sched_entity *__pick_next_entity(struct sched_entity *se)
- {
- struct rb_node *next = rb_next(&se->run_node);
- if (!next)
- return NULL;
- return rb_entry(next, struct sched_entity, run_node);
- }
- #ifdef CONFIG_SCHED_DEBUG
- struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
- {
- struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
- if (!last)
- return NULL;
- return rb_entry(last, struct sched_entity, run_node);
- }
- /**************************************************************
- * Scheduling class statistics methods:
- */
- int sched_proc_update_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- unsigned int factor = get_update_sysctl_factor();
- if (ret || !write)
- return ret;
- sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
- sysctl_sched_min_granularity);
- #define WRT_SYSCTL(name) \
- (normalized_sysctl_##name = sysctl_##name / (factor))
- WRT_SYSCTL(sched_min_granularity);
- WRT_SYSCTL(sched_latency);
- WRT_SYSCTL(sched_wakeup_granularity);
- #undef WRT_SYSCTL
- return 0;
- }
- #endif
- /*
- * delta /= w
- */
- static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
- {
- if (unlikely(se->load.weight != NICE_0_LOAD))
- delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
- return delta;
- }
- /*
- * The idea is to set a period in which each task runs once.
- *
- * When there are too many tasks (sched_nr_latency) we have to stretch
- * this period because otherwise the slices get too small.
- *
- * p = (nr <= nl) ? l : l*nr/nl
- */
- static u64 __sched_period(unsigned long nr_running)
- {
- u64 period = sysctl_sched_latency;
- unsigned long nr_latency = sched_nr_latency;
- if (unlikely(nr_running > nr_latency)) {
- period = sysctl_sched_min_granularity;
- period *= nr_running;
- }
- return period;
- }
- /*
- * We calculate the wall-time slice from the period by taking a part
- * proportional to the weight.
- *
- * s = p*P[w/rw]
- */
- static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
- for_each_sched_entity(se) {
- struct load_weight *load;
- struct load_weight lw;
- cfs_rq = cfs_rq_of(se);
- load = &cfs_rq->load;
- if (unlikely(!se->on_rq)) {
- lw = cfs_rq->load;
- update_load_add(&lw, se->load.weight);
- load = &lw;
- }
- slice = __calc_delta(slice, se->load.weight, load);
- }
- return slice;
- }
- /*
- * We calculate the vruntime slice of a to-be-inserted task.
- *
- * vs = s/w
- */
- static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- return calc_delta_fair(sched_slice(cfs_rq, se), se);
- }
- #ifdef CONFIG_SMP
- static int select_idle_sibling(struct task_struct *p, int cpu);
- static unsigned long task_h_load(struct task_struct *p);
- static inline void __update_task_entity_contrib(struct sched_entity *se);
- static inline void __update_task_entity_utilization(struct sched_entity *se);
- /* Give new task start runnable values to heavy its load in infant time */
- void init_task_runnable_average(struct task_struct *p)
- {
- u32 slice;
- slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
- p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
- p->se.avg.avg_period = slice;
- __update_task_entity_contrib(&p->se);
- __update_task_entity_utilization(&p->se);
- }
- #else
- void init_task_runnable_average(struct task_struct *p)
- {
- }
- #endif
- /*
- * Update the current task's runtime statistics.
- */
- static void update_curr(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr = cfs_rq->curr;
- u64 now = rq_clock_task(rq_of(cfs_rq));
- u64 delta_exec;
- if (unlikely(!curr))
- return;
- delta_exec = now - curr->exec_start;
- if (unlikely((s64)delta_exec <= 0))
- return;
- curr->exec_start = now;
- schedstat_set(curr->statistics.exec_max,
- max(delta_exec, curr->statistics.exec_max));
- curr->sum_exec_runtime += delta_exec;
- schedstat_add(cfs_rq, exec_clock, delta_exec);
- curr->vruntime += calc_delta_fair(delta_exec, curr);
- update_min_vruntime(cfs_rq);
- if (entity_is_task(curr)) {
- struct task_struct *curtask = task_of(curr);
- trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
- cpuacct_charge(curtask, delta_exec);
- account_group_exec_runtime(curtask, delta_exec);
- }
- account_cfs_rq_runtime(cfs_rq, delta_exec);
- }
- static void update_curr_fair(struct rq *rq)
- {
- update_curr(cfs_rq_of(&rq->curr->se));
- }
- static inline void
- update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
- }
- /*
- * Task is being enqueued - update stats:
- */
- static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * Are we enqueueing a waiting task? (for current tasks
- * a dequeue/enqueue event is a NOP)
- */
- if (se != cfs_rq->curr)
- update_stats_wait_start(cfs_rq, se);
- }
- static void
- update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
- rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
- schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
- schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
- rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
- #ifdef CONFIG_SCHEDSTATS
- if (entity_is_task(se)) {
- trace_sched_stat_wait(task_of(se),
- rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
- }
- #endif
- schedstat_set(se->statistics.wait_start, 0);
- }
- static inline void
- update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * Mark the end of the wait period if dequeueing a
- * waiting task:
- */
- if (se != cfs_rq->curr)
- update_stats_wait_end(cfs_rq, se);
- }
- /*
- * We are picking a new current task - update its stats:
- */
- static inline void
- update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * We are starting a new run period:
- */
- se->exec_start = rq_clock_task(rq_of(cfs_rq));
- }
- /**************************************************
- * Scheduling class queueing methods:
- */
- #ifdef CONFIG_NUMA_BALANCING
- /*
- * Approximate time to scan a full NUMA task in ms. The task scan period is
- * calculated based on the tasks virtual memory size and
- * numa_balancing_scan_size.
- */
- unsigned int sysctl_numa_balancing_scan_period_min = 1000;
- unsigned int sysctl_numa_balancing_scan_period_max = 60000;
- /* Portion of address space to scan in MB */
- unsigned int sysctl_numa_balancing_scan_size = 256;
- /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
- unsigned int sysctl_numa_balancing_scan_delay = 1000;
- static unsigned int task_nr_scan_windows(struct task_struct *p)
- {
- unsigned long rss = 0;
- unsigned long nr_scan_pages;
- /*
- * Calculations based on RSS as non-present and empty pages are skipped
- * by the PTE scanner and NUMA hinting faults should be trapped based
- * on resident pages
- */
- nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
- rss = get_mm_rss(p->mm);
- if (!rss)
- rss = nr_scan_pages;
- rss = round_up(rss, nr_scan_pages);
- return rss / nr_scan_pages;
- }
- /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
- #define MAX_SCAN_WINDOW 2560
- static unsigned int task_scan_min(struct task_struct *p)
- {
- unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
- unsigned int scan, floor;
- unsigned int windows = 1;
- if (scan_size < MAX_SCAN_WINDOW)
- windows = MAX_SCAN_WINDOW / scan_size;
- floor = 1000 / windows;
- scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
- return max_t(unsigned int, floor, scan);
- }
- static unsigned int task_scan_max(struct task_struct *p)
- {
- unsigned int smin = task_scan_min(p);
- unsigned int smax;
- /* Watch for min being lower than max due to floor calculations */
- smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
- return max(smin, smax);
- }
- static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
- {
- rq->nr_numa_running += (p->numa_preferred_nid != -1);
- rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
- }
- static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
- {
- rq->nr_numa_running -= (p->numa_preferred_nid != -1);
- rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
- }
- struct numa_group {
- atomic_t refcount;
- spinlock_t lock; /* nr_tasks, tasks */
- int nr_tasks;
- pid_t gid;
- struct rcu_head rcu;
- nodemask_t active_nodes;
- unsigned long total_faults;
- /*
- * Faults_cpu is used to decide whether memory should move
- * towards the CPU. As a consequence, these stats are weighted
- * more by CPU use than by memory faults.
- */
- unsigned long *faults_cpu;
- unsigned long faults[0];
- };
- /* Shared or private faults. */
- #define NR_NUMA_HINT_FAULT_TYPES 2
- /* Memory and CPU locality */
- #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
- /* Averaged statistics, and temporary buffers. */
- #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
- pid_t task_numa_group_id(struct task_struct *p)
- {
- return p->numa_group ? p->numa_group->gid : 0;
- }
- /*
- * The averaged statistics, shared & private, memory & cpu,
- * occupy the first half of the array. The second half of the
- * array is for current counters, which are averaged into the
- * first set by task_numa_placement.
- */
- static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
- {
- return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
- }
- static inline unsigned long task_faults(struct task_struct *p, int nid)
- {
- if (!p->numa_faults)
- return 0;
- return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- static inline unsigned long group_faults(struct task_struct *p, int nid)
- {
- if (!p->numa_group)
- return 0;
- return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
- {
- return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
- group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- /* Handle placement on systems where not all nodes are directly connected. */
- static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
- int maxdist, bool task)
- {
- unsigned long score = 0;
- int node;
- /*
- * All nodes are directly connected, and the same distance
- * from each other. No need for fancy placement algorithms.
- */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return 0;
- /*
- * This code is called for each node, introducing N^2 complexity,
- * which should be ok given the number of nodes rarely exceeds 8.
- */
- for_each_online_node(node) {
- unsigned long faults;
- int dist = node_distance(nid, node);
- /*
- * The furthest away nodes in the system are not interesting
- * for placement; nid was already counted.
- */
- if (dist == sched_max_numa_distance || node == nid)
- continue;
- /*
- * On systems with a backplane NUMA topology, compare groups
- * of nodes, and move tasks towards the group with the most
- * memory accesses. When comparing two nodes at distance
- * "hoplimit", only nodes closer by than "hoplimit" are part
- * of each group. Skip other nodes.
- */
- if (sched_numa_topology_type == NUMA_BACKPLANE &&
- dist > maxdist)
- continue;
- /* Add up the faults from nearby nodes. */
- if (task)
- faults = task_faults(p, node);
- else
- faults = group_faults(p, node);
- /*
- * On systems with a glueless mesh NUMA topology, there are
- * no fixed "groups of nodes". Instead, nodes that are not
- * directly connected bounce traffic through intermediate
- * nodes; a numa_group can occupy any set of nodes.
- * The further away a node is, the less the faults count.
- * This seems to result in good task placement.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- faults *= (sched_max_numa_distance - dist);
- faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
- }
- score += faults;
- }
- return score;
- }
- /*
- * These return the fraction of accesses done by a particular task, or
- * task group, on a particular numa node. The group weight is given a
- * larger multiplier, in order to group tasks together that are almost
- * evenly spread out between numa nodes.
- */
- static inline unsigned long task_weight(struct task_struct *p, int nid,
- int dist)
- {
- unsigned long faults, total_faults;
- if (!p->numa_faults)
- return 0;
- total_faults = p->total_numa_faults;
- if (!total_faults)
- return 0;
- faults = task_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, true);
- return 1000 * faults / total_faults;
- }
- static inline unsigned long group_weight(struct task_struct *p, int nid,
- int dist)
- {
- unsigned long faults, total_faults;
- if (!p->numa_group)
- return 0;
- total_faults = p->numa_group->total_faults;
- if (!total_faults)
- return 0;
- faults = group_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, false);
- return 1000 * faults / total_faults;
- }
- bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
- int src_nid, int dst_cpu)
- {
- struct numa_group *ng = p->numa_group;
- int dst_nid = cpu_to_node(dst_cpu);
- int last_cpupid, this_cpupid;
- this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
- /*
- * Multi-stage node selection is used in conjunction with a periodic
- * migration fault to build a temporal task<->page relation. By using
- * a two-stage filter we remove short/unlikely relations.
- *
- * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
- * a task's usage of a particular page (n_p) per total usage of this
- * page (n_t) (in a given time-span) to a probability.
- *
- * Our periodic faults will sample this probability and getting the
- * same result twice in a row, given these samples are fully
- * independent, is then given by P(n)^2, provided our sample period
- * is sufficiently short compared to the usage pattern.
- *
- * This quadric squishes small probabilities, making it less likely we
- * act on an unlikely task<->page relation.
- */
- last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
- if (!cpupid_pid_unset(last_cpupid) &&
- cpupid_to_nid(last_cpupid) != dst_nid)
- return false;
- /* Always allow migrate on private faults */
- if (cpupid_match_pid(p, last_cpupid))
- return true;
- /* A shared fault, but p->numa_group has not been set up yet. */
- if (!ng)
- return true;
- /*
- * Do not migrate if the destination is not a node that
- * is actively used by this numa group.
- */
- if (!node_isset(dst_nid, ng->active_nodes))
- return false;
- /*
- * Source is a node that is not actively used by this
- * numa group, while the destination is. Migrate.
- */
- if (!node_isset(src_nid, ng->active_nodes))
- return true;
- /*
- * Both source and destination are nodes in active
- * use by this numa group. Maximize memory bandwidth
- * by migrating from more heavily used groups, to less
- * heavily used ones, spreading the load around.
- * Use a 1/4 hysteresis to avoid spurious page movement.
- */
- return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
- }
- static unsigned long weighted_cpuload(const int cpu);
- static unsigned long source_load(int cpu, int type);
- static unsigned long target_load(int cpu, int type);
- static unsigned long capacity_of(int cpu);
- static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
- /* Cached statistics for all CPUs within a node */
- struct numa_stats {
- unsigned long nr_running;
- unsigned long load;
- /* Total compute capacity of CPUs on a node */
- unsigned long compute_capacity;
- /* Approximate capacity in terms of runnable tasks on a node */
- unsigned long task_capacity;
- int has_free_capacity;
- };
- /*
- * XXX borrowed from update_sg_lb_stats
- */
- static void update_numa_stats(struct numa_stats *ns, int nid)
- {
- int smt, cpu, cpus = 0;
- unsigned long capacity;
- memset(ns, 0, sizeof(*ns));
- for_each_cpu(cpu, cpumask_of_node(nid)) {
- struct rq *rq = cpu_rq(cpu);
- ns->nr_running += rq->nr_running;
- ns->load += weighted_cpuload(cpu);
- ns->compute_capacity += capacity_of(cpu);
- cpus++;
- }
- /*
- * If we raced with hotplug and there are no CPUs left in our mask
- * the @ns structure is NULL'ed and task_numa_compare() will
- * not find this node attractive.
- *
- * We'll either bail at !has_free_capacity, or we'll detect a huge
- * imbalance and bail there.
- */
- if (!cpus)
- return;
- /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
- smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
- capacity = cpus / smt; /* cores */
- ns->task_capacity = min_t(unsigned, capacity,
- DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
- ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
- }
- struct task_numa_env {
- struct task_struct *p;
- int src_cpu, src_nid;
- int dst_cpu, dst_nid;
- struct numa_stats src_stats, dst_stats;
- int imbalance_pct;
- int dist;
- struct task_struct *best_task;
- long best_imp;
- int best_cpu;
- };
- static void task_numa_assign(struct task_numa_env *env,
- struct task_struct *p, long imp)
- {
- if (env->best_task)
- put_task_struct(env->best_task);
- if (p)
- get_task_struct(p);
- env->best_task = p;
- env->best_imp = imp;
- env->best_cpu = env->dst_cpu;
- }
- static bool load_too_imbalanced(long src_load, long dst_load,
- struct task_numa_env *env)
- {
- long imb, old_imb;
- long orig_src_load, orig_dst_load;
- long src_capacity, dst_capacity;
- /*
- * The load is corrected for the CPU capacity available on each node.
- *
- * src_load dst_load
- * ------------ vs ---------
- * src_capacity dst_capacity
- */
- src_capacity = env->src_stats.compute_capacity;
- dst_capacity = env->dst_stats.compute_capacity;
- /* We care about the slope of the imbalance, not the direction. */
- if (dst_load < src_load)
- swap(dst_load, src_load);
- /* Is the difference below the threshold? */
- imb = dst_load * src_capacity * 100 -
- src_load * dst_capacity * env->imbalance_pct;
- if (imb <= 0)
- return false;
- /*
- * The imbalance is above the allowed threshold.
- * Compare it with the old imbalance.
- */
- orig_src_load = env->src_stats.load;
- orig_dst_load = env->dst_stats.load;
- if (orig_dst_load < orig_src_load)
- swap(orig_dst_load, orig_src_load);
- old_imb = orig_dst_load * src_capacity * 100 -
- orig_src_load * dst_capacity * env->imbalance_pct;
- /* Would this change make things worse? */
- return (imb > old_imb);
- }
- /*
- * This checks if the overall compute and NUMA accesses of the system would
- * be improved if the source tasks was migrated to the target dst_cpu taking
- * into account that it might be best if task running on the dst_cpu should
- * be exchanged with the source task
- */
- static void task_numa_compare(struct task_numa_env *env,
- long taskimp, long groupimp)
- {
- struct rq *src_rq = cpu_rq(env->src_cpu);
- struct rq *dst_rq = cpu_rq(env->dst_cpu);
- struct task_struct *cur;
- long src_load, dst_load;
- long load;
- long imp = env->p->numa_group ? groupimp : taskimp;
- long moveimp = imp;
- int dist = env->dist;
- rcu_read_lock();
- raw_spin_lock_irq(&dst_rq->lock);
- cur = dst_rq->curr;
- /*
- * No need to move the exiting task, and this ensures that ->curr
- * wasn't reaped and thus get_task_struct() in task_numa_assign()
- * is safe under RCU read lock.
- * Note that rcu_read_lock() itself can't protect from the final
- * put_task_struct() after the last schedule().
- */
- if ((cur->flags & PF_EXITING) || is_idle_task(cur))
- cur = NULL;
- raw_spin_unlock_irq(&dst_rq->lock);
- /*
- * Because we have preemption enabled we can get migrated around and
- * end try selecting ourselves (current == env->p) as a swap candidate.
- */
- if (cur == env->p)
- goto unlock;
- /*
- * "imp" is the fault differential for the source task between the
- * source and destination node. Calculate the total differential for
- * the source task and potential destination task. The more negative
- * the value is, the more rmeote accesses that would be expected to
- * be incurred if the tasks were swapped.
- */
- if (cur) {
- /* Skip this swap candidate if cannot move to the source cpu */
- if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
- goto unlock;
- /*
- * If dst and source tasks are in the same NUMA group, or not
- * in any group then look only at task weights.
- */
- if (cur->numa_group == env->p->numa_group) {
- imp = taskimp + task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- /*
- * Add some hysteresis to prevent swapping the
- * tasks within a group over tiny differences.
- */
- if (cur->numa_group)
- imp -= imp/16;
- } else {
- /*
- * Compare the group weights. If a task is all by
- * itself (not part of a group), use the task weight
- * instead.
- */
- if (cur->numa_group)
- imp += group_weight(cur, env->src_nid, dist) -
- group_weight(cur, env->dst_nid, dist);
- else
- imp += task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- }
- }
- if (imp <= env->best_imp && moveimp <= env->best_imp)
- goto unlock;
- if (!cur) {
- /* Is there capacity at our destination? */
- if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
- !env->dst_stats.has_free_capacity)
- goto unlock;
- goto balance;
- }
- /* Balance doesn't matter much if we're running a task per cpu */
- if (imp > env->best_imp && src_rq->nr_running == 1 &&
- dst_rq->nr_running == 1)
- goto assign;
- /*
- * In the overloaded case, try and keep the load balanced.
- */
- balance:
- load = task_h_load(env->p);
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
- if (moveimp > imp && moveimp > env->best_imp) {
- /*
- * If the improvement from just moving env->p direction is
- * better than swapping tasks around, check if a move is
- * possible. Store a slightly smaller score than moveimp,
- * so an actually idle CPU will win.
- */
- if (!load_too_imbalanced(src_load, dst_load, env)) {
- imp = moveimp - 1;
- cur = NULL;
- goto assign;
- }
- }
- if (imp <= env->best_imp)
- goto unlock;
- if (cur) {
- load = task_h_load(cur);
- dst_load -= load;
- src_load += load;
- }
- if (load_too_imbalanced(src_load, dst_load, env))
- goto unlock;
- /*
- * One idle CPU per node is evaluated for a task numa move.
- * Call select_idle_sibling to maybe find a better one.
- */
- if (!cur)
- env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
- assign:
- task_numa_assign(env, cur, imp);
- unlock:
- rcu_read_unlock();
- }
- static void task_numa_find_cpu(struct task_numa_env *env,
- long taskimp, long groupimp)
- {
- int cpu;
- for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
- /* Skip this CPU if the source task cannot migrate */
- if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
- continue;
- env->dst_cpu = cpu;
- task_numa_compare(env, taskimp, groupimp);
- }
- }
- /* Only move tasks to a NUMA node less busy than the current node. */
- static bool numa_has_capacity(struct task_numa_env *env)
- {
- struct numa_stats *src = &env->src_stats;
- struct numa_stats *dst = &env->dst_stats;
- if (src->has_free_capacity && !dst->has_free_capacity)
- return false;
- /*
- * Only consider a task move if the source has a higher load
- * than the destination, corrected for CPU capacity on each node.
- *
- * src->load dst->load
- * --------------------- vs ---------------------
- * src->compute_capacity dst->compute_capacity
- */
- if (src->load * dst->compute_capacity >
- dst->load * src->compute_capacity)
- return true;
- return false;
- }
- static int task_numa_migrate(struct task_struct *p)
- {
- struct task_numa_env env = {
- .p = p,
- .src_cpu = task_cpu(p),
- .src_nid = task_node(p),
- .imbalance_pct = 112,
- .best_task = NULL,
- .best_imp = 0,
- .best_cpu = -1
- };
- struct sched_domain *sd;
- unsigned long taskweight, groupweight;
- int nid, ret, dist;
- long taskimp, groupimp;
- /*
- * Pick the lowest SD_NUMA domain, as that would have the smallest
- * imbalance and would be the first to start moving tasks about.
- *
- * And we want to avoid any moving of tasks about, as that would create
- * random movement of tasks -- counter the numa conditions we're trying
- * to satisfy here.
- */
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
- if (sd)
- env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
- rcu_read_unlock();
- /*
- * Cpusets can break the scheduler domain tree into smaller
- * balance domains, some of which do not cross NUMA boundaries.
- * Tasks that are "trapped" in such domains cannot be migrated
- * elsewhere, so there is no point in (re)trying.
- */
- if (unlikely(!sd)) {
- p->numa_preferred_nid = task_node(p);
- return -EINVAL;
- }
- env.dst_nid = p->numa_preferred_nid;
- dist = env.dist = node_distance(env.src_nid, env.dst_nid);
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- update_numa_stats(&env.src_stats, env.src_nid);
- taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
- groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
- update_numa_stats(&env.dst_stats, env.dst_nid);
- /* Try to find a spot on the preferred nid. */
- if (numa_has_capacity(&env))
- task_numa_find_cpu(&env, taskimp, groupimp);
- /*
- * Look at other nodes in these cases:
- * - there is no space available on the preferred_nid
- * - the task is part of a numa_group that is interleaved across
- * multiple NUMA nodes; in order to better consolidate the group,
- * we need to check other locations.
- */
- if (env.best_cpu == -1 || (p->numa_group &&
- nodes_weight(p->numa_group->active_nodes) > 1)) {
- for_each_online_node(nid) {
- if (nid == env.src_nid || nid == p->numa_preferred_nid)
- continue;
- dist = node_distance(env.src_nid, env.dst_nid);
- if (sched_numa_topology_type == NUMA_BACKPLANE &&
- dist != env.dist) {
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- }
- /* Only consider nodes where both task and groups benefit */
- taskimp = task_weight(p, nid, dist) - taskweight;
- groupimp = group_weight(p, nid, dist) - groupweight;
- if (taskimp < 0 && groupimp < 0)
- continue;
- env.dist = dist;
- env.dst_nid = nid;
- update_numa_stats(&env.dst_stats, env.dst_nid);
- if (numa_has_capacity(&env))
- task_numa_find_cpu(&env, taskimp, groupimp);
- }
- }
- /*
- * If the task is part of a workload that spans multiple NUMA nodes,
- * and is migrating into one of the workload's active nodes, remember
- * this node as the task's preferred numa node, so the workload can
- * settle down.
- * A task that migrated to a second choice node will be better off
- * trying for a better one later. Do not set the preferred node here.
- */
- if (p->numa_group) {
- if (env.best_cpu == -1)
- nid = env.src_nid;
- else
- nid = env.dst_nid;
- if (node_isset(nid, p->numa_group->active_nodes))
- sched_setnuma(p, env.dst_nid);
- }
- /* No better CPU than the current one was found. */
- if (env.best_cpu == -1)
- return -EAGAIN;
- /*
- * Reset the scan period if the task is being rescheduled on an
- * alternative node to recheck if the tasks is now properly placed.
- */
- p->numa_scan_period = task_scan_min(p);
- if (env.best_task == NULL) {
- ret = migrate_task_to(p, env.best_cpu);
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
- return ret;
- }
- ret = migrate_swap(p, env.best_task);
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
- put_task_struct(env.best_task);
- return ret;
- }
- /* Attempt to migrate a task to a CPU on the preferred node. */
- static void numa_migrate_preferred(struct task_struct *p)
- {
- unsigned long interval = HZ;
- /* This task has no NUMA fault statistics yet */
- if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
- return;
- /* Periodically retry migrating the task to the preferred node */
- interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
- p->numa_migrate_retry = jiffies + interval;
- /* Success if task is already running on preferred CPU */
- if (task_node(p) == p->numa_preferred_nid)
- return;
- /* Otherwise, try migrate to a CPU on the preferred node */
- task_numa_migrate(p);
- }
- /*
- * Find the nodes on which the workload is actively running. We do this by
- * tracking the nodes from which NUMA hinting faults are triggered. This can
- * be different from the set of nodes where the workload's memory is currently
- * located.
- *
- * The bitmask is used to make smarter decisions on when to do NUMA page
- * migrations, To prevent flip-flopping, and excessive page migrations, nodes
- * are added when they cause over 6/16 of the maximum number of faults, but
- * only removed when they drop below 3/16.
- */
- static void update_numa_active_node_mask(struct numa_group *numa_group)
- {
- unsigned long faults, max_faults = 0;
- int nid;
- for_each_online_node(nid) {
- faults = group_faults_cpu(numa_group, nid);
- if (faults > max_faults)
- max_faults = faults;
- }
- for_each_online_node(nid) {
- faults = group_faults_cpu(numa_group, nid);
- if (!node_isset(nid, numa_group->active_nodes)) {
- if (faults > max_faults * 6 / 16)
- node_set(nid, numa_group->active_nodes);
- } else if (faults < max_faults * 3 / 16)
- node_clear(nid, numa_group->active_nodes);
- }
- }
- /*
- * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
- * increments. The more local the fault statistics are, the higher the scan
- * period will be for the next scan window. If local/(local+remote) ratio is
- * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
- * the scan period will decrease. Aim for 70% local accesses.
- */
- #define NUMA_PERIOD_SLOTS 10
- #define NUMA_PERIOD_THRESHOLD 7
- /*
- * Increase the scan period (slow down scanning) if the majority of
- * our memory is already on our local node, or if the majority of
- * the page accesses are shared with other processes.
- * Otherwise, decrease the scan period.
- */
- static void update_task_scan_period(struct task_struct *p,
- unsigned long shared, unsigned long private)
- {
- unsigned int period_slot;
- int ratio;
- int diff;
- unsigned long remote = p->numa_faults_locality[0];
- unsigned long local = p->numa_faults_locality[1];
- /*
- * If there were no record hinting faults then either the task is
- * completely idle or all activity is areas that are not of interest
- * to automatic numa balancing. Related to that, if there were failed
- * migration then it implies we are migrating too quickly or the local
- * node is overloaded. In either case, scan slower
- */
- if (local + shared == 0 || p->numa_faults_locality[2]) {
- p->numa_scan_period = min(p->numa_scan_period_max,
- p->numa_scan_period << 1);
- p->mm->numa_next_scan = jiffies +
- msecs_to_jiffies(p->numa_scan_period);
- return;
- }
- /*
- * Prepare to scale scan period relative to the current period.
- * == NUMA_PERIOD_THRESHOLD scan period stays the same
- * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
- * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
- */
- period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
- ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
- if (ratio >= NUMA_PERIOD_THRESHOLD) {
- int slot = ratio - NUMA_PERIOD_THRESHOLD;
- if (!slot)
- slot = 1;
- diff = slot * period_slot;
- } else {
- diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
- /*
- * Scale scan rate increases based on sharing. There is an
- * inverse relationship between the degree of sharing and
- * the adjustment made to the scanning period. Broadly
- * speaking the intent is that there is little point
- * scanning faster if shared accesses dominate as it may
- * simply bounce migrations uselessly
- */
- ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
- diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
- }
- p->numa_scan_period = clamp(p->numa_scan_period + diff,
- task_scan_min(p), task_scan_max(p));
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
- }
- /*
- * Get the fraction of time the task has been running since the last
- * NUMA placement cycle. The scheduler keeps similar statistics, but
- * decays those on a 32ms period, which is orders of magnitude off
- * from the dozens-of-seconds NUMA balancing period. Use the scheduler
- * stats only if the task is so new there are no NUMA statistics yet.
- */
- static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
- {
- u64 runtime, delta, now;
- /* Use the start of this time slice to avoid calculations. */
- now = p->se.exec_start;
- runtime = p->se.sum_exec_runtime;
- if (p->last_task_numa_placement) {
- delta = runtime - p->last_sum_exec_runtime;
- *period = now - p->last_task_numa_placement;
- } else {
- delta = p->se.avg.runnable_avg_sum;
- *period = p->se.avg.avg_period;
- }
- p->last_sum_exec_runtime = runtime;
- p->last_task_numa_placement = now;
- return delta;
- }
- /*
- * Determine the preferred nid for a task in a numa_group. This needs to
- * be done in a way that produces consistent results with group_weight,
- * otherwise workloads might not converge.
- */
- static int preferred_group_nid(struct task_struct *p, int nid)
- {
- nodemask_t nodes;
- int dist;
- /* Direct connections between all NUMA nodes. */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return nid;
- /*
- * On a system with glueless mesh NUMA topology, group_weight
- * scores nodes according to the number of NUMA hinting faults on
- * both the node itself, and on nearby nodes.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- unsigned long score, max_score = 0;
- int node, max_node = nid;
- dist = sched_max_numa_distance;
- for_each_online_node(node) {
- score = group_weight(p, node, dist);
- if (score > max_score) {
- max_score = score;
- max_node = node;
- }
- }
- return max_node;
- }
- /*
- * Finding the preferred nid in a system with NUMA backplane
- * interconnect topology is more involved. The goal is to locate
- * tasks from numa_groups near each other in the system, and
- * untangle workloads from different sides of the system. This requires
- * searching down the hierarchy of node groups, recursively searching
- * inside the highest scoring group of nodes. The nodemask tricks
- * keep the complexity of the search down.
- */
- nodes = node_online_map;
- for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
- unsigned long max_faults = 0;
- nodemask_t max_group = NODE_MASK_NONE;
- int a, b;
- /* Are there nodes at this distance from each other? */
- if (!find_numa_distance(dist))
- continue;
- for_each_node_mask(a, nodes) {
- unsigned long faults = 0;
- nodemask_t this_group;
- nodes_clear(this_group);
- /* Sum group's NUMA faults; includes a==b case. */
- for_each_node_mask(b, nodes) {
- if (node_distance(a, b) < dist) {
- faults += group_faults(p, b);
- node_set(b, this_group);
- node_clear(b, nodes);
- }
- }
- /* Remember the top group. */
- if (faults > max_faults) {
- max_faults = faults;
- max_group = this_group;
- /*
- * subtle: at the smallest distance there is
- * just one node left in each "group", the
- * winner is the preferred nid.
- */
- nid = a;
- }
- }
- /* Next round, evaluate the nodes within max_group. */
- if (!max_faults)
- break;
- nodes = max_group;
- }
- return nid;
- }
- static void task_numa_placement(struct task_struct *p)
- {
- int seq, nid, max_nid = -1, max_group_nid = -1;
- unsigned long max_faults = 0, max_group_faults = 0;
- unsigned long fault_types[2] = { 0, 0 };
- unsigned long total_faults;
- u64 runtime, period;
- spinlock_t *group_lock = NULL;
- /*
- * The p->mm->numa_scan_seq field gets updated without
- * exclusive access. Use READ_ONCE() here to ensure
- * that the field is read in a single access:
- */
- seq = READ_ONCE(p->mm->numa_scan_seq);
- if (p->numa_scan_seq == seq)
- return;
- p->numa_scan_seq = seq;
- p->numa_scan_period_max = task_scan_max(p);
- total_faults = p->numa_faults_locality[0] +
- p->numa_faults_locality[1];
- runtime = numa_get_avg_runtime(p, &period);
- /* If the task is part of a group prevent parallel updates to group stats */
- if (p->numa_group) {
- group_lock = &p->numa_group->lock;
- spin_lock_irq(group_lock);
- }
- /* Find the node with the highest number of faults */
- for_each_online_node(nid) {
- /* Keep track of the offsets in numa_faults array */
- int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
- unsigned long faults = 0, group_faults = 0;
- int priv;
- for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
- long diff, f_diff, f_weight;
- mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
- membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
- cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
- cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
- /* Decay existing window, copy faults since last scan */
- diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
- fault_types[priv] += p->numa_faults[membuf_idx];
- p->numa_faults[membuf_idx] = 0;
- /*
- * Normalize the faults_from, so all tasks in a group
- * count according to CPU use, instead of by the raw
- * number of faults. Tasks with little runtime have
- * little over-all impact on throughput, and thus their
- * faults are less important.
- */
- f_weight = div64_u64(runtime << 16, period + 1);
- f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
- (total_faults + 1);
- f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
- p->numa_faults[cpubuf_idx] = 0;
- p->numa_faults[mem_idx] += diff;
- p->numa_faults[cpu_idx] += f_diff;
- faults += p->numa_faults[mem_idx];
- p->total_numa_faults += diff;
- if (p->numa_group) {
- /*
- * safe because we can only change our own group
- *
- * mem_idx represents the offset for a given
- * nid and priv in a specific region because it
- * is at the beginning of the numa_faults array.
- */
- p->numa_group->faults[mem_idx] += diff;
- p->numa_group->faults_cpu[mem_idx] += f_diff;
- p->numa_group->total_faults += diff;
- group_faults += p->numa_group->faults[mem_idx];
- }
- }
- if (faults > max_faults) {
- max_faults = faults;
- max_nid = nid;
- }
- if (group_faults > max_group_faults) {
- max_group_faults = group_faults;
- max_group_nid = nid;
- }
- }
- update_task_scan_period(p, fault_types[0], fault_types[1]);
- if (p->numa_group) {
- update_numa_active_node_mask(p->numa_group);
- spin_unlock_irq(group_lock);
- max_nid = preferred_group_nid(p, max_group_nid);
- }
- if (max_faults) {
- /* Set the new preferred node */
- if (max_nid != p->numa_preferred_nid)
- sched_setnuma(p, max_nid);
- if (task_node(p) != p->numa_preferred_nid)
- numa_migrate_preferred(p);
- }
- }
- static inline int get_numa_group(struct numa_group *grp)
- {
- return atomic_inc_not_zero(&grp->refcount);
- }
- static inline void put_numa_group(struct numa_group *grp)
- {
- if (atomic_dec_and_test(&grp->refcount))
- kfree_rcu(grp, rcu);
- }
- static void task_numa_group(struct task_struct *p, int cpupid, int flags,
- int *priv)
- {
- struct numa_group *grp, *my_grp;
- struct task_struct *tsk;
- bool join = false;
- int cpu = cpupid_to_cpu(cpupid);
- int i;
- if (unlikely(!p->numa_group)) {
- unsigned int size = sizeof(struct numa_group) +
- 4*nr_node_ids*sizeof(unsigned long);
- grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
- if (!grp)
- return;
- atomic_set(&grp->refcount, 1);
- spin_lock_init(&grp->lock);
- grp->gid = p->pid;
- /* Second half of the array tracks nids where faults happen */
- grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
- nr_node_ids;
- node_set(task_node(current), grp->active_nodes);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] = p->numa_faults[i];
- grp->total_faults = p->total_numa_faults;
- grp->nr_tasks++;
- rcu_assign_pointer(p->numa_group, grp);
- }
- rcu_read_lock();
- tsk = READ_ONCE(cpu_rq(cpu)->curr);
- if (!cpupid_match_pid(tsk, cpupid))
- goto no_join;
- grp = rcu_dereference(tsk->numa_group);
- if (!grp)
- goto no_join;
- my_grp = p->numa_group;
- if (grp == my_grp)
- goto no_join;
- /*
- * Only join the other group if its bigger; if we're the bigger group,
- * the other task will join us.
- */
- if (my_grp->nr_tasks > grp->nr_tasks)
- goto no_join;
- /*
- * Tie-break on the grp address.
- */
- if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
- goto no_join;
- /* Always join threads in the same process. */
- if (tsk->mm == current->mm)
- join = true;
- /* Simple filter to avoid false positives due to PID collisions */
- if (flags & TNF_SHARED)
- join = true;
- /* Update priv based on whether false sharing was detected */
- *priv = !join;
- if (join && !get_numa_group(grp))
- goto no_join;
- rcu_read_unlock();
- if (!join)
- return;
- BUG_ON(irqs_disabled());
- double_lock_irq(&my_grp->lock, &grp->lock);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
- my_grp->faults[i] -= p->numa_faults[i];
- grp->faults[i] += p->numa_faults[i];
- }
- my_grp->total_faults -= p->total_numa_faults;
- grp->total_faults += p->total_numa_faults;
- my_grp->nr_tasks--;
- grp->nr_tasks++;
- spin_unlock(&my_grp->lock);
- spin_unlock_irq(&grp->lock);
- rcu_assign_pointer(p->numa_group, grp);
- put_numa_group(my_grp);
- return;
- no_join:
- rcu_read_unlock();
- return;
- }
- void task_numa_free(struct task_struct *p)
- {
- struct numa_group *grp = p->numa_group;
- void *numa_faults = p->numa_faults;
- unsigned long flags;
- int i;
- if (grp) {
- spin_lock_irqsave(&grp->lock, flags);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] -= p->numa_faults[i];
- grp->total_faults -= p->total_numa_faults;
- grp->nr_tasks--;
- spin_unlock_irqrestore(&grp->lock, flags);
- RCU_INIT_POINTER(p->numa_group, NULL);
- put_numa_group(grp);
- }
- p->numa_faults = NULL;
- kfree(numa_faults);
- }
- /*
- * Got a PROT_NONE fault for a page on @node.
- */
- void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
- {
- struct task_struct *p = current;
- bool migrated = flags & TNF_MIGRATED;
- int cpu_node = task_node(current);
- int local = !!(flags & TNF_FAULT_LOCAL);
- int priv;
- if (!numabalancing_enabled)
- return;
- /* for example, ksmd faulting in a user's mm */
- if (!p->mm)
- return;
- /* Allocate buffer to track faults on a per-node basis */
- if (unlikely(!p->numa_faults)) {
- int size = sizeof(*p->numa_faults) *
- NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
- p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
- if (!p->numa_faults)
- return;
- p->total_numa_faults = 0;
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
- }
- /*
- * First accesses are treated as private, otherwise consider accesses
- * to be private if the accessing pid has not changed
- */
- if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
- priv = 1;
- } else {
- priv = cpupid_match_pid(p, last_cpupid);
- if (!priv && !(flags & TNF_NO_GROUP))
- task_numa_group(p, last_cpupid, flags, &priv);
- }
- /*
- * If a workload spans multiple NUMA nodes, a shared fault that
- * occurs wholly within the set of nodes that the workload is
- * actively using should be counted as local. This allows the
- * scan rate to slow down when a workload has settled down.
- */
- if (!priv && !local && p->numa_group &&
- node_isset(cpu_node, p->numa_group->active_nodes) &&
- node_isset(mem_node, p->numa_group->active_nodes))
- local = 1;
- task_numa_placement(p);
- /*
- * Retry task to preferred node migration periodically, in case it
- * case it previously failed, or the scheduler moved us.
- */
- if (time_after(jiffies, p->numa_migrate_retry))
- numa_migrate_preferred(p);
- if (migrated)
- p->numa_pages_migrated += pages;
- if (flags & TNF_MIGRATE_FAIL)
- p->numa_faults_locality[2] += pages;
- p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
- p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
- p->numa_faults_locality[local] += pages;
- }
- static void reset_ptenuma_scan(struct task_struct *p)
- {
- /*
- * We only did a read acquisition of the mmap sem, so
- * p->mm->numa_scan_seq is written to without exclusive access
- * and the update is not guaranteed to be atomic. That's not
- * much of an issue though, since this is just used for
- * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
- * expensive, to avoid any form of compiler optimizations:
- */
- WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
- p->mm->numa_scan_offset = 0;
- }
- /*
- * The expensive part of numa migration is done from task_work context.
- * Triggered from task_tick_numa().
- */
- void task_numa_work(struct callback_head *work)
- {
- unsigned long migrate, next_scan, now = jiffies;
- struct task_struct *p = current;
- struct mm_struct *mm = p->mm;
- struct vm_area_struct *vma;
- unsigned long start, end;
- unsigned long nr_pte_updates = 0;
- long pages;
- WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
- work->next = work; /* protect against double add */
- /*
- * Who cares about NUMA placement when they're dying.
- *
- * NOTE: make sure not to dereference p->mm before this check,
- * exit_task_work() happens _after_ exit_mm() so we could be called
- * without p->mm even though we still had it when we enqueued this
- * work.
- */
- if (p->flags & PF_EXITING)
- return;
- if (!mm->numa_next_scan) {
- mm->numa_next_scan = now +
- msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- }
- /*
- * Enforce maximal scan/migration frequency..
- */
- migrate = mm->numa_next_scan;
- if (time_before(now, migrate))
- return;
- if (p->numa_scan_period == 0) {
- p->numa_scan_period_max = task_scan_max(p);
- p->numa_scan_period = task_scan_min(p);
- }
- next_scan = now + msecs_to_jiffies(p->numa_scan_period);
- if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
- return;
- /*
- * Delay this task enough that another task of this mm will likely win
- * the next time around.
- */
- p->node_stamp += 2 * TICK_NSEC;
- start = mm->numa_scan_offset;
- pages = sysctl_numa_balancing_scan_size;
- pages <<= 20 - PAGE_SHIFT; /* MB in pages */
- if (!pages)
- return;
- down_read(&mm->mmap_sem);
- vma = find_vma(mm, start);
- if (!vma) {
- reset_ptenuma_scan(p);
- start = 0;
- vma = mm->mmap;
- }
- for (; vma; vma = vma->vm_next) {
- if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
- is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
- continue;
- }
- /*
- * Shared library pages mapped by multiple processes are not
- * migrated as it is expected they are cache replicated. Avoid
- * hinting faults in read-only file-backed mappings or the vdso
- * as migrating the pages will be of marginal benefit.
- */
- if (!vma->vm_mm ||
- (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
- continue;
- /*
- * Skip inaccessible VMAs to avoid any confusion between
- * PROT_NONE and NUMA hinting ptes
- */
- if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
- continue;
- do {
- start = max(start, vma->vm_start);
- end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
- end = min(end, vma->vm_end);
- nr_pte_updates += change_prot_numa(vma, start, end);
- /*
- * Scan sysctl_numa_balancing_scan_size but ensure that
- * at least one PTE is updated so that unused virtual
- * address space is quickly skipped.
- */
- if (nr_pte_updates)
- pages -= (end - start) >> PAGE_SHIFT;
- start = end;
- if (pages <= 0)
- goto out;
- cond_resched();
- } while (end != vma->vm_end);
- }
- out:
- /*
- * It is possible to reach the end of the VMA list but the last few
- * VMAs are not guaranteed to the vma_migratable. If they are not, we
- * would find the !migratable VMA on the next scan but not reset the
- * scanner to the start so check it now.
- */
- if (vma)
- mm->numa_scan_offset = start;
- else
- reset_ptenuma_scan(p);
- up_read(&mm->mmap_sem);
- }
- /*
- * Drive the periodic memory faults..
- */
- void task_tick_numa(struct rq *rq, struct task_struct *curr)
- {
- struct callback_head *work = &curr->numa_work;
- u64 period, now;
- /*
- * We don't care about NUMA placement if we don't have memory.
- */
- if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
- return;
- /*
- * Using runtime rather than walltime has the dual advantage that
- * we (mostly) drive the selection from busy threads and that the
- * task needs to have done some actual work before we bother with
- * NUMA placement.
- */
- now = curr->se.sum_exec_runtime;
- period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
- if (now - curr->node_stamp > period) {
- if (!curr->node_stamp)
- curr->numa_scan_period = task_scan_min(curr);
- curr->node_stamp += period;
- if (!time_before(jiffies, curr->mm->numa_next_scan)) {
- init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
- task_work_add(curr, work, true);
- }
- }
- }
- #else
- static void task_tick_numa(struct rq *rq, struct task_struct *curr)
- {
- }
- static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
- {
- }
- #endif /* CONFIG_NUMA_BALANCING */
- static void
- account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_add(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
- #ifdef CONFIG_SMP
- if (entity_is_task(se)) {
- struct rq *rq = rq_of(cfs_rq);
- account_numa_enqueue(rq, task_of(se));
- list_add(&se->group_node, &rq->cfs_tasks);
- }
- #endif
- cfs_rq->nr_running++;
- }
- static void
- account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_sub(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
- if (entity_is_task(se)) {
- account_numa_dequeue(rq_of(cfs_rq), task_of(se));
- list_del_init(&se->group_node);
- }
- cfs_rq->nr_running--;
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- # ifdef CONFIG_SMP
- static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
- {
- long tg_weight;
- /*
- * Use this CPU's actual weight instead of the last load_contribution
- * to gain a more accurate current total weight. See
- * update_cfs_rq_load_contribution().
- */
- tg_weight = atomic_long_read(&tg->load_avg);
- tg_weight -= cfs_rq->tg_load_contrib;
- tg_weight += cfs_rq->load.weight;
- return tg_weight;
- }
- static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
- {
- long tg_weight, load, shares;
- tg_weight = calc_tg_weight(tg, cfs_rq);
- load = cfs_rq->load.weight;
- shares = (tg->shares * load);
- if (tg_weight)
- shares /= tg_weight;
- if (shares < MIN_SHARES)
- shares = MIN_SHARES;
- if (shares > tg->shares)
- shares = tg->shares;
- return shares;
- }
- # else /* CONFIG_SMP */
- static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
- {
- return tg->shares;
- }
- # endif /* CONFIG_SMP */
- static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
- unsigned long weight)
- {
- if (se->on_rq) {
- /* commit outstanding execution time */
- if (cfs_rq->curr == se)
- update_curr(cfs_rq);
- account_entity_dequeue(cfs_rq, se);
- }
- update_load_set(&se->load, weight);
- if (se->on_rq)
- account_entity_enqueue(cfs_rq, se);
- }
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
- static void update_cfs_shares(struct cfs_rq *cfs_rq)
- {
- struct task_group *tg;
- struct sched_entity *se;
- long shares;
- tg = cfs_rq->tg;
- se = tg->se[cpu_of(rq_of(cfs_rq))];
- if (!se || throttled_hierarchy(cfs_rq))
- return;
- #ifndef CONFIG_SMP
- if (likely(se->load.weight == tg->shares))
- return;
- #endif
- shares = calc_cfs_shares(cfs_rq, tg);
- reweight_entity(cfs_rq_of(se), se, shares);
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
- {
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_SMP
- /*
- * We choose a half-life close to 1 scheduling period.
- * Note: The tables below are dependent on this value.
- */
- #define LOAD_AVG_PERIOD 32
- #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
- #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
- /* Precomputed fixed inverse multiplies for multiplication by y^n */
- static const u32 runnable_avg_yN_inv[] = {
- 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
- 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
- 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
- 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
- 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
- 0x85aac367, 0x82cd8698,
- };
- /*
- * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
- * over-estimates when re-combining.
- */
- static const u32 runnable_avg_yN_sum[] = {
- 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
- 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
- 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
- };
- /*
- * Approximate:
- * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
- */
- static __always_inline u64 decay_load(u64 val, u64 n)
- {
- unsigned int local_n;
- if (!n)
- return val;
- else if (unlikely(n > LOAD_AVG_PERIOD * 63))
- return 0;
- /* after bounds checking we can collapse to 32-bit */
- local_n = n;
- /*
- * As y^PERIOD = 1/2, we can combine
- * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
- * With a look-up table which covers y^n (n<PERIOD)
- *
- * To achieve constant time decay_load.
- */
- if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
- val >>= local_n / LOAD_AVG_PERIOD;
- local_n %= LOAD_AVG_PERIOD;
- }
- val *= runnable_avg_yN_inv[local_n];
- /* We don't use SRR here since we always want to round down. */
- return val >> 32;
- }
- /*
- * For updates fully spanning n periods, the contribution to runnable
- * average will be: \Sum 1024*y^n
- *
- * We can compute this reasonably efficiently by combining:
- * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
- */
- static u32 __compute_runnable_contrib(u64 n)
- {
- u32 contrib = 0;
- if (likely(n <= LOAD_AVG_PERIOD))
- return runnable_avg_yN_sum[n];
- else if (unlikely(n >= LOAD_AVG_MAX_N))
- return LOAD_AVG_MAX;
- /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
- do {
- contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
- contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
- n -= LOAD_AVG_PERIOD;
- } while (n > LOAD_AVG_PERIOD);
- contrib = decay_load(contrib, n);
- return contrib + runnable_avg_yN_sum[n];
- }
- /*
- * We can represent the historical contribution to runnable average as the
- * coefficients of a geometric series. To do this we sub-divide our runnable
- * history into segments of approximately 1ms (1024us); label the segment that
- * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
- *
- * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
- * p0 p1 p2
- * (now) (~1ms ago) (~2ms ago)
- *
- * Let u_i denote the fraction of p_i that the entity was runnable.
- *
- * We then designate the fractions u_i as our co-efficients, yielding the
- * following representation of historical load:
- * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
- *
- * We choose y based on the with of a reasonably scheduling period, fixing:
- * y^32 = 0.5
- *
- * This means that the contribution to load ~32ms ago (u_32) will be weighted
- * approximately half as much as the contribution to load within the last ms
- * (u_0).
- *
- * When a period "rolls over" and we have new u_0`, multiplying the previous
- * sum again by y is sufficient to update:
- * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
- * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
- */
- static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
- struct sched_avg *sa,
- int runnable,
- int running)
- {
- u64 delta, periods;
- u32 runnable_contrib;
- int delta_w, decayed = 0;
- unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
- delta = now - sa->last_runnable_update;
- /*
- * This should only happen when time goes backwards, which it
- * unfortunately does during sched clock init when we swap over to TSC.
- */
- if ((s64)delta < 0) {
- sa->last_runnable_update = now;
- return 0;
- }
- /*
- * Use 1024ns as the unit of measurement since it's a reasonable
- * approximation of 1us and fast to compute.
- */
- delta >>= 10;
- if (!delta)
- return 0;
- sa->last_runnable_update = now;
- /* delta_w is the amount already accumulated against our next period */
- delta_w = sa->avg_period % 1024;
- if (delta + delta_w >= 1024) {
- /* period roll-over */
- decayed = 1;
- /*
- * Now that we know we're crossing a period boundary, figure
- * out how much from delta we need to complete the current
- * period and accrue it.
- */
- delta_w = 1024 - delta_w;
- if (runnable)
- sa->runnable_avg_sum += delta_w;
- if (running)
- sa->running_avg_sum += delta_w * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta_w;
- delta -= delta_w;
- /* Figure out how many additional periods this update spans */
- periods = delta / 1024;
- delta %= 1024;
- sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
- periods + 1);
- sa->running_avg_sum = decay_load(sa->running_avg_sum,
- periods + 1);
- sa->avg_period = decay_load(sa->avg_period,
- periods + 1);
- /* Efficiently calculate \sum (1..n_period) 1024*y^i */
- runnable_contrib = __compute_runnable_contrib(periods);
- if (runnable)
- sa->runnable_avg_sum += runnable_contrib;
- if (running)
- sa->running_avg_sum += runnable_contrib * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += runnable_contrib;
- }
- /* Remainder of delta accrued against u_0` */
- if (runnable)
- sa->runnable_avg_sum += delta;
- if (running)
- sa->running_avg_sum += delta * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta;
- return decayed;
- }
- /* Synchronize an entity's decay with its parenting cfs_rq.*/
- static inline u64 __synchronize_entity_decay(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 decays = atomic64_read(&cfs_rq->decay_counter);
- decays -= se->avg.decay_count;
- se->avg.decay_count = 0;
- if (!decays)
- return 0;
- se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
- se->avg.utilization_avg_contrib =
- decay_load(se->avg.utilization_avg_contrib, decays);
- return decays;
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update)
- {
- struct task_group *tg = cfs_rq->tg;
- long tg_contrib;
- tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
- tg_contrib -= cfs_rq->tg_load_contrib;
- if (!tg_contrib)
- return;
- if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
- atomic_long_add(tg_contrib, &tg->load_avg);
- cfs_rq->tg_load_contrib += tg_contrib;
- }
- }
- /*
- * Aggregate cfs_rq runnable averages into an equivalent task_group
- * representation for computing load contributions.
- */
- static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq)
- {
- struct task_group *tg = cfs_rq->tg;
- long contrib;
- /* The fraction of a cpu used by this cfs_rq */
- contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
- sa->avg_period + 1);
- contrib -= cfs_rq->tg_runnable_contrib;
- if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
- atomic_add(contrib, &tg->runnable_avg);
- cfs_rq->tg_runnable_contrib += contrib;
- }
- }
- static inline void __update_group_entity_contrib(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
- struct task_group *tg = cfs_rq->tg;
- int runnable_avg;
- u64 contrib;
- contrib = cfs_rq->tg_load_contrib * tg->shares;
- se->avg.load_avg_contrib = div_u64(contrib,
- atomic_long_read(&tg->load_avg) + 1);
- /*
- * For group entities we need to compute a correction term in the case
- * that they are consuming <1 cpu so that we would contribute the same
- * load as a task of equal weight.
- *
- * Explicitly co-ordinating this measurement would be expensive, but
- * fortunately the sum of each cpus contribution forms a usable
- * lower-bound on the true value.
- *
- * Consider the aggregate of 2 contributions. Either they are disjoint
- * (and the sum represents true value) or they are disjoint and we are
- * understating by the aggregate of their overlap.
- *
- * Extending this to N cpus, for a given overlap, the maximum amount we
- * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
- * cpus that overlap for this interval and w_i is the interval width.
- *
- * On a small machine; the first term is well-bounded which bounds the
- * total error since w_i is a subset of the period. Whereas on a
- * larger machine, while this first term can be larger, if w_i is the
- * of consequential size guaranteed to see n_i*w_i quickly converge to
- * our upper bound of 1-cpu.
- */
- runnable_avg = atomic_read(&tg->runnable_avg);
- if (runnable_avg < NICE_0_LOAD) {
- se->avg.load_avg_contrib *= runnable_avg;
- se->avg.load_avg_contrib >>= NICE_0_SHIFT;
- }
- }
- static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
- {
- __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
- runnable, runnable);
- __update_tg_runnable_avg(&rq->avg, &rq->cfs);
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update) {}
- static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq) {}
- static inline void __update_group_entity_contrib(struct sched_entity *se) {}
- static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static inline void __update_task_entity_contrib(struct sched_entity *se)
- {
- u32 contrib;
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
- contrib /= (se->avg.avg_period + 1);
- se->avg.load_avg_contrib = scale_load(contrib);
- }
- /* Compute the current contribution to load_avg by se, return any delta */
- static long __update_entity_load_avg_contrib(struct sched_entity *se)
- {
- long old_contrib = se->avg.load_avg_contrib;
- if (entity_is_task(se)) {
- __update_task_entity_contrib(se);
- } else {
- __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
- __update_group_entity_contrib(se);
- }
- return se->avg.load_avg_contrib - old_contrib;
- }
- static inline void __update_task_entity_utilization(struct sched_entity *se)
- {
- u32 contrib;
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
- contrib /= (se->avg.avg_period + 1);
- se->avg.utilization_avg_contrib = scale_load(contrib);
- }
- static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
- {
- long old_contrib = se->avg.utilization_avg_contrib;
- if (entity_is_task(se))
- __update_task_entity_utilization(se);
- else
- se->avg.utilization_avg_contrib =
- group_cfs_rq(se)->utilization_load_avg;
- return se->avg.utilization_avg_contrib - old_contrib;
- }
- static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
- long load_contrib)
- {
- if (likely(load_contrib < cfs_rq->blocked_load_avg))
- cfs_rq->blocked_load_avg -= load_contrib;
- else
- cfs_rq->blocked_load_avg = 0;
- }
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
- /* Update a sched_entity's runnable average */
- static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- long contrib_delta, utilization_delta;
- int cpu = cpu_of(rq_of(cfs_rq));
- u64 now;
- /*
- * For a group entity we need to use their owned cfs_rq_clock_task() in
- * case they are the parent of a throttled hierarchy.
- */
- if (entity_is_task(se))
- now = cfs_rq_clock_task(cfs_rq);
- else
- now = cfs_rq_clock_task(group_cfs_rq(se));
- if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
- cfs_rq->curr == se))
- return;
- contrib_delta = __update_entity_load_avg_contrib(se);
- utilization_delta = __update_entity_utilization_avg_contrib(se);
- if (!update_cfs_rq)
- return;
- if (se->on_rq) {
- cfs_rq->runnable_load_avg += contrib_delta;
- cfs_rq->utilization_load_avg += utilization_delta;
- } else {
- subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
- }
- }
- /*
- * Decay the load contributed by all blocked children and account this so that
- * their contribution may appropriately discounted when they wake up.
- */
- static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
- {
- u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
- u64 decays;
- decays = now - cfs_rq->last_decay;
- if (!decays && !force_update)
- return;
- if (atomic_long_read(&cfs_rq->removed_load)) {
- unsigned long removed_load;
- removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
- subtract_blocked_load_contrib(cfs_rq, removed_load);
- }
- if (decays) {
- cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
- decays);
- atomic64_add(decays, &cfs_rq->decay_counter);
- cfs_rq->last_decay = now;
- }
- __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
- }
- /* Add the load generated by se into cfs_rq's child load-average */
- static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup)
- {
- /*
- * We track migrations using entity decay_count <= 0, on a wake-up
- * migration we use a negative decay count to track the remote decays
- * accumulated while sleeping.
- *
- * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
- * are seen by enqueue_entity_load_avg() as a migration with an already
- * constructed load_avg_contrib.
- */
- if (unlikely(se->avg.decay_count <= 0)) {
- se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
- if (se->avg.decay_count) {
- /*
- * In a wake-up migration we have to approximate the
- * time sleeping. This is because we can't synchronize
- * clock_task between the two cpus, and it is not
- * guaranteed to be read-safe. Instead, we can
- * approximate this using our carried decays, which are
- * explicitly atomically readable.
- */
- se->avg.last_runnable_update -= (-se->avg.decay_count)
- << 20;
- update_entity_load_avg(se, 0);
- /* Indicate that we're now synchronized and on-rq */
- se->avg.decay_count = 0;
- }
- wakeup = 0;
- } else {
- __synchronize_entity_decay(se);
- }
- /* migrated tasks did not contribute to our blocked load */
- if (wakeup) {
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- update_entity_load_avg(se, 0);
- }
- cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !wakeup);
- }
- /*
- * Remove se's load from this cfs_rq child load-average, if the entity is
- * transitioning to a blocked state we track its projected decay using
- * blocked_load_avg.
- */
- static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep)
- {
- update_entity_load_avg(se, 1);
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !sleep);
- cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
- if (sleep) {
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- } /* migrations, e.g. sleep=0 leave decay_count == 0 */
- }
- /*
- * Update the rq's load with the elapsed running time before entering
- * idle. if the last scheduled task is not a CFS task, idle_enter will
- * be the only way to update the runnable statistic.
- */
- void idle_enter_fair(struct rq *this_rq)
- {
- update_rq_runnable_avg(this_rq, 1);
- }
- /*
- * Update the rq's load with the elapsed idle time before a task is
- * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
- * be the only way to update the runnable statistic.
- */
- void idle_exit_fair(struct rq *this_rq)
- {
- update_rq_runnable_avg(this_rq, 0);
- }
- static int idle_balance(struct rq *this_rq);
- #else /* CONFIG_SMP */
- static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq) {}
- static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
- static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup) {}
- static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep) {}
- static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update) {}
- static inline int idle_balance(struct rq *rq)
- {
- return 0;
- }
- #endif /* CONFIG_SMP */
- static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- #ifdef CONFIG_SCHEDSTATS
- struct task_struct *tsk = NULL;
- if (entity_is_task(se))
- tsk = task_of(se);
- if (se->statistics.sleep_start) {
- u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->statistics.sleep_max))
- se->statistics.sleep_max = delta;
- se->statistics.sleep_start = 0;
- se->statistics.sum_sleep_runtime += delta;
- if (tsk) {
- account_scheduler_latency(tsk, delta >> 10, 1);
- trace_sched_stat_sleep(tsk, delta);
- }
- }
- if (se->statistics.block_start) {
- u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > se->statistics.block_max))
- se->statistics.block_max = delta;
- se->statistics.block_start = 0;
- se->statistics.sum_sleep_runtime += delta;
- if (tsk) {
- if (tsk->in_iowait) {
- se->statistics.iowait_sum += delta;
- se->statistics.iowait_count++;
- trace_sched_stat_iowait(tsk, delta);
- }
- trace_sched_stat_blocked(tsk, delta);
- /*
- * Blocking time is in units of nanosecs, so shift by
- * 20 to get a milliseconds-range estimation of the
- * amount of time that the task spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- profile_hits(SLEEP_PROFILING,
- (void *)get_wchan(tsk),
- delta >> 20);
- }
- account_scheduler_latency(tsk, delta >> 10, 0);
- }
- }
- #endif
- }
- static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- #ifdef CONFIG_SCHED_DEBUG
- s64 d = se->vruntime - cfs_rq->min_vruntime;
- if (d < 0)
- d = -d;
- if (d > 3*sysctl_sched_latency)
- schedstat_inc(cfs_rq, nr_spread_over);
- #endif
- }
- static void
- place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
- {
- u64 vruntime = cfs_rq->min_vruntime;
- /*
- * The 'current' period is already promised to the current tasks,
- * however the extra weight of the new task will slow them down a
- * little, place the new task so that it fits in the slot that
- * stays open at the end.
- */
- if (initial && sched_feat(START_DEBIT))
- vruntime += sched_vslice(cfs_rq, se);
- /* sleeps up to a single latency don't count. */
- if (!initial) {
- unsigned long thresh = sysctl_sched_latency;
- /*
- * Halve their sleep time's effect, to allow
- * for a gentler effect of sleepers:
- */
- if (sched_feat(GENTLE_FAIR_SLEEPERS))
- thresh >>= 1;
- vruntime -= thresh;
- }
- /* ensure we never gain time by being placed backwards. */
- se->vruntime = max_vruntime(se->vruntime, vruntime);
- }
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
- static void
- enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- /*
- * Update the normalized vruntime before updating min_vruntime
- * through calling update_curr().
- */
- if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
- se->vruntime += cfs_rq->min_vruntime;
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
- account_entity_enqueue(cfs_rq, se);
- update_cfs_shares(cfs_rq);
- if (flags & ENQUEUE_WAKEUP) {
- place_entity(cfs_rq, se, 0);
- enqueue_sleeper(cfs_rq, se);
- }
- update_stats_enqueue(cfs_rq, se);
- check_spread(cfs_rq, se);
- if (se != cfs_rq->curr)
- __enqueue_entity(cfs_rq, se);
- se->on_rq = 1;
- if (cfs_rq->nr_running == 1) {
- list_add_leaf_cfs_rq(cfs_rq);
- check_enqueue_throttle(cfs_rq);
- }
- }
- static void __clear_buddies_last(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->last != se)
- break;
- cfs_rq->last = NULL;
- }
- }
- static void __clear_buddies_next(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->next != se)
- break;
- cfs_rq->next = NULL;
- }
- }
- static void __clear_buddies_skip(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->skip != se)
- break;
- cfs_rq->skip = NULL;
- }
- }
- static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (cfs_rq->last == se)
- __clear_buddies_last(se);
- if (cfs_rq->next == se)
- __clear_buddies_next(se);
- if (cfs_rq->skip == se)
- __clear_buddies_skip(se);
- }
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
- static void
- dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
- update_stats_dequeue(cfs_rq, se);
- if (flags & DEQUEUE_SLEEP) {
- #ifdef CONFIG_SCHEDSTATS
- if (entity_is_task(se)) {
- struct task_struct *tsk = task_of(se);
- if (tsk->state & TASK_INTERRUPTIBLE)
- se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
- if (tsk->state & TASK_UNINTERRUPTIBLE)
- se->statistics.block_start = rq_clock(rq_of(cfs_rq));
- }
- #endif
- }
- clear_buddies(cfs_rq, se);
- if (se != cfs_rq->curr)
- __dequeue_entity(cfs_rq, se);
- se->on_rq = 0;
- account_entity_dequeue(cfs_rq, se);
- /*
- * Normalize the entity after updating the min_vruntime because the
- * update can refer to the ->curr item and we need to reflect this
- * movement in our normalized position.
- */
- if (!(flags & DEQUEUE_SLEEP))
- se->vruntime -= cfs_rq->min_vruntime;
- /* return excess runtime on last dequeue */
- return_cfs_rq_runtime(cfs_rq);
- update_min_vruntime(cfs_rq);
- update_cfs_shares(cfs_rq);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void
- check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- unsigned long ideal_runtime, delta_exec;
- struct sched_entity *se;
- s64 delta;
- ideal_runtime = sched_slice(cfs_rq, curr);
- delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
- if (delta_exec > ideal_runtime) {
- resched_curr(rq_of(cfs_rq));
- /*
- * The current task ran long enough, ensure it doesn't get
- * re-elected due to buddy favours.
- */
- clear_buddies(cfs_rq, curr);
- return;
- }
- /*
- * Ensure that a task that missed wakeup preemption by a
- * narrow margin doesn't have to wait for a full slice.
- * This also mitigates buddy induced latencies under load.
- */
- if (delta_exec < sysctl_sched_min_granularity)
- return;
- se = __pick_first_entity(cfs_rq);
- delta = curr->vruntime - se->vruntime;
- if (delta < 0)
- return;
- if (delta > ideal_runtime)
- resched_curr(rq_of(cfs_rq));
- }
- static void
- set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /* 'current' is not kept within the tree. */
- if (se->on_rq) {
- /*
- * Any task has to be enqueued before it get to execute on
- * a CPU. So account for the time it spent waiting on the
- * runqueue.
- */
- update_stats_wait_end(cfs_rq, se);
- __dequeue_entity(cfs_rq, se);
- update_entity_load_avg(se, 1);
- }
- update_stats_curr_start(cfs_rq, se);
- cfs_rq->curr = se;
- #ifdef CONFIG_SCHEDSTATS
- /*
- * Track our maximum slice length, if the CPU's load is at
- * least twice that of our own weight (i.e. dont track it
- * when there are only lesser-weight tasks around):
- */
- if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
- se->statistics.slice_max = max(se->statistics.slice_max,
- se->sum_exec_runtime - se->prev_sum_exec_runtime);
- }
- #endif
- se->prev_sum_exec_runtime = se->sum_exec_runtime;
- }
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
- /*
- * Pick the next process, keeping these things in mind, in this order:
- * 1) keep things fair between processes/task groups
- * 2) pick the "next" process, since someone really wants that to run
- * 3) pick the "last" process, for cache locality
- * 4) do not run the "skip" process, if something else is available
- */
- static struct sched_entity *
- pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- struct sched_entity *left = __pick_first_entity(cfs_rq);
- struct sched_entity *se;
- /*
- * If curr is set we have to see if its left of the leftmost entity
- * still in the tree, provided there was anything in the tree at all.
- */
- if (!left || (curr && entity_before(curr, left)))
- left = curr;
- se = left; /* ideally we run the leftmost entity */
- /*
- * Avoid running the skip buddy, if running something else can
- * be done without getting too unfair.
- */
- if (cfs_rq->skip == se) {
- struct sched_entity *second;
- if (se == curr) {
- second = __pick_first_entity(cfs_rq);
- } else {
- second = __pick_next_entity(se);
- if (!second || (curr && entity_before(curr, second)))
- second = curr;
- }
- if (second && wakeup_preempt_entity(second, left) < 1)
- se = second;
- }
- /*
- * Prefer last buddy, try to return the CPU to a preempted task.
- */
- if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
- se = cfs_rq->last;
- /*
- * Someone really wants this to run. If it's not unfair, run it.
- */
- if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
- se = cfs_rq->next;
- clear_buddies(cfs_rq, se);
- return se;
- }
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
- static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
- {
- /*
- * If still on the runqueue then deactivate_task()
- * was not called and update_curr() has to be done:
- */
- if (prev->on_rq)
- update_curr(cfs_rq);
- /* throttle cfs_rqs exceeding runtime */
- check_cfs_rq_runtime(cfs_rq);
- check_spread(cfs_rq, prev);
- if (prev->on_rq) {
- update_stats_wait_start(cfs_rq, prev);
- /* Put 'current' back into the tree. */
- __enqueue_entity(cfs_rq, prev);
- /* in !on_rq case, update occurred at dequeue */
- update_entity_load_avg(prev, 1);
- }
- cfs_rq->curr = NULL;
- }
- static void
- entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- /*
- * Ensure that runnable average is periodically updated.
- */
- update_entity_load_avg(curr, 1);
- update_cfs_rq_blocked_load(cfs_rq, 1);
- update_cfs_shares(cfs_rq);
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * queued ticks are scheduled to match the slice, so don't bother
- * validating it and just reschedule.
- */
- if (queued) {
- resched_curr(rq_of(cfs_rq));
- return;
- }
- /*
- * don't let the period tick interfere with the hrtick preemption
- */
- if (!sched_feat(DOUBLE_TICK) &&
- hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
- return;
- #endif
- if (cfs_rq->nr_running > 1)
- check_preempt_tick(cfs_rq, curr);
- }
- /**************************************************
- * CFS bandwidth control machinery
- */
- #ifdef CONFIG_CFS_BANDWIDTH
- #ifdef HAVE_JUMP_LABEL
- static struct static_key __cfs_bandwidth_used;
- static inline bool cfs_bandwidth_used(void)
- {
- return static_key_false(&__cfs_bandwidth_used);
- }
- void cfs_bandwidth_usage_inc(void)
- {
- static_key_slow_inc(&__cfs_bandwidth_used);
- }
- void cfs_bandwidth_usage_dec(void)
- {
- static_key_slow_dec(&__cfs_bandwidth_used);
- }
- #else /* HAVE_JUMP_LABEL */
- static bool cfs_bandwidth_used(void)
- {
- return true;
- }
- void cfs_bandwidth_usage_inc(void) {}
- void cfs_bandwidth_usage_dec(void) {}
- #endif /* HAVE_JUMP_LABEL */
- /*
- * default period for cfs group bandwidth.
- * default: 0.1s, units: nanoseconds
- */
- static inline u64 default_cfs_period(void)
- {
- return 100000000ULL;
- }
- static inline u64 sched_cfs_bandwidth_slice(void)
- {
- return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
- }
- /*
- * Replenish runtime according to assigned quota and update expiration time.
- * We use sched_clock_cpu directly instead of rq->clock to avoid adding
- * additional synchronization around rq->lock.
- *
- * requires cfs_b->lock
- */
- void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
- {
- u64 now;
- if (cfs_b->quota == RUNTIME_INF)
- return;
- now = sched_clock_cpu(smp_processor_id());
- cfs_b->runtime = cfs_b->quota;
- cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
- }
- static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
- {
- return &tg->cfs_bandwidth;
- }
- /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
- {
- if (unlikely(cfs_rq->throttle_count))
- return cfs_rq->throttled_clock_task;
- return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
- }
- /* returns 0 on failure to allocate runtime */
- static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- struct task_group *tg = cfs_rq->tg;
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
- u64 amount = 0, min_amount, expires;
- /* note: this is a positive sum as runtime_remaining <= 0 */
- min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
- raw_spin_lock(&cfs_b->lock);
- if (cfs_b->quota == RUNTIME_INF)
- amount = min_amount;
- else {
- start_cfs_bandwidth(cfs_b);
- if (cfs_b->runtime > 0) {
- amount = min(cfs_b->runtime, min_amount);
- cfs_b->runtime -= amount;
- cfs_b->idle = 0;
- }
- }
- expires = cfs_b->runtime_expires;
- raw_spin_unlock(&cfs_b->lock);
- cfs_rq->runtime_remaining += amount;
- /*
- * we may have advanced our local expiration to account for allowed
- * spread between our sched_clock and the one on which runtime was
- * issued.
- */
- if ((s64)(expires - cfs_rq->runtime_expires) > 0)
- cfs_rq->runtime_expires = expires;
- return cfs_rq->runtime_remaining > 0;
- }
- /*
- * Note: This depends on the synchronization provided by sched_clock and the
- * fact that rq->clock snapshots this value.
- */
- static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- /* if the deadline is ahead of our clock, nothing to do */
- if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
- return;
- if (cfs_rq->runtime_remaining < 0)
- return;
- /*
- * If the local deadline has passed we have to consider the
- * possibility that our sched_clock is 'fast' and the global deadline
- * has not truly expired.
- *
- * Fortunately we can check determine whether this the case by checking
- * whether the global deadline has advanced. It is valid to compare
- * cfs_b->runtime_expires without any locks since we only care about
- * exact equality, so a partial write will still work.
- */
- if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
- /* extend local deadline, drift is bounded above by 2 ticks */
- cfs_rq->runtime_expires += TICK_NSEC;
- } else {
- /* global deadline is ahead, expiration has passed */
- cfs_rq->runtime_remaining = 0;
- }
- }
- static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
- {
- /* dock delta_exec before expiring quota (as it could span periods) */
- cfs_rq->runtime_remaining -= delta_exec;
- expire_cfs_rq_runtime(cfs_rq);
- if (likely(cfs_rq->runtime_remaining > 0))
- return;
- /*
- * if we're unable to extend our runtime we resched so that the active
- * hierarchy can be throttled
- */
- if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
- resched_curr(rq_of(cfs_rq));
- }
- static __always_inline
- void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
- {
- if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
- return;
- __account_cfs_rq_runtime(cfs_rq, delta_exec);
- }
- static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
- {
- return cfs_bandwidth_used() && cfs_rq->throttled;
- }
- /* check whether cfs_rq, or any parent, is throttled */
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
- {
- return cfs_bandwidth_used() && cfs_rq->throttle_count;
- }
- /*
- * Ensure that neither of the group entities corresponding to src_cpu or
- * dest_cpu are members of a throttled hierarchy when performing group
- * load-balance operations.
- */
- static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
- {
- struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
- src_cfs_rq = tg->cfs_rq[src_cpu];
- dest_cfs_rq = tg->cfs_rq[dest_cpu];
- return throttled_hierarchy(src_cfs_rq) ||
- throttled_hierarchy(dest_cfs_rq);
- }
- /* updated child weight may affect parent so we have to do this bottom up */
- static int tg_unthrottle_up(struct task_group *tg, void *data)
- {
- struct rq *rq = data;
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- cfs_rq->throttle_count--;
- #ifdef CONFIG_SMP
- if (!cfs_rq->throttle_count) {
- /* adjust cfs_rq_clock_task() */
- cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
- cfs_rq->throttled_clock_task;
- }
- #endif
- return 0;
- }
- static int tg_throttle_down(struct task_group *tg, void *data)
- {
- struct rq *rq = data;
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- /* group is entering throttled state, stop time */
- if (!cfs_rq->throttle_count)
- cfs_rq->throttled_clock_task = rq_clock_task(rq);
- cfs_rq->throttle_count++;
- return 0;
- }
- static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- long task_delta, dequeue = 1;
- bool empty;
- se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
- /* freeze hierarchy runnable averages while throttled */
- rcu_read_lock();
- walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
- rcu_read_unlock();
- task_delta = cfs_rq->h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- break;
- if (dequeue)
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
- qcfs_rq->h_nr_running -= task_delta;
- if (qcfs_rq->load.weight)
- dequeue = 0;
- }
- if (!se)
- sub_nr_running(rq, task_delta);
- cfs_rq->throttled = 1;
- cfs_rq->throttled_clock = rq_clock(rq);
- raw_spin_lock(&cfs_b->lock);
- empty = list_empty(&cfs_rq->throttled_list);
- /*
- * Add to the _head_ of the list, so that an already-started
- * distribute_cfs_runtime will not see us
- */
- list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
- /*
- * If we're the first throttled task, make sure the bandwidth
- * timer is running.
- */
- if (empty)
- start_cfs_bandwidth(cfs_b);
- raw_spin_unlock(&cfs_b->lock);
- }
- void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- int enqueue = 1;
- long task_delta;
- se = cfs_rq->tg->se[cpu_of(rq)];
- cfs_rq->throttled = 0;
- update_rq_clock(rq);
- raw_spin_lock(&cfs_b->lock);
- cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
- list_del_rcu(&cfs_rq->throttled_list);
- raw_spin_unlock(&cfs_b->lock);
- /* update hierarchical throttle state */
- walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
- if (!cfs_rq->load.weight)
- return;
- task_delta = cfs_rq->h_nr_running;
- for_each_sched_entity(se) {
- if (se->on_rq)
- enqueue = 0;
- cfs_rq = cfs_rq_of(se);
- if (enqueue)
- enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
- cfs_rq->h_nr_running += task_delta;
- if (cfs_rq_throttled(cfs_rq))
- break;
- }
- if (!se)
- add_nr_running(rq, task_delta);
- /* determine whether we need to wake up potentially idle cpu */
- if (rq->curr == rq->idle && rq->cfs.nr_running)
- resched_curr(rq);
- }
- static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
- u64 remaining, u64 expires)
- {
- struct cfs_rq *cfs_rq;
- u64 runtime;
- u64 starting_runtime = remaining;
- rcu_read_lock();
- list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
- throttled_list) {
- struct rq *rq = rq_of(cfs_rq);
- raw_spin_lock(&rq->lock);
- if (!cfs_rq_throttled(cfs_rq))
- goto next;
- runtime = -cfs_rq->runtime_remaining + 1;
- if (runtime > remaining)
- runtime = remaining;
- remaining -= runtime;
- cfs_rq->runtime_remaining += runtime;
- cfs_rq->runtime_expires = expires;
- /* we check whether we're throttled above */
- if (cfs_rq->runtime_remaining > 0)
- unthrottle_cfs_rq(cfs_rq);
- next:
- raw_spin_unlock(&rq->lock);
- if (!remaining)
- break;
- }
- rcu_read_unlock();
- return starting_runtime - remaining;
- }
- /*
- * Responsible for refilling a task_group's bandwidth and unthrottling its
- * cfs_rqs as appropriate. If there has been no activity within the last
- * period the timer is deactivated until scheduling resumes; cfs_b->idle is
- * used to track this state.
- */
- static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
- {
- u64 runtime, runtime_expires;
- int throttled;
- /* no need to continue the timer with no bandwidth constraint */
- if (cfs_b->quota == RUNTIME_INF)
- goto out_deactivate;
- throttled = !list_empty(&cfs_b->throttled_cfs_rq);
- cfs_b->nr_periods += overrun;
- /*
- * idle depends on !throttled (for the case of a large deficit), and if
- * we're going inactive then everything else can be deferred
- */
- if (cfs_b->idle && !throttled)
- goto out_deactivate;
- __refill_cfs_bandwidth_runtime(cfs_b);
- if (!throttled) {
- /* mark as potentially idle for the upcoming period */
- cfs_b->idle = 1;
- return 0;
- }
- /* account preceding periods in which throttling occurred */
- cfs_b->nr_throttled += overrun;
- runtime_expires = cfs_b->runtime_expires;
- /*
- * This check is repeated as we are holding onto the new bandwidth while
- * we unthrottle. This can potentially race with an unthrottled group
- * trying to acquire new bandwidth from the global pool. This can result
- * in us over-using our runtime if it is all used during this loop, but
- * only by limited amounts in that extreme case.
- */
- while (throttled && cfs_b->runtime > 0) {
- runtime = cfs_b->runtime;
- raw_spin_unlock(&cfs_b->lock);
- /* we can't nest cfs_b->lock while distributing bandwidth */
- runtime = distribute_cfs_runtime(cfs_b, runtime,
- runtime_expires);
- raw_spin_lock(&cfs_b->lock);
- throttled = !list_empty(&cfs_b->throttled_cfs_rq);
- cfs_b->runtime -= min(runtime, cfs_b->runtime);
- }
- /*
- * While we are ensured activity in the period following an
- * unthrottle, this also covers the case in which the new bandwidth is
- * insufficient to cover the existing bandwidth deficit. (Forcing the
- * timer to remain active while there are any throttled entities.)
- */
- cfs_b->idle = 0;
- return 0;
- out_deactivate:
- return 1;
- }
- /* a cfs_rq won't donate quota below this amount */
- static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
- /* minimum remaining period time to redistribute slack quota */
- static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
- /* how long we wait to gather additional slack before distributing */
- static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
- /*
- * Are we near the end of the current quota period?
- *
- * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
- * hrtimer base being cleared by hrtimer_start. In the case of
- * migrate_hrtimers, base is never cleared, so we are fine.
- */
- static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
- {
- struct hrtimer *refresh_timer = &cfs_b->period_timer;
- u64 remaining;
- /* if the call-back is running a quota refresh is already occurring */
- if (hrtimer_callback_running(refresh_timer))
- return 1;
- /* is a quota refresh about to occur? */
- remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
- if (remaining < min_expire)
- return 1;
- return 0;
- }
- static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
- /* if there's a quota refresh soon don't bother with slack */
- if (runtime_refresh_within(cfs_b, min_left))
- return;
- hrtimer_start(&cfs_b->slack_timer,
- ns_to_ktime(cfs_bandwidth_slack_period),
- HRTIMER_MODE_REL);
- }
- /* we know any runtime found here is valid as update_curr() precedes return */
- static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
- if (slack_runtime <= 0)
- return;
- raw_spin_lock(&cfs_b->lock);
- if (cfs_b->quota != RUNTIME_INF &&
- cfs_rq->runtime_expires == cfs_b->runtime_expires) {
- cfs_b->runtime += slack_runtime;
- /* we are under rq->lock, defer unthrottling using a timer */
- if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
- !list_empty(&cfs_b->throttled_cfs_rq))
- start_cfs_slack_bandwidth(cfs_b);
- }
- raw_spin_unlock(&cfs_b->lock);
- /* even if it's not valid for return we don't want to try again */
- cfs_rq->runtime_remaining -= slack_runtime;
- }
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return;
- if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
- return;
- __return_cfs_rq_runtime(cfs_rq);
- }
- /*
- * This is done with a timer (instead of inline with bandwidth return) since
- * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
- */
- static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
- {
- u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
- u64 expires;
- /* confirm we're still not at a refresh boundary */
- raw_spin_lock(&cfs_b->lock);
- if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
- raw_spin_unlock(&cfs_b->lock);
- return;
- }
- if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
- runtime = cfs_b->runtime;
- expires = cfs_b->runtime_expires;
- raw_spin_unlock(&cfs_b->lock);
- if (!runtime)
- return;
- runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
- raw_spin_lock(&cfs_b->lock);
- if (expires == cfs_b->runtime_expires)
- cfs_b->runtime -= min(runtime, cfs_b->runtime);
- raw_spin_unlock(&cfs_b->lock);
- }
- /*
- * When a group wakes up we want to make sure that its quota is not already
- * expired/exceeded, otherwise it may be allowed to steal additional ticks of
- * runtime as update_curr() throttling can not not trigger until it's on-rq.
- */
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return;
- /* an active group must be handled by the update_curr()->put() path */
- if (!cfs_rq->runtime_enabled || cfs_rq->curr)
- return;
- /* ensure the group is not already throttled */
- if (cfs_rq_throttled(cfs_rq))
- return;
- /* update runtime allocation */
- account_cfs_rq_runtime(cfs_rq, 0);
- if (cfs_rq->runtime_remaining <= 0)
- throttle_cfs_rq(cfs_rq);
- }
- /* conditionally throttle active cfs_rq's from put_prev_entity() */
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return false;
- if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
- return false;
- /*
- * it's possible for a throttled entity to be forced into a running
- * state (e.g. set_curr_task), in this case we're finished.
- */
- if (cfs_rq_throttled(cfs_rq))
- return true;
- throttle_cfs_rq(cfs_rq);
- return true;
- }
- static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
- {
- struct cfs_bandwidth *cfs_b =
- container_of(timer, struct cfs_bandwidth, slack_timer);
- do_sched_cfs_slack_timer(cfs_b);
- return HRTIMER_NORESTART;
- }
- static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
- {
- struct cfs_bandwidth *cfs_b =
- container_of(timer, struct cfs_bandwidth, period_timer);
- int overrun;
- int idle = 0;
- raw_spin_lock(&cfs_b->lock);
- for (;;) {
- overrun = hrtimer_forward_now(timer, cfs_b->period);
- if (!overrun)
- break;
- idle = do_sched_cfs_period_timer(cfs_b, overrun);
- }
- if (idle)
- cfs_b->period_active = 0;
- raw_spin_unlock(&cfs_b->lock);
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
- }
- void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- raw_spin_lock_init(&cfs_b->lock);
- cfs_b->runtime = 0;
- cfs_b->quota = RUNTIME_INF;
- cfs_b->period = ns_to_ktime(default_cfs_period());
- INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
- hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
- cfs_b->period_timer.function = sched_cfs_period_timer;
- hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- cfs_b->slack_timer.function = sched_cfs_slack_timer;
- }
- static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- cfs_rq->runtime_enabled = 0;
- INIT_LIST_HEAD(&cfs_rq->throttled_list);
- }
- void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- lockdep_assert_held(&cfs_b->lock);
- if (!cfs_b->period_active) {
- cfs_b->period_active = 1;
- hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
- hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
- }
- }
- static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- /* init_cfs_bandwidth() was not called */
- if (!cfs_b->throttled_cfs_rq.next)
- return;
- hrtimer_cancel(&cfs_b->period_timer);
- hrtimer_cancel(&cfs_b->slack_timer);
- }
- static void __maybe_unused update_runtime_enabled(struct rq *rq)
- {
- struct cfs_rq *cfs_rq;
- for_each_leaf_cfs_rq(rq, cfs_rq) {
- struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
- raw_spin_lock(&cfs_b->lock);
- cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
- raw_spin_unlock(&cfs_b->lock);
- }
- }
- static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
- {
- struct cfs_rq *cfs_rq;
- for_each_leaf_cfs_rq(rq, cfs_rq) {
- if (!cfs_rq->runtime_enabled)
- continue;
- /*
- * clock_task is not advancing so we just need to make sure
- * there's some valid quota amount
- */
- cfs_rq->runtime_remaining = 1;
- /*
- * Offline rq is schedulable till cpu is completely disabled
- * in take_cpu_down(), so we prevent new cfs throttling here.
- */
- cfs_rq->runtime_enabled = 0;
- if (cfs_rq_throttled(cfs_rq))
- unthrottle_cfs_rq(cfs_rq);
- }
- }
- #else /* CONFIG_CFS_BANDWIDTH */
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
- {
- return rq_clock_task(rq_of(cfs_rq));
- }
- static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
- static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
- {
- return 0;
- }
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
- {
- return 0;
- }
- static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
- {
- return 0;
- }
- void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
- #endif
- static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
- {
- return NULL;
- }
- static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
- static inline void update_runtime_enabled(struct rq *rq) {}
- static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
- #endif /* CONFIG_CFS_BANDWIDTH */
- /**************************************************
- * CFS operations on tasks:
- */
- #ifdef CONFIG_SCHED_HRTICK
- static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- WARN_ON(task_rq(p) != rq);
- if (cfs_rq->nr_running > 1) {
- u64 slice = sched_slice(cfs_rq, se);
- u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
- s64 delta = slice - ran;
- if (delta < 0) {
- if (rq->curr == p)
- resched_curr(rq);
- return;
- }
- hrtick_start(rq, delta);
- }
- }
- /*
- * called from enqueue/dequeue and updates the hrtick when the
- * current task is from our class and nr_running is low enough
- * to matter.
- */
- static void hrtick_update(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
- return;
- if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
- hrtick_start_fair(rq, curr);
- }
- #else /* !CONFIG_SCHED_HRTICK */
- static inline void
- hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void hrtick_update(struct rq *rq)
- {
- }
- #endif
- /*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
- static void
- enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- for_each_sched_entity(se) {
- if (se->on_rq)
- break;
- cfs_rq = cfs_rq_of(se);
- enqueue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running increment below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
- cfs_rq->h_nr_running++;
- flags = ENQUEUE_WAKEUP;
- }
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- cfs_rq->h_nr_running++;
- if (cfs_rq_throttled(cfs_rq))
- break;
- update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
- }
- if (!se) {
- update_rq_runnable_avg(rq, rq->nr_running);
- add_nr_running(rq, 1);
- }
- hrtick_update(rq);
- }
- static void set_next_buddy(struct sched_entity *se);
- /*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
- */
- static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- int task_sleep = flags & DEQUEUE_SLEEP;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running decrement below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
- cfs_rq->h_nr_running--;
- /* Don't dequeue parent if it has other entities besides us */
- if (cfs_rq->load.weight) {
- /*
- * Bias pick_next to pick a task from this cfs_rq, as
- * p is sleeping when it is within its sched_slice.
- */
- if (task_sleep && parent_entity(se))
- set_next_buddy(parent_entity(se));
- /* avoid re-evaluating load for this entity */
- se = parent_entity(se);
- break;
- }
- flags |= DEQUEUE_SLEEP;
- }
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- cfs_rq->h_nr_running--;
- if (cfs_rq_throttled(cfs_rq))
- break;
- update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
- }
- if (!se) {
- sub_nr_running(rq, 1);
- update_rq_runnable_avg(rq, 1);
- }
- hrtick_update(rq);
- }
- #ifdef CONFIG_SMP
- /*
- * per rq 'load' arrray crap; XXX kill this.
- */
- /*
- * The exact cpuload at various idx values, calculated at every tick would be
- * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
- *
- * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
- * on nth tick when cpu may be busy, then we have:
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
- *
- * decay_load_missed() below does efficient calculation of
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
- *
- * The calculation is approximated on a 128 point scale.
- * degrade_zero_ticks is the number of ticks after which load at any
- * particular idx is approximated to be zero.
- * degrade_factor is a precomputed table, a row for each load idx.
- * Each column corresponds to degradation factor for a power of two ticks,
- * based on 128 point scale.
- * Example:
- * row 2, col 3 (=12) says that the degradation at load idx 2 after
- * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
- *
- * With this power of 2 load factors, we can degrade the load n times
- * by looking at 1 bits in n and doing as many mult/shift instead of
- * n mult/shifts needed by the exact degradation.
- */
- #define DEGRADE_SHIFT 7
- static const unsigned char
- degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
- static const unsigned char
- degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
- {0, 0, 0, 0, 0, 0, 0, 0},
- {64, 32, 8, 0, 0, 0, 0, 0},
- {96, 72, 40, 12, 1, 0, 0},
- {112, 98, 75, 43, 15, 1, 0},
- {120, 112, 98, 76, 45, 16, 2} };
- /*
- * Update cpu_load for any missed ticks, due to tickless idle. The backlog
- * would be when CPU is idle and so we just decay the old load without
- * adding any new load.
- */
- static unsigned long
- decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
- {
- int j = 0;
- if (!missed_updates)
- return load;
- if (missed_updates >= degrade_zero_ticks[idx])
- return 0;
- if (idx == 1)
- return load >> missed_updates;
- while (missed_updates) {
- if (missed_updates % 2)
- load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
- missed_updates >>= 1;
- j++;
- }
- return load;
- }
- /*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC). With tickless idle this will not be called
- * every tick. We fix it up based on jiffies.
- */
- static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
- unsigned long pending_updates)
- {
- int i, scale;
- this_rq->nr_load_updates++;
- /* Update our load: */
- this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
- for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
- unsigned long old_load, new_load;
- /* scale is effectively 1 << i now, and >> i divides by scale */
- old_load = this_rq->cpu_load[i];
- old_load = decay_load_missed(old_load, pending_updates - 1, i);
- new_load = this_load;
- /*
- * Round up the averaging division if load is increasing. This
- * prevents us from getting stuck on 9 if the load is 10, for
- * example.
- */
- if (new_load > old_load)
- new_load += scale - 1;
- this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
- }
- sched_avg_update(this_rq);
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * There is no sane way to deal with nohz on smp when using jiffies because the
- * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
- * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
- *
- * Therefore we cannot use the delta approach from the regular tick since that
- * would seriously skew the load calculation. However we'll make do for those
- * updates happening while idle (nohz_idle_balance) or coming out of idle
- * (tick_nohz_idle_exit).
- *
- * This means we might still be one tick off for nohz periods.
- */
- /*
- * Called from nohz_idle_balance() to update the load ratings before doing the
- * idle balance.
- */
- static void update_idle_cpu_load(struct rq *this_rq)
- {
- unsigned long curr_jiffies = READ_ONCE(jiffies);
- unsigned long load = this_rq->cfs.runnable_load_avg;
- unsigned long pending_updates;
- /*
- * bail if there's load or we're actually up-to-date.
- */
- if (load || curr_jiffies == this_rq->last_load_update_tick)
- return;
- pending_updates = curr_jiffies - this_rq->last_load_update_tick;
- this_rq->last_load_update_tick = curr_jiffies;
- __update_cpu_load(this_rq, load, pending_updates);
- }
- /*
- * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
- */
- void update_cpu_load_nohz(void)
- {
- struct rq *this_rq = this_rq();
- unsigned long curr_jiffies = READ_ONCE(jiffies);
- unsigned long pending_updates;
- if (curr_jiffies == this_rq->last_load_update_tick)
- return;
- raw_spin_lock(&this_rq->lock);
- pending_updates = curr_jiffies - this_rq->last_load_update_tick;
- if (pending_updates) {
- this_rq->last_load_update_tick = curr_jiffies;
- /*
- * We were idle, this means load 0, the current load might be
- * !0 due to remote wakeups and the sort.
- */
- __update_cpu_load(this_rq, 0, pending_updates);
- }
- raw_spin_unlock(&this_rq->lock);
- }
- #endif /* CONFIG_NO_HZ */
- /*
- * Called from scheduler_tick()
- */
- void update_cpu_load_active(struct rq *this_rq)
- {
- unsigned long load = this_rq->cfs.runnable_load_avg;
- /*
- * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
- */
- this_rq->last_load_update_tick = jiffies;
- __update_cpu_load(this_rq, load, 1);
- }
- /* Used instead of source_load when we know the type == 0 */
- static unsigned long weighted_cpuload(const int cpu)
- {
- return cpu_rq(cpu)->cfs.runnable_load_avg;
- }
- /*
- * Return a low guess at the load of a migration-source cpu weighted
- * according to the scheduling class and "nice" value.
- *
- * We want to under-estimate the load of migration sources, to
- * balance conservatively.
- */
- static unsigned long source_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(cpu);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return min(rq->cpu_load[type-1], total);
- }
- /*
- * Return a high guess at the load of a migration-target cpu weighted
- * according to the scheduling class and "nice" value.
- */
- static unsigned long target_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(cpu);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return max(rq->cpu_load[type-1], total);
- }
- static unsigned long capacity_of(int cpu)
- {
- return cpu_rq(cpu)->cpu_capacity;
- }
- static unsigned long capacity_orig_of(int cpu)
- {
- return cpu_rq(cpu)->cpu_capacity_orig;
- }
- static unsigned long cpu_avg_load_per_task(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
- unsigned long load_avg = rq->cfs.runnable_load_avg;
- if (nr_running)
- return load_avg / nr_running;
- return 0;
- }
- static void record_wakee(struct task_struct *p)
- {
- /*
- * Rough decay (wiping) for cost saving, don't worry
- * about the boundary, really active task won't care
- * about the loss.
- */
- if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
- current->wakee_flips >>= 1;
- current->wakee_flip_decay_ts = jiffies;
- }
- if (current->last_wakee != p) {
- current->last_wakee = p;
- current->wakee_flips++;
- }
- }
- static void task_waking_fair(struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 min_vruntime;
- #ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
- do {
- min_vruntime_copy = cfs_rq->min_vruntime_copy;
- smp_rmb();
- min_vruntime = cfs_rq->min_vruntime;
- } while (min_vruntime != min_vruntime_copy);
- #else
- min_vruntime = cfs_rq->min_vruntime;
- #endif
- se->vruntime -= min_vruntime;
- record_wakee(p);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /*
- * effective_load() calculates the load change as seen from the root_task_group
- *
- * Adding load to a group doesn't make a group heavier, but can cause movement
- * of group shares between cpus. Assuming the shares were perfectly aligned one
- * can calculate the shift in shares.
- *
- * Calculate the effective load difference if @wl is added (subtracted) to @tg
- * on this @cpu and results in a total addition (subtraction) of @wg to the
- * total group weight.
- *
- * Given a runqueue weight distribution (rw_i) we can compute a shares
- * distribution (s_i) using:
- *
- * s_i = rw_i / \Sum rw_j (1)
- *
- * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
- * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
- * shares distribution (s_i):
- *
- * rw_i = { 2, 4, 1, 0 }
- * s_i = { 2/7, 4/7, 1/7, 0 }
- *
- * As per wake_affine() we're interested in the load of two CPUs (the CPU the
- * task used to run on and the CPU the waker is running on), we need to
- * compute the effect of waking a task on either CPU and, in case of a sync
- * wakeup, compute the effect of the current task going to sleep.
- *
- * So for a change of @wl to the local @cpu with an overall group weight change
- * of @wl we can compute the new shares distribution (s'_i) using:
- *
- * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
- *
- * Suppose we're interested in CPUs 0 and 1, and want to compute the load
- * differences in waking a task to CPU 0. The additional task changes the
- * weight and shares distributions like:
- *
- * rw'_i = { 3, 4, 1, 0 }
- * s'_i = { 3/8, 4/8, 1/8, 0 }
- *
- * We can then compute the difference in effective weight by using:
- *
- * dw_i = S * (s'_i - s_i) (3)
- *
- * Where 'S' is the group weight as seen by its parent.
- *
- * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
- * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
- * 4/7) times the weight of the group.
- */
- static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
- {
- struct sched_entity *se = tg->se[cpu];
- if (!tg->parent) /* the trivial, non-cgroup case */
- return wl;
- for_each_sched_entity(se) {
- long w, W;
- tg = se->my_q->tg;
- /*
- * W = @wg + \Sum rw_j
- */
- W = wg + calc_tg_weight(tg, se->my_q);
- /*
- * w = rw_i + @wl
- */
- w = se->my_q->load.weight + wl;
- /*
- * wl = S * s'_i; see (2)
- */
- if (W > 0 && w < W)
- wl = (w * (long)tg->shares) / W;
- else
- wl = tg->shares;
- /*
- * Per the above, wl is the new se->load.weight value; since
- * those are clipped to [MIN_SHARES, ...) do so now. See
- * calc_cfs_shares().
- */
- if (wl < MIN_SHARES)
- wl = MIN_SHARES;
- /*
- * wl = dw_i = S * (s'_i - s_i); see (3)
- */
- wl -= se->load.weight;
- /*
- * Recursively apply this logic to all parent groups to compute
- * the final effective load change on the root group. Since
- * only the @tg group gets extra weight, all parent groups can
- * only redistribute existing shares. @wl is the shift in shares
- * resulting from this level per the above.
- */
- wg = 0;
- }
- return wl;
- }
- #else
- static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
- {
- return wl;
- }
- #endif
- static int wake_wide(struct task_struct *p)
- {
- int factor = this_cpu_read(sd_llc_size);
- /*
- * Yeah, it's the switching-frequency, could means many wakee or
- * rapidly switch, use factor here will just help to automatically
- * adjust the loose-degree, so bigger node will lead to more pull.
- */
- if (p->wakee_flips > factor) {
- /*
- * wakee is somewhat hot, it needs certain amount of cpu
- * resource, so if waker is far more hot, prefer to leave
- * it alone.
- */
- if (current->wakee_flips > (factor * p->wakee_flips))
- return 1;
- }
- return 0;
- }
- static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
- {
- s64 this_load, load;
- s64 this_eff_load, prev_eff_load;
- int idx, this_cpu, prev_cpu;
- struct task_group *tg;
- unsigned long weight;
- int balanced;
- /*
- * If we wake multiple tasks be careful to not bounce
- * ourselves around too much.
- */
- if (wake_wide(p))
- return 0;
- idx = sd->wake_idx;
- this_cpu = smp_processor_id();
- prev_cpu = task_cpu(p);
- load = source_load(prev_cpu, idx);
- this_load = target_load(this_cpu, idx);
- /*
- * If sync wakeup then subtract the (maximum possible)
- * effect of the currently running task from the load
- * of the current CPU:
- */
- if (sync) {
- tg = task_group(current);
- weight = current->se.load.weight;
- this_load += effective_load(tg, this_cpu, -weight, -weight);
- load += effective_load(tg, prev_cpu, 0, -weight);
- }
- tg = task_group(p);
- weight = p->se.load.weight;
- /*
- * In low-load situations, where prev_cpu is idle and this_cpu is idle
- * due to the sync cause above having dropped this_load to 0, we'll
- * always have an imbalance, but there's really nothing you can do
- * about that, so that's good too.
- *
- * Otherwise check if either cpus are near enough in load to allow this
- * task to be woken on this_cpu.
- */
- this_eff_load = 100;
- this_eff_load *= capacity_of(prev_cpu);
- prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
- prev_eff_load *= capacity_of(this_cpu);
- if (this_load > 0) {
- this_eff_load *= this_load +
- effective_load(tg, this_cpu, weight, weight);
- prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
- }
- balanced = this_eff_load <= prev_eff_load;
- schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
- if (!balanced)
- return 0;
- schedstat_inc(sd, ttwu_move_affine);
- schedstat_inc(p, se.statistics.nr_wakeups_affine);
- return 1;
- }
- /*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- */
- static struct sched_group *
- find_idlest_group(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int sd_flag)
- {
- struct sched_group *idlest = NULL, *group = sd->groups;
- unsigned long min_load = ULONG_MAX, this_load = 0;
- int load_idx = sd->forkexec_idx;
- int imbalance = 100 + (sd->imbalance_pct-100)/2;
- if (sd_flag & SD_BALANCE_WAKE)
- load_idx = sd->wake_idx;
- do {
- unsigned long load, avg_load;
- int local_group;
- int i;
- /* Skip over this group if it has no CPUs allowed */
- if (!cpumask_intersects(sched_group_cpus(group),
- tsk_cpus_allowed(p)))
- continue;
- local_group = cpumask_test_cpu(this_cpu,
- sched_group_cpus(group));
- /* Tally up the load of all CPUs in the group */
- avg_load = 0;
- for_each_cpu(i, sched_group_cpus(group)) {
- /* Bias balancing toward cpus of our domain */
- if (local_group)
- load = source_load(i, load_idx);
- else
- load = target_load(i, load_idx);
- avg_load += load;
- }
- /* Adjust by relative CPU capacity of the group */
- avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
- if (local_group) {
- this_load = avg_load;
- } else if (avg_load < min_load) {
- min_load = avg_load;
- idlest = group;
- }
- } while (group = group->next, group != sd->groups);
- if (!idlest || 100*this_load < imbalance*min_load)
- return NULL;
- return idlest;
- }
- /*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
- */
- static int
- find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
- {
- unsigned long load, min_load = ULONG_MAX;
- unsigned int min_exit_latency = UINT_MAX;
- u64 latest_idle_timestamp = 0;
- int least_loaded_cpu = this_cpu;
- int shallowest_idle_cpu = -1;
- int i;
- /* Traverse only the allowed CPUs */
- for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
- if (idle_cpu(i)) {
- struct rq *rq = cpu_rq(i);
- struct cpuidle_state *idle = idle_get_state(rq);
- if (idle && idle->exit_latency < min_exit_latency) {
- /*
- * We give priority to a CPU whose idle state
- * has the smallest exit latency irrespective
- * of any idle timestamp.
- */
- min_exit_latency = idle->exit_latency;
- latest_idle_timestamp = rq->idle_stamp;
- shallowest_idle_cpu = i;
- } else if ((!idle || idle->exit_latency == min_exit_latency) &&
- rq->idle_stamp > latest_idle_timestamp) {
- /*
- * If equal or no active idle state, then
- * the most recently idled CPU might have
- * a warmer cache.
- */
- latest_idle_timestamp = rq->idle_stamp;
- shallowest_idle_cpu = i;
- }
- } else if (shallowest_idle_cpu == -1) {
- load = weighted_cpuload(i);
- if (load < min_load || (load == min_load && i == this_cpu)) {
- min_load = load;
- least_loaded_cpu = i;
- }
- }
- }
- return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
- }
- /*
- * Try and locate an idle CPU in the sched_domain.
- */
- static int select_idle_sibling(struct task_struct *p, int target)
- {
- struct sched_domain *sd;
- struct sched_group *sg;
- int i = task_cpu(p);
- if (idle_cpu(target))
- return target;
- /*
- * If the prevous cpu is cache affine and idle, don't be stupid.
- */
- if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
- return i;
- /*
- * Otherwise, iterate the domains and find an elegible idle cpu.
- */
- sd = rcu_dereference(per_cpu(sd_llc, target));
- for_each_lower_domain(sd) {
- sg = sd->groups;
- do {
- if (!cpumask_intersects(sched_group_cpus(sg),
- tsk_cpus_allowed(p)))
- goto next;
- for_each_cpu(i, sched_group_cpus(sg)) {
- if (i == target || !idle_cpu(i))
- goto next;
- }
- target = cpumask_first_and(sched_group_cpus(sg),
- tsk_cpus_allowed(p));
- goto done;
- next:
- sg = sg->next;
- } while (sg != sd->groups);
- }
- done:
- return target;
- }
- /*
- * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
- * tasks. The unit of the return value must be the one of capacity so we can
- * compare the usage with the capacity of the CPU that is available for CFS
- * task (ie cpu_capacity).
- * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
- * CPU. It represents the amount of utilization of a CPU in the range
- * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
- * capacity of the CPU because it's about the running time on this CPU.
- * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
- * because of unfortunate rounding in avg_period and running_load_avg or just
- * after migrating tasks until the average stabilizes with the new running
- * time. So we need to check that the usage stays into the range
- * [0..cpu_capacity_orig] and cap if necessary.
- * Without capping the usage, a group could be seen as overloaded (CPU0 usage
- * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
- */
- static int get_cpu_usage(int cpu)
- {
- unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
- unsigned long capacity = capacity_orig_of(cpu);
- if (usage >= SCHED_LOAD_SCALE)
- return capacity;
- return (usage * capacity) >> SCHED_LOAD_SHIFT;
- }
- /*
- * select_task_rq_fair: Select target runqueue for the waking task in domains
- * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
- * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
- *
- * Balances load by selecting the idlest cpu in the idlest group, or under
- * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
- *
- * Returns the target cpu number.
- *
- * preempt must be disabled.
- */
- static int
- select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
- {
- struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
- int cpu = smp_processor_id();
- int new_cpu = cpu;
- int want_affine = 0;
- int sync = wake_flags & WF_SYNC;
- if (sd_flag & SD_BALANCE_WAKE)
- want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
- rcu_read_lock();
- for_each_domain(cpu, tmp) {
- if (!(tmp->flags & SD_LOAD_BALANCE))
- continue;
- /*
- * If both cpu and prev_cpu are part of this domain,
- * cpu is a valid SD_WAKE_AFFINE target.
- */
- if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
- cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
- affine_sd = tmp;
- break;
- }
- if (tmp->flags & sd_flag)
- sd = tmp;
- }
- if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- prev_cpu = cpu;
- if (sd_flag & SD_BALANCE_WAKE) {
- new_cpu = select_idle_sibling(p, prev_cpu);
- goto unlock;
- }
- while (sd) {
- struct sched_group *group;
- int weight;
- if (!(sd->flags & sd_flag)) {
- sd = sd->child;
- continue;
- }
- group = find_idlest_group(sd, p, cpu, sd_flag);
- if (!group) {
- sd = sd->child;
- continue;
- }
- new_cpu = find_idlest_cpu(group, p, cpu);
- if (new_cpu == -1 || new_cpu == cpu) {
- /* Now try balancing at a lower domain level of cpu */
- sd = sd->child;
- continue;
- }
- /* Now try balancing at a lower domain level of new_cpu */
- cpu = new_cpu;
- weight = sd->span_weight;
- sd = NULL;
- for_each_domain(cpu, tmp) {
- if (weight <= tmp->span_weight)
- break;
- if (tmp->flags & sd_flag)
- sd = tmp;
- }
- /* while loop will break here if sd == NULL */
- }
- unlock:
- rcu_read_unlock();
- return new_cpu;
- }
- /*
- * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
- * cfs_rq_of(p) references at time of call are still valid and identify the
- * previous cpu. However, the caller only guarantees p->pi_lock is held; no
- * other assumptions, including the state of rq->lock, should be made.
- */
- static void
- migrate_task_rq_fair(struct task_struct *p, int next_cpu)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- /*
- * Load tracking: accumulate removed load so that it can be processed
- * when we next update owning cfs_rq under rq->lock. Tasks contribute
- * to blocked load iff they have a positive decay-count. It can never
- * be negative here since on-rq tasks have decay-count == 0.
- */
- if (se->avg.decay_count) {
- se->avg.decay_count = -__synchronize_entity_decay(se);
- atomic_long_add(se->avg.load_avg_contrib,
- &cfs_rq->removed_load);
- }
- /* We have migrated, no longer consider this task hot */
- se->exec_start = 0;
- }
- #endif /* CONFIG_SMP */
- static unsigned long
- wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
- {
- unsigned long gran = sysctl_sched_wakeup_granularity;
- /*
- * Since its curr running now, convert the gran from real-time
- * to virtual-time in his units.
- *
- * By using 'se' instead of 'curr' we penalize light tasks, so
- * they get preempted easier. That is, if 'se' < 'curr' then
- * the resulting gran will be larger, therefore penalizing the
- * lighter, if otoh 'se' > 'curr' then the resulting gran will
- * be smaller, again penalizing the lighter task.
- *
- * This is especially important for buddies when the leftmost
- * task is higher priority than the buddy.
- */
- return calc_delta_fair(gran, se);
- }
- /*
- * Should 'se' preempt 'curr'.
- *
- * |s1
- * |s2
- * |s3
- * g
- * |<--->|c
- *
- * w(c, s1) = -1
- * w(c, s2) = 0
- * w(c, s3) = 1
- *
- */
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
- {
- s64 gran, vdiff = curr->vruntime - se->vruntime;
- if (vdiff <= 0)
- return -1;
- gran = wakeup_gran(curr, se);
- if (vdiff > gran)
- return 1;
- return 0;
- }
- static void set_last_buddy(struct sched_entity *se)
- {
- if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
- return;
- for_each_sched_entity(se)
- cfs_rq_of(se)->last = se;
- }
- static void set_next_buddy(struct sched_entity *se)
- {
- if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
- return;
- for_each_sched_entity(se)
- cfs_rq_of(se)->next = se;
- }
- static void set_skip_buddy(struct sched_entity *se)
- {
- for_each_sched_entity(se)
- cfs_rq_of(se)->skip = se;
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
- {
- struct task_struct *curr = rq->curr;
- struct sched_entity *se = &curr->se, *pse = &p->se;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- int scale = cfs_rq->nr_running >= sched_nr_latency;
- int next_buddy_marked = 0;
- if (unlikely(se == pse))
- return;
- /*
- * This is possible from callers such as attach_tasks(), in which we
- * unconditionally check_prempt_curr() after an enqueue (which may have
- * lead to a throttle). This both saves work and prevents false
- * next-buddy nomination below.
- */
- if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
- return;
- if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
- set_next_buddy(pse);
- next_buddy_marked = 1;
- }
- /*
- * We can come here with TIF_NEED_RESCHED already set from new task
- * wake up path.
- *
- * Note: this also catches the edge-case of curr being in a throttled
- * group (e.g. via set_curr_task), since update_curr() (in the
- * enqueue of curr) will have resulted in resched being set. This
- * prevents us from potentially nominating it as a false LAST_BUDDY
- * below.
- */
- if (test_tsk_need_resched(curr))
- return;
- /* Idle tasks are by definition preempted by non-idle tasks. */
- if (unlikely(curr->policy == SCHED_IDLE) &&
- likely(p->policy != SCHED_IDLE))
- goto preempt;
- /*
- * Batch and idle tasks do not preempt non-idle tasks (their preemption
- * is driven by the tick):
- */
- if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
- return;
- find_matching_se(&se, &pse);
- update_curr(cfs_rq_of(se));
- BUG_ON(!pse);
- if (wakeup_preempt_entity(se, pse) == 1) {
- /*
- * Bias pick_next to pick the sched entity that is
- * triggering this preemption.
- */
- if (!next_buddy_marked)
- set_next_buddy(pse);
- goto preempt;
- }
- return;
- preempt:
- resched_curr(rq);
- /*
- * Only set the backward buddy when the current task is still
- * on the rq. This can happen when a wakeup gets interleaved
- * with schedule on the ->pre_schedule() or idle_balance()
- * point, either of which can * drop the rq lock.
- *
- * Also, during early boot the idle thread is in the fair class,
- * for obvious reasons its a bad idea to schedule back to it.
- */
- if (unlikely(!se->on_rq || curr == rq->idle))
- return;
- if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
- set_last_buddy(se);
- }
- static struct task_struct *
- pick_next_task_fair(struct rq *rq, struct task_struct *prev)
- {
- struct cfs_rq *cfs_rq = &rq->cfs;
- struct sched_entity *se;
- struct task_struct *p;
- int new_tasks;
- again:
- #ifdef CONFIG_FAIR_GROUP_SCHED
- if (!cfs_rq->nr_running)
- goto idle;
- if (prev->sched_class != &fair_sched_class)
- goto simple;
- /*
- * Because of the set_next_buddy() in dequeue_task_fair() it is rather
- * likely that a next task is from the same cgroup as the current.
- *
- * Therefore attempt to avoid putting and setting the entire cgroup
- * hierarchy, only change the part that actually changes.
- */
- do {
- struct sched_entity *curr = cfs_rq->curr;
- /*
- * Since we got here without doing put_prev_entity() we also
- * have to consider cfs_rq->curr. If it is still a runnable
- * entity, update_curr() will update its vruntime, otherwise
- * forget we've ever seen it.
- */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
- /*
- * This call to check_cfs_rq_runtime() will do the
- * throttle and dequeue its entity in the parent(s).
- * Therefore the 'simple' nr_running test will indeed
- * be correct.
- */
- if (unlikely(check_cfs_rq_runtime(cfs_rq)))
- goto simple;
- }
- se = pick_next_entity(cfs_rq, curr);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- p = task_of(se);
- /*
- * Since we haven't yet done put_prev_entity and if the selected task
- * is a different task than we started out with, try and touch the
- * least amount of cfs_rqs.
- */
- if (prev != p) {
- struct sched_entity *pse = &prev->se;
- while (!(cfs_rq = is_same_group(se, pse))) {
- int se_depth = se->depth;
- int pse_depth = pse->depth;
- if (se_depth <= pse_depth) {
- put_prev_entity(cfs_rq_of(pse), pse);
- pse = parent_entity(pse);
- }
- if (se_depth >= pse_depth) {
- set_next_entity(cfs_rq_of(se), se);
- se = parent_entity(se);
- }
- }
- put_prev_entity(cfs_rq, pse);
- set_next_entity(cfs_rq, se);
- }
- if (hrtick_enabled(rq))
- hrtick_start_fair(rq, p);
- return p;
- simple:
- cfs_rq = &rq->cfs;
- #endif
- if (!cfs_rq->nr_running)
- goto idle;
- put_prev_task(rq, prev);
- do {
- se = pick_next_entity(cfs_rq, NULL);
- set_next_entity(cfs_rq, se);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- p = task_of(se);
- if (hrtick_enabled(rq))
- hrtick_start_fair(rq, p);
- return p;
- idle:
- /*
- * This is OK, because current is on_cpu, which avoids it being picked
- * for load-balance and preemption/IRQs are still disabled avoiding
- * further scheduler activity on it and we're being very careful to
- * re-start the picking loop.
- */
- lockdep_unpin_lock(&rq->lock);
- new_tasks = idle_balance(rq);
- lockdep_pin_lock(&rq->lock);
- /*
- * Because idle_balance() releases (and re-acquires) rq->lock, it is
- * possible for any higher priority task to appear. In that case we
- * must re-start the pick_next_entity() loop.
- */
- if (new_tasks < 0)
- return RETRY_TASK;
- if (new_tasks > 0)
- goto again;
- return NULL;
- }
- /*
- * Account for a descheduled task:
- */
- static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
- {
- struct sched_entity *se = &prev->se;
- struct cfs_rq *cfs_rq;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- put_prev_entity(cfs_rq, se);
- }
- }
- /*
- * sched_yield() is very simple
- *
- * The magic of dealing with the ->skip buddy is in pick_next_entity.
- */
- static void yield_task_fair(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- struct sched_entity *se = &curr->se;
- /*
- * Are we the only task in the tree?
- */
- if (unlikely(rq->nr_running == 1))
- return;
- clear_buddies(cfs_rq, se);
- if (curr->policy != SCHED_BATCH) {
- update_rq_clock(rq);
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- /*
- * Tell update_rq_clock() that we've just updated,
- * so we don't do microscopic update in schedule()
- * and double the fastpath cost.
- */
- rq_clock_skip_update(rq, true);
- }
- set_skip_buddy(se);
- }
- static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
- {
- struct sched_entity *se = &p->se;
- /* throttled hierarchies are not runnable */
- if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
- return false;
- /* Tell the scheduler that we'd really like pse to run next. */
- set_next_buddy(se);
- yield_task_fair(rq);
- return true;
- }
- #ifdef CONFIG_SMP
- /**************************************************
- * Fair scheduling class load-balancing methods.
- *
- * BASICS
- *
- * The purpose of load-balancing is to achieve the same basic fairness the
- * per-cpu scheduler provides, namely provide a proportional amount of compute
- * time to each task. This is expressed in the following equation:
- *
- * W_i,n/P_i == W_j,n/P_j for all i,j (1)
- *
- * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
- * W_i,0 is defined as:
- *
- * W_i,0 = \Sum_j w_i,j (2)
- *
- * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
- * is derived from the nice value as per prio_to_weight[].
- *
- * The weight average is an exponential decay average of the instantaneous
- * weight:
- *
- * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
- *
- * C_i is the compute capacity of cpu i, typically it is the
- * fraction of 'recent' time available for SCHED_OTHER task execution. But it
- * can also include other factors [XXX].
- *
- * To achieve this balance we define a measure of imbalance which follows
- * directly from (1):
- *
- * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
- *
- * We them move tasks around to minimize the imbalance. In the continuous
- * function space it is obvious this converges, in the discrete case we get
- * a few fun cases generally called infeasible weight scenarios.
- *
- * [XXX expand on:
- * - infeasible weights;
- * - local vs global optima in the discrete case. ]
- *
- *
- * SCHED DOMAINS
- *
- * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
- * for all i,j solution, we create a tree of cpus that follows the hardware
- * topology where each level pairs two lower groups (or better). This results
- * in O(log n) layers. Furthermore we reduce the number of cpus going up the
- * tree to only the first of the previous level and we decrease the frequency
- * of load-balance at each level inv. proportional to the number of cpus in
- * the groups.
- *
- * This yields:
- *
- * log_2 n 1 n
- * \Sum { --- * --- * 2^i } = O(n) (5)
- * i = 0 2^i 2^i
- * `- size of each group
- * | | `- number of cpus doing load-balance
- * | `- freq
- * `- sum over all levels
- *
- * Coupled with a limit on how many tasks we can migrate every balance pass,
- * this makes (5) the runtime complexity of the balancer.
- *
- * An important property here is that each CPU is still (indirectly) connected
- * to every other cpu in at most O(log n) steps:
- *
- * The adjacency matrix of the resulting graph is given by:
- *
- * log_2 n
- * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
- * k = 0
- *
- * And you'll find that:
- *
- * A^(log_2 n)_i,j != 0 for all i,j (7)
- *
- * Showing there's indeed a path between every cpu in at most O(log n) steps.
- * The task movement gives a factor of O(m), giving a convergence complexity
- * of:
- *
- * O(nm log n), n := nr_cpus, m := nr_tasks (8)
- *
- *
- * WORK CONSERVING
- *
- * In order to avoid CPUs going idle while there's still work to do, new idle
- * balancing is more aggressive and has the newly idle cpu iterate up the domain
- * tree itself instead of relying on other CPUs to bring it work.
- *
- * This adds some complexity to both (5) and (8) but it reduces the total idle
- * time.
- *
- * [XXX more?]
- *
- *
- * CGROUPS
- *
- * Cgroups make a horror show out of (2), instead of a simple sum we get:
- *
- * s_k,i
- * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
- * S_k
- *
- * Where
- *
- * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
- *
- * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
- *
- * The big problem is S_k, its a global sum needed to compute a local (W_i)
- * property.
- *
- * [XXX write more on how we solve this.. _after_ merging pjt's patches that
- * rewrite all of this once again.]
- */
- static unsigned long __read_mostly max_load_balance_interval = HZ/10;
- enum fbq_type { regular, remote, all };
- #define LBF_ALL_PINNED 0x01
- #define LBF_NEED_BREAK 0x02
- #define LBF_DST_PINNED 0x04
- #define LBF_SOME_PINNED 0x08
- struct lb_env {
- struct sched_domain *sd;
- struct rq *src_rq;
- int src_cpu;
- int dst_cpu;
- struct rq *dst_rq;
- struct cpumask *dst_grpmask;
- int new_dst_cpu;
- enum cpu_idle_type idle;
- long imbalance;
- /* The set of CPUs under consideration for load-balancing */
- struct cpumask *cpus;
- unsigned int flags;
- unsigned int loop;
- unsigned int loop_break;
- unsigned int loop_max;
- enum fbq_type fbq_type;
- struct list_head tasks;
- };
- /*
- * Is this task likely cache-hot:
- */
- static int task_hot(struct task_struct *p, struct lb_env *env)
- {
- s64 delta;
- lockdep_assert_held(&env->src_rq->lock);
- if (p->sched_class != &fair_sched_class)
- return 0;
- if (unlikely(p->policy == SCHED_IDLE))
- return 0;
- /*
- * Buddy candidates are cache hot:
- */
- if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
- (&p->se == cfs_rq_of(&p->se)->next ||
- &p->se == cfs_rq_of(&p->se)->last))
- return 1;
- if (sysctl_sched_migration_cost == -1)
- return 1;
- if (sysctl_sched_migration_cost == 0)
- return 0;
- delta = rq_clock_task(env->src_rq) - p->se.exec_start;
- return delta < (s64)sysctl_sched_migration_cost;
- }
- #ifdef CONFIG_NUMA_BALANCING
- /*
- * Returns true if the destination node is the preferred node.
- * Needs to match fbq_classify_rq(): if there is a runnable task
- * that is not on its preferred node, we should identify it.
- */
- static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
- {
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
- unsigned long src_faults, dst_faults;
- int src_nid, dst_nid;
- if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
- !(env->sd->flags & SD_NUMA)) {
- return false;
- }
- src_nid = cpu_to_node(env->src_cpu);
- dst_nid = cpu_to_node(env->dst_cpu);
- if (src_nid == dst_nid)
- return false;
- /* Encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return true;
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return false;
- if (numa_group) {
- src_faults = group_faults(p, src_nid);
- dst_faults = group_faults(p, dst_nid);
- } else {
- src_faults = task_faults(p, src_nid);
- dst_faults = task_faults(p, dst_nid);
- }
- return dst_faults > src_faults;
- }
- static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
- {
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
- unsigned long src_faults, dst_faults;
- int src_nid, dst_nid;
- if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
- return false;
- if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
- return false;
- src_nid = cpu_to_node(env->src_cpu);
- dst_nid = cpu_to_node(env->dst_cpu);
- if (src_nid == dst_nid)
- return false;
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return true;
- /* Encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return false;
- if (numa_group) {
- src_faults = group_faults(p, src_nid);
- dst_faults = group_faults(p, dst_nid);
- } else {
- src_faults = task_faults(p, src_nid);
- dst_faults = task_faults(p, dst_nid);
- }
- return dst_faults < src_faults;
- }
- #else
- static inline bool migrate_improves_locality(struct task_struct *p,
- struct lb_env *env)
- {
- return false;
- }
- static inline bool migrate_degrades_locality(struct task_struct *p,
- struct lb_env *env)
- {
- return false;
- }
- #endif
- /*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
- static
- int can_migrate_task(struct task_struct *p, struct lb_env *env)
- {
- int tsk_cache_hot = 0;
- lockdep_assert_held(&env->src_rq->lock);
- /*
- * We do not migrate tasks that are:
- * 1) throttled_lb_pair, or
- * 2) cannot be migrated to this CPU due to cpus_allowed, or
- * 3) running (obviously), or
- * 4) are cache-hot on their current CPU.
- */
- if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
- return 0;
- if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
- int cpu;
- schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
- env->flags |= LBF_SOME_PINNED;
- /*
- * Remember if this task can be migrated to any other cpu in
- * our sched_group. We may want to revisit it if we couldn't
- * meet load balance goals by pulling other tasks on src_cpu.
- *
- * Also avoid computing new_dst_cpu if we have already computed
- * one in current iteration.
- */
- if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
- return 0;
- /* Prevent to re-select dst_cpu via env's cpus */
- for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
- if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
- env->flags |= LBF_DST_PINNED;
- env->new_dst_cpu = cpu;
- break;
- }
- }
- return 0;
- }
- /* Record that we found atleast one task that could run on dst_cpu */
- env->flags &= ~LBF_ALL_PINNED;
- if (task_running(env->src_rq, p)) {
- schedstat_inc(p, se.statistics.nr_failed_migrations_running);
- return 0;
- }
- /*
- * Aggressive migration if:
- * 1) destination numa is preferred
- * 2) task is cache cold, or
- * 3) too many balance attempts have failed.
- */
- tsk_cache_hot = task_hot(p, env);
- if (!tsk_cache_hot)
- tsk_cache_hot = migrate_degrades_locality(p, env);
- if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
- env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
- if (tsk_cache_hot) {
- schedstat_inc(env->sd, lb_hot_gained[env->idle]);
- schedstat_inc(p, se.statistics.nr_forced_migrations);
- }
- return 1;
- }
- schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
- return 0;
- }
- /*
- * detach_task() -- detach the task for the migration specified in env
- */
- static void detach_task(struct task_struct *p, struct lb_env *env)
- {
- lockdep_assert_held(&env->src_rq->lock);
- deactivate_task(env->src_rq, p, 0);
- p->on_rq = TASK_ON_RQ_MIGRATING;
- set_task_cpu(p, env->dst_cpu);
- }
- /*
- * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
- * part of active balancing operations within "domain".
- *
- * Returns a task if successful and NULL otherwise.
- */
- static struct task_struct *detach_one_task(struct lb_env *env)
- {
- struct task_struct *p, *n;
- lockdep_assert_held(&env->src_rq->lock);
- list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
- if (!can_migrate_task(p, env))
- continue;
- detach_task(p, env);
- /*
- * Right now, this is only the second place where
- * lb_gained[env->idle] is updated (other is detach_tasks)
- * so we can safely collect stats here rather than
- * inside detach_tasks().
- */
- schedstat_inc(env->sd, lb_gained[env->idle]);
- return p;
- }
- return NULL;
- }
- static const unsigned int sched_nr_migrate_break = 32;
- /*
- * detach_tasks() -- tries to detach up to imbalance weighted load from
- * busiest_rq, as part of a balancing operation within domain "sd".
- *
- * Returns number of detached tasks if successful and 0 otherwise.
- */
- static int detach_tasks(struct lb_env *env)
- {
- struct list_head *tasks = &env->src_rq->cfs_tasks;
- struct task_struct *p;
- unsigned long load;
- int detached = 0;
- lockdep_assert_held(&env->src_rq->lock);
- if (env->imbalance <= 0)
- return 0;
- while (!list_empty(tasks)) {
- p = list_first_entry(tasks, struct task_struct, se.group_node);
- env->loop++;
- /* We've more or less seen every task there is, call it quits */
- if (env->loop > env->loop_max)
- break;
- /* take a breather every nr_migrate tasks */
- if (env->loop > env->loop_break) {
- env->loop_break += sched_nr_migrate_break;
- env->flags |= LBF_NEED_BREAK;
- break;
- }
- if (!can_migrate_task(p, env))
- goto next;
- load = task_h_load(p);
- if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
- goto next;
- if ((load / 2) > env->imbalance)
- goto next;
- detach_task(p, env);
- list_add(&p->se.group_node, &env->tasks);
- detached++;
- env->imbalance -= load;
- #ifdef CONFIG_PREEMPT
- /*
- * NEWIDLE balancing is a source of latency, so preemptible
- * kernels will stop after the first task is detached to minimize
- * the critical section.
- */
- if (env->idle == CPU_NEWLY_IDLE)
- break;
- #endif
- /*
- * We only want to steal up to the prescribed amount of
- * weighted load.
- */
- if (env->imbalance <= 0)
- break;
- continue;
- next:
- list_move_tail(&p->se.group_node, tasks);
- }
- /*
- * Right now, this is one of only two places we collect this stat
- * so we can safely collect detach_one_task() stats here rather
- * than inside detach_one_task().
- */
- schedstat_add(env->sd, lb_gained[env->idle], detached);
- return detached;
- }
- /*
- * attach_task() -- attach the task detached by detach_task() to its new rq.
- */
- static void attach_task(struct rq *rq, struct task_struct *p)
- {
- lockdep_assert_held(&rq->lock);
- BUG_ON(task_rq(p) != rq);
- p->on_rq = TASK_ON_RQ_QUEUED;
- activate_task(rq, p, 0);
- check_preempt_curr(rq, p, 0);
- }
- /*
- * attach_one_task() -- attaches the task returned from detach_one_task() to
- * its new rq.
- */
- static void attach_one_task(struct rq *rq, struct task_struct *p)
- {
- raw_spin_lock(&rq->lock);
- attach_task(rq, p);
- raw_spin_unlock(&rq->lock);
- }
- /*
- * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
- * new rq.
- */
- static void attach_tasks(struct lb_env *env)
- {
- struct list_head *tasks = &env->tasks;
- struct task_struct *p;
- raw_spin_lock(&env->dst_rq->lock);
- while (!list_empty(tasks)) {
- p = list_first_entry(tasks, struct task_struct, se.group_node);
- list_del_init(&p->se.group_node);
- attach_task(env->dst_rq, p);
- }
- raw_spin_unlock(&env->dst_rq->lock);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /*
- * update tg->load_weight by folding this cpu's load_avg
- */
- static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
- {
- struct sched_entity *se = tg->se[cpu];
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
- /* throttled entities do not contribute to load */
- if (throttled_hierarchy(cfs_rq))
- return;
- update_cfs_rq_blocked_load(cfs_rq, 1);
- if (se) {
- update_entity_load_avg(se, 1);
- /*
- * We pivot on our runnable average having decayed to zero for
- * list removal. This generally implies that all our children
- * have also been removed (modulo rounding error or bandwidth
- * control); however, such cases are rare and we can fix these
- * at enqueue.
- *
- * TODO: fix up out-of-order children on enqueue.
- */
- if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
- list_del_leaf_cfs_rq(cfs_rq);
- } else {
- struct rq *rq = rq_of(cfs_rq);
- update_rq_runnable_avg(rq, rq->nr_running);
- }
- }
- static void update_blocked_averages(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct cfs_rq *cfs_rq;
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- update_rq_clock(rq);
- /*
- * Iterates the task_group tree in a bottom up fashion, see
- * list_add_leaf_cfs_rq() for details.
- */
- for_each_leaf_cfs_rq(rq, cfs_rq) {
- /*
- * Note: We may want to consider periodically releasing
- * rq->lock about these updates so that creating many task
- * groups does not result in continually extending hold time.
- */
- __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
- }
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- /*
- * Compute the hierarchical load factor for cfs_rq and all its ascendants.
- * This needs to be done in a top-down fashion because the load of a child
- * group is a fraction of its parents load.
- */
- static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
- unsigned long now = jiffies;
- unsigned long load;
- if (cfs_rq->last_h_load_update == now)
- return;
- cfs_rq->h_load_next = NULL;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- cfs_rq->h_load_next = se;
- if (cfs_rq->last_h_load_update == now)
- break;
- }
- if (!se) {
- cfs_rq->h_load = cfs_rq->runnable_load_avg;
- cfs_rq->last_h_load_update = now;
- }
- while ((se = cfs_rq->h_load_next) != NULL) {
- load = cfs_rq->h_load;
- load = div64_ul(load * se->avg.load_avg_contrib,
- cfs_rq->runnable_load_avg + 1);
- cfs_rq = group_cfs_rq(se);
- cfs_rq->h_load = load;
- cfs_rq->last_h_load_update = now;
- }
- }
- static unsigned long task_h_load(struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- update_cfs_rq_h_load(cfs_rq);
- return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
- cfs_rq->runnable_load_avg + 1);
- }
- #else
- static inline void update_blocked_averages(int cpu)
- {
- }
- static unsigned long task_h_load(struct task_struct *p)
- {
- return p->se.avg.load_avg_contrib;
- }
- #endif
- /********** Helpers for find_busiest_group ************************/
- enum group_type {
- group_other = 0,
- group_imbalanced,
- group_overloaded,
- };
- /*
- * sg_lb_stats - stats of a sched_group required for load_balancing
- */
- struct sg_lb_stats {
- unsigned long avg_load; /*Avg load across the CPUs of the group */
- unsigned long group_load; /* Total load over the CPUs of the group */
- unsigned long sum_weighted_load; /* Weighted load of group's tasks */
- unsigned long load_per_task;
- unsigned long group_capacity;
- unsigned long group_usage; /* Total usage of the group */
- unsigned int sum_nr_running; /* Nr tasks running in the group */
- unsigned int idle_cpus;
- unsigned int group_weight;
- enum group_type group_type;
- int group_no_capacity;
- #ifdef CONFIG_NUMA_BALANCING
- unsigned int nr_numa_running;
- unsigned int nr_preferred_running;
- #endif
- };
- /*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- * during load balancing.
- */
- struct sd_lb_stats {
- struct sched_group *busiest; /* Busiest group in this sd */
- struct sched_group *local; /* Local group in this sd */
- unsigned long total_load; /* Total load of all groups in sd */
- unsigned long total_capacity; /* Total capacity of all groups in sd */
- unsigned long avg_load; /* Average load across all groups in sd */
- struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
- struct sg_lb_stats local_stat; /* Statistics of the local group */
- };
- static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
- {
- /*
- * Skimp on the clearing to avoid duplicate work. We can avoid clearing
- * local_stat because update_sg_lb_stats() does a full clear/assignment.
- * We must however clear busiest_stat::avg_load because
- * update_sd_pick_busiest() reads this before assignment.
- */
- *sds = (struct sd_lb_stats){
- .busiest = NULL,
- .local = NULL,
- .total_load = 0UL,
- .total_capacity = 0UL,
- .busiest_stat = {
- .avg_load = 0UL,
- .sum_nr_running = 0,
- .group_type = group_other,
- },
- };
- }
- /**
- * get_sd_load_idx - Obtain the load index for a given sched domain.
- * @sd: The sched_domain whose load_idx is to be obtained.
- * @idle: The idle status of the CPU for whose sd load_idx is obtained.
- *
- * Return: The load index.
- */
- static inline int get_sd_load_idx(struct sched_domain *sd,
- enum cpu_idle_type idle)
- {
- int load_idx;
- switch (idle) {
- case CPU_NOT_IDLE:
- load_idx = sd->busy_idx;
- break;
- case CPU_NEWLY_IDLE:
- load_idx = sd->newidle_idx;
- break;
- default:
- load_idx = sd->idle_idx;
- break;
- }
- return load_idx;
- }
- static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
- {
- if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
- return sd->smt_gain / sd->span_weight;
- return SCHED_CAPACITY_SCALE;
- }
- unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
- {
- return default_scale_cpu_capacity(sd, cpu);
- }
- static unsigned long scale_rt_capacity(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- u64 total, used, age_stamp, avg;
- s64 delta;
- /*
- * Since we're reading these variables without serialization make sure
- * we read them once before doing sanity checks on them.
- */
- age_stamp = READ_ONCE(rq->age_stamp);
- avg = READ_ONCE(rq->rt_avg);
- delta = __rq_clock_broken(rq) - age_stamp;
- if (unlikely(delta < 0))
- delta = 0;
- total = sched_avg_period() + delta;
- used = div_u64(avg, total);
- if (likely(used < SCHED_CAPACITY_SCALE))
- return SCHED_CAPACITY_SCALE - used;
- return 1;
- }
- static void update_cpu_capacity(struct sched_domain *sd, int cpu)
- {
- unsigned long capacity = SCHED_CAPACITY_SCALE;
- struct sched_group *sdg = sd->groups;
- if (sched_feat(ARCH_CAPACITY))
- capacity *= arch_scale_cpu_capacity(sd, cpu);
- else
- capacity *= default_scale_cpu_capacity(sd, cpu);
- capacity >>= SCHED_CAPACITY_SHIFT;
- cpu_rq(cpu)->cpu_capacity_orig = capacity;
- capacity *= scale_rt_capacity(cpu);
- capacity >>= SCHED_CAPACITY_SHIFT;
- if (!capacity)
- capacity = 1;
- cpu_rq(cpu)->cpu_capacity = capacity;
- sdg->sgc->capacity = capacity;
- }
- void update_group_capacity(struct sched_domain *sd, int cpu)
- {
- struct sched_domain *child = sd->child;
- struct sched_group *group, *sdg = sd->groups;
- unsigned long capacity;
- unsigned long interval;
- interval = msecs_to_jiffies(sd->balance_interval);
- interval = clamp(interval, 1UL, max_load_balance_interval);
- sdg->sgc->next_update = jiffies + interval;
- if (!child) {
- update_cpu_capacity(sd, cpu);
- return;
- }
- capacity = 0;
- if (child->flags & SD_OVERLAP) {
- /*
- * SD_OVERLAP domains cannot assume that child groups
- * span the current group.
- */
- for_each_cpu(cpu, sched_group_cpus(sdg)) {
- struct sched_group_capacity *sgc;
- struct rq *rq = cpu_rq(cpu);
- /*
- * build_sched_domains() -> init_sched_groups_capacity()
- * gets here before we've attached the domains to the
- * runqueues.
- *
- * Use capacity_of(), which is set irrespective of domains
- * in update_cpu_capacity().
- *
- * This avoids capacity from being 0 and
- * causing divide-by-zero issues on boot.
- */
- if (unlikely(!rq->sd)) {
- capacity += capacity_of(cpu);
- continue;
- }
- sgc = rq->sd->groups->sgc;
- capacity += sgc->capacity;
- }
- } else {
- /*
- * !SD_OVERLAP domains can assume that child groups
- * span the current group.
- */
- group = child->groups;
- do {
- capacity += group->sgc->capacity;
- group = group->next;
- } while (group != child->groups);
- }
- sdg->sgc->capacity = capacity;
- }
- /*
- * Check whether the capacity of the rq has been noticeably reduced by side
- * activity. The imbalance_pct is used for the threshold.
- * Return true is the capacity is reduced
- */
- static inline int
- check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
- {
- return ((rq->cpu_capacity * sd->imbalance_pct) <
- (rq->cpu_capacity_orig * 100));
- }
- /*
- * Group imbalance indicates (and tries to solve) the problem where balancing
- * groups is inadequate due to tsk_cpus_allowed() constraints.
- *
- * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
- * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
- * Something like:
- *
- * { 0 1 2 3 } { 4 5 6 7 }
- * * * * *
- *
- * If we were to balance group-wise we'd place two tasks in the first group and
- * two tasks in the second group. Clearly this is undesired as it will overload
- * cpu 3 and leave one of the cpus in the second group unused.
- *
- * The current solution to this issue is detecting the skew in the first group
- * by noticing the lower domain failed to reach balance and had difficulty
- * moving tasks due to affinity constraints.
- *
- * When this is so detected; this group becomes a candidate for busiest; see
- * update_sd_pick_busiest(). And calculate_imbalance() and
- * find_busiest_group() avoid some of the usual balance conditions to allow it
- * to create an effective group imbalance.
- *
- * This is a somewhat tricky proposition since the next run might not find the
- * group imbalance and decide the groups need to be balanced again. A most
- * subtle and fragile situation.
- */
- static inline int sg_imbalanced(struct sched_group *group)
- {
- return group->sgc->imbalance;
- }
- /*
- * group_has_capacity returns true if the group has spare capacity that could
- * be used by some tasks.
- * We consider that a group has spare capacity if the * number of task is
- * smaller than the number of CPUs or if the usage is lower than the available
- * capacity for CFS tasks.
- * For the latter, we use a threshold to stabilize the state, to take into
- * account the variance of the tasks' load and to return true if the available
- * capacity in meaningful for the load balancer.
- * As an example, an available capacity of 1% can appear but it doesn't make
- * any benefit for the load balance.
- */
- static inline bool
- group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running < sgs->group_weight)
- return true;
- if ((sgs->group_capacity * 100) >
- (sgs->group_usage * env->sd->imbalance_pct))
- return true;
- return false;
- }
- /*
- * group_is_overloaded returns true if the group has more tasks than it can
- * handle.
- * group_is_overloaded is not equals to !group_has_capacity because a group
- * with the exact right number of tasks, has no more spare capacity but is not
- * overloaded so both group_has_capacity and group_is_overloaded return
- * false.
- */
- static inline bool
- group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running <= sgs->group_weight)
- return false;
- if ((sgs->group_capacity * 100) <
- (sgs->group_usage * env->sd->imbalance_pct))
- return true;
- return false;
- }
- static enum group_type group_classify(struct lb_env *env,
- struct sched_group *group,
- struct sg_lb_stats *sgs)
- {
- if (sgs->group_no_capacity)
- return group_overloaded;
- if (sg_imbalanced(group))
- return group_imbalanced;
- return group_other;
- }
- /**
- * update_sg_lb_stats - Update sched_group's statistics for load balancing.
- * @env: The load balancing environment.
- * @group: sched_group whose statistics are to be updated.
- * @load_idx: Load index of sched_domain of this_cpu for load calc.
- * @local_group: Does group contain this_cpu.
- * @sgs: variable to hold the statistics for this group.
- * @overload: Indicate more than one runnable task for any CPU.
- */
- static inline void update_sg_lb_stats(struct lb_env *env,
- struct sched_group *group, int load_idx,
- int local_group, struct sg_lb_stats *sgs,
- bool *overload)
- {
- unsigned long load;
- int i;
- memset(sgs, 0, sizeof(*sgs));
- for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
- struct rq *rq = cpu_rq(i);
- /* Bias balancing toward cpus of our domain */
- if (local_group)
- load = target_load(i, load_idx);
- else
- load = source_load(i, load_idx);
- sgs->group_load += load;
- sgs->group_usage += get_cpu_usage(i);
- sgs->sum_nr_running += rq->cfs.h_nr_running;
- if (rq->nr_running > 1)
- *overload = true;
- #ifdef CONFIG_NUMA_BALANCING
- sgs->nr_numa_running += rq->nr_numa_running;
- sgs->nr_preferred_running += rq->nr_preferred_running;
- #endif
- sgs->sum_weighted_load += weighted_cpuload(i);
- if (idle_cpu(i))
- sgs->idle_cpus++;
- }
- /* Adjust by relative CPU capacity of the group */
- sgs->group_capacity = group->sgc->capacity;
- sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
- if (sgs->sum_nr_running)
- sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
- sgs->group_weight = group->group_weight;
- sgs->group_no_capacity = group_is_overloaded(env, sgs);
- sgs->group_type = group_classify(env, group, sgs);
- }
- /**
- * update_sd_pick_busiest - return 1 on busiest group
- * @env: The load balancing environment.
- * @sds: sched_domain statistics
- * @sg: sched_group candidate to be checked for being the busiest
- * @sgs: sched_group statistics
- *
- * Determine if @sg is a busier group than the previously selected
- * busiest group.
- *
- * Return: %true if @sg is a busier group than the previously selected
- * busiest group. %false otherwise.
- */
- static bool update_sd_pick_busiest(struct lb_env *env,
- struct sd_lb_stats *sds,
- struct sched_group *sg,
- struct sg_lb_stats *sgs)
- {
- struct sg_lb_stats *busiest = &sds->busiest_stat;
- if (sgs->group_type > busiest->group_type)
- return true;
- if (sgs->group_type < busiest->group_type)
- return false;
- if (sgs->avg_load <= busiest->avg_load)
- return false;
- /* This is the busiest node in its class. */
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return true;
- /*
- * ASYM_PACKING needs to move all the work to the lowest
- * numbered CPUs in the group, therefore mark all groups
- * higher than ourself as busy.
- */
- if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
- if (!sds->busiest)
- return true;
- if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
- return true;
- }
- return false;
- }
- #ifdef CONFIG_NUMA_BALANCING
- static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running > sgs->nr_numa_running)
- return regular;
- if (sgs->sum_nr_running > sgs->nr_preferred_running)
- return remote;
- return all;
- }
- static inline enum fbq_type fbq_classify_rq(struct rq *rq)
- {
- if (rq->nr_running > rq->nr_numa_running)
- return regular;
- if (rq->nr_running > rq->nr_preferred_running)
- return remote;
- return all;
- }
- #else
- static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
- {
- return all;
- }
- static inline enum fbq_type fbq_classify_rq(struct rq *rq)
- {
- return regular;
- }
- #endif /* CONFIG_NUMA_BALANCING */
- /**
- * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
- * @env: The load balancing environment.
- * @sds: variable to hold the statistics for this sched_domain.
- */
- static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
- {
- struct sched_domain *child = env->sd->child;
- struct sched_group *sg = env->sd->groups;
- struct sg_lb_stats tmp_sgs;
- int load_idx, prefer_sibling = 0;
- bool overload = false;
- if (child && child->flags & SD_PREFER_SIBLING)
- prefer_sibling = 1;
- load_idx = get_sd_load_idx(env->sd, env->idle);
- do {
- struct sg_lb_stats *sgs = &tmp_sgs;
- int local_group;
- local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
- if (local_group) {
- sds->local = sg;
- sgs = &sds->local_stat;
- if (env->idle != CPU_NEWLY_IDLE ||
- time_after_eq(jiffies, sg->sgc->next_update))
- update_group_capacity(env->sd, env->dst_cpu);
- }
- update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
- &overload);
- if (local_group)
- goto next_group;
- /*
- * In case the child domain prefers tasks go to siblings
- * first, lower the sg capacity so that we'll try
- * and move all the excess tasks away. We lower the capacity
- * of a group only if the local group has the capacity to fit
- * these excess tasks. The extra check prevents the case where
- * you always pull from the heaviest group when it is already
- * under-utilized (possible with a large weight task outweighs
- * the tasks on the system).
- */
- if (prefer_sibling && sds->local &&
- group_has_capacity(env, &sds->local_stat) &&
- (sgs->sum_nr_running > 1)) {
- sgs->group_no_capacity = 1;
- sgs->group_type = group_overloaded;
- }
- if (update_sd_pick_busiest(env, sds, sg, sgs)) {
- sds->busiest = sg;
- sds->busiest_stat = *sgs;
- }
- next_group:
- /* Now, start updating sd_lb_stats */
- sds->total_load += sgs->group_load;
- sds->total_capacity += sgs->group_capacity;
- sg = sg->next;
- } while (sg != env->sd->groups);
- if (env->sd->flags & SD_NUMA)
- env->fbq_type = fbq_classify_group(&sds->busiest_stat);
- if (!env->sd->parent) {
- /* update overload indicator if we are at root domain */
- if (env->dst_rq->rd->overload != overload)
- env->dst_rq->rd->overload = overload;
- }
- }
- /**
- * check_asym_packing - Check to see if the group is packed into the
- * sched doman.
- *
- * This is primarily intended to used at the sibling level. Some
- * cores like POWER7 prefer to use lower numbered SMT threads. In the
- * case of POWER7, it can move to lower SMT modes only when higher
- * threads are idle. When in lower SMT modes, the threads will
- * perform better since they share less core resources. Hence when we
- * have idle threads, we want them to be the higher ones.
- *
- * This packing function is run on idle threads. It checks to see if
- * the busiest CPU in this domain (core in the P7 case) has a higher
- * CPU number than the packing function is being run on. Here we are
- * assuming lower CPU number will be equivalent to lower a SMT thread
- * number.
- *
- * Return: 1 when packing is required and a task should be moved to
- * this CPU. The amount of the imbalance is returned in *imbalance.
- *
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain which is to be packed
- */
- static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
- {
- int busiest_cpu;
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return 0;
- if (!sds->busiest)
- return 0;
- busiest_cpu = group_first_cpu(sds->busiest);
- if (env->dst_cpu > busiest_cpu)
- return 0;
- env->imbalance = DIV_ROUND_CLOSEST(
- sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
- SCHED_CAPACITY_SCALE);
- return 1;
- }
- /**
- * fix_small_imbalance - Calculate the minor imbalance that exists
- * amongst the groups of a sched_domain, during
- * load balancing.
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
- */
- static inline
- void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
- {
- unsigned long tmp, capa_now = 0, capa_move = 0;
- unsigned int imbn = 2;
- unsigned long scaled_busy_load_per_task;
- struct sg_lb_stats *local, *busiest;
- local = &sds->local_stat;
- busiest = &sds->busiest_stat;
- if (!local->sum_nr_running)
- local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
- else if (busiest->load_per_task > local->load_per_task)
- imbn = 1;
- scaled_busy_load_per_task =
- (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- busiest->group_capacity;
- if (busiest->avg_load + scaled_busy_load_per_task >=
- local->avg_load + (scaled_busy_load_per_task * imbn)) {
- env->imbalance = busiest->load_per_task;
- return;
- }
- /*
- * OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU capacity used by
- * moving them.
- */
- capa_now += busiest->group_capacity *
- min(busiest->load_per_task, busiest->avg_load);
- capa_now += local->group_capacity *
- min(local->load_per_task, local->avg_load);
- capa_now /= SCHED_CAPACITY_SCALE;
- /* Amount of load we'd subtract */
- if (busiest->avg_load > scaled_busy_load_per_task) {
- capa_move += busiest->group_capacity *
- min(busiest->load_per_task,
- busiest->avg_load - scaled_busy_load_per_task);
- }
- /* Amount of load we'd add */
- if (busiest->avg_load * busiest->group_capacity <
- busiest->load_per_task * SCHED_CAPACITY_SCALE) {
- tmp = (busiest->avg_load * busiest->group_capacity) /
- local->group_capacity;
- } else {
- tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- local->group_capacity;
- }
- capa_move += local->group_capacity *
- min(local->load_per_task, local->avg_load + tmp);
- capa_move /= SCHED_CAPACITY_SCALE;
- /* Move if we gain throughput */
- if (capa_move > capa_now)
- env->imbalance = busiest->load_per_task;
- }
- /**
- * calculate_imbalance - Calculate the amount of imbalance present within the
- * groups of a given sched_domain during load balance.
- * @env: load balance environment
- * @sds: statistics of the sched_domain whose imbalance is to be calculated.
- */
- static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
- {
- unsigned long max_pull, load_above_capacity = ~0UL;
- struct sg_lb_stats *local, *busiest;
- local = &sds->local_stat;
- busiest = &sds->busiest_stat;
- if (busiest->group_type == group_imbalanced) {
- /*
- * In the group_imb case we cannot rely on group-wide averages
- * to ensure cpu-load equilibrium, look at wider averages. XXX
- */
- busiest->load_per_task =
- min(busiest->load_per_task, sds->avg_load);
- }
- /*
- * In the presence of smp nice balancing, certain scenarios can have
- * max load less than avg load(as we skip the groups at or below
- * its cpu_capacity, while calculating max_load..)
- */
- if (busiest->avg_load <= sds->avg_load ||
- local->avg_load >= sds->avg_load) {
- env->imbalance = 0;
- return fix_small_imbalance(env, sds);
- }
- /*
- * If there aren't any idle cpus, avoid creating some.
- */
- if (busiest->group_type == group_overloaded &&
- local->group_type == group_overloaded) {
- load_above_capacity = busiest->sum_nr_running *
- SCHED_LOAD_SCALE;
- if (load_above_capacity > busiest->group_capacity)
- load_above_capacity -= busiest->group_capacity;
- else
- load_above_capacity = ~0UL;
- }
- /*
- * We're trying to get all the cpus to the average_load, so we don't
- * want to push ourselves above the average load, nor do we wish to
- * reduce the max loaded cpu below the average load. At the same time,
- * we also don't want to reduce the group load below the group capacity
- * (so that we can implement power-savings policies etc). Thus we look
- * for the minimum possible imbalance.
- */
- max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
- /* How much load to actually move to equalise the imbalance */
- env->imbalance = min(
- max_pull * busiest->group_capacity,
- (sds->avg_load - local->avg_load) * local->group_capacity
- ) / SCHED_CAPACITY_SCALE;
- /*
- * if *imbalance is less than the average load per runnable task
- * there is no guarantee that any tasks will be moved so we'll have
- * a think about bumping its value to force at least one task to be
- * moved
- */
- if (env->imbalance < busiest->load_per_task)
- return fix_small_imbalance(env, sds);
- }
- /******* find_busiest_group() helpers end here *********************/
- /**
- * find_busiest_group - Returns the busiest group within the sched_domain
- * if there is an imbalance. If there isn't an imbalance, and
- * the user has opted for power-savings, it returns a group whose
- * CPUs can be put to idle by rebalancing those tasks elsewhere, if
- * such a group exists.
- *
- * Also calculates the amount of weighted load which should be moved
- * to restore balance.
- *
- * @env: The load balancing environment.
- *
- * Return: - The busiest group if imbalance exists.
- * - If no imbalance and user has opted for power-savings balance,
- * return the least loaded group whose CPUs can be
- * put to idle by rebalancing its tasks onto our group.
- */
- static struct sched_group *find_busiest_group(struct lb_env *env)
- {
- struct sg_lb_stats *local, *busiest;
- struct sd_lb_stats sds;
- init_sd_lb_stats(&sds);
- /*
- * Compute the various statistics relavent for load balancing at
- * this level.
- */
- update_sd_lb_stats(env, &sds);
- local = &sds.local_stat;
- busiest = &sds.busiest_stat;
- /* ASYM feature bypasses nice load balance check */
- if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
- check_asym_packing(env, &sds))
- return sds.busiest;
- /* There is no busy sibling group to pull tasks from */
- if (!sds.busiest || busiest->sum_nr_running == 0)
- goto out_balanced;
- sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
- / sds.total_capacity;
- /*
- * If the busiest group is imbalanced the below checks don't
- * work because they assume all things are equal, which typically
- * isn't true due to cpus_allowed constraints and the like.
- */
- if (busiest->group_type == group_imbalanced)
- goto force_balance;
- /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
- if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
- busiest->group_no_capacity)
- goto force_balance;
- /*
- * If the local group is busier than the selected busiest group
- * don't try and pull any tasks.
- */
- if (local->avg_load >= busiest->avg_load)
- goto out_balanced;
- /*
- * Don't pull any tasks if this group is already above the domain
- * average load.
- */
- if (local->avg_load >= sds.avg_load)
- goto out_balanced;
- if (env->idle == CPU_IDLE) {
- /*
- * This cpu is idle. If the busiest group is not overloaded
- * and there is no imbalance between this and busiest group
- * wrt idle cpus, it is balanced. The imbalance becomes
- * significant if the diff is greater than 1 otherwise we
- * might end up to just move the imbalance on another group
- */
- if ((busiest->group_type != group_overloaded) &&
- (local->idle_cpus <= (busiest->idle_cpus + 1)))
- goto out_balanced;
- } else {
- /*
- * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
- * imbalance_pct to be conservative.
- */
- if (100 * busiest->avg_load <=
- env->sd->imbalance_pct * local->avg_load)
- goto out_balanced;
- }
- force_balance:
- /* Looks like there is an imbalance. Compute it */
- calculate_imbalance(env, &sds);
- return sds.busiest;
- out_balanced:
- env->imbalance = 0;
- return NULL;
- }
- /*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
- */
- static struct rq *find_busiest_queue(struct lb_env *env,
- struct sched_group *group)
- {
- struct rq *busiest = NULL, *rq;
- unsigned long busiest_load = 0, busiest_capacity = 1;
- int i;
- for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
- unsigned long capacity, wl;
- enum fbq_type rt;
- rq = cpu_rq(i);
- rt = fbq_classify_rq(rq);
- /*
- * We classify groups/runqueues into three groups:
- * - regular: there are !numa tasks
- * - remote: there are numa tasks that run on the 'wrong' node
- * - all: there is no distinction
- *
- * In order to avoid migrating ideally placed numa tasks,
- * ignore those when there's better options.
- *
- * If we ignore the actual busiest queue to migrate another
- * task, the next balance pass can still reduce the busiest
- * queue by moving tasks around inside the node.
- *
- * If we cannot move enough load due to this classification
- * the next pass will adjust the group classification and
- * allow migration of more tasks.
- *
- * Both cases only affect the total convergence complexity.
- */
- if (rt > env->fbq_type)
- continue;
- capacity = capacity_of(i);
- wl = weighted_cpuload(i);
- /*
- * When comparing with imbalance, use weighted_cpuload()
- * which is not scaled with the cpu capacity.
- */
- if (rq->nr_running == 1 && wl > env->imbalance &&
- !check_cpu_capacity(rq, env->sd))
- continue;
- /*
- * For the load comparisons with the other cpu's, consider
- * the weighted_cpuload() scaled with the cpu capacity, so
- * that the load can be moved away from the cpu that is
- * potentially running at a lower capacity.
- *
- * Thus we're looking for max(wl_i / capacity_i), crosswise
- * multiplication to rid ourselves of the division works out
- * to: wl_i * capacity_j > wl_j * capacity_i; where j is
- * our previous maximum.
- */
- if (wl * busiest_capacity > busiest_load * capacity) {
- busiest_load = wl;
- busiest_capacity = capacity;
- busiest = rq;
- }
- }
- return busiest;
- }
- /*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
- #define MAX_PINNED_INTERVAL 512
- /* Working cpumask for load_balance and load_balance_newidle. */
- DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
- static int need_active_balance(struct lb_env *env)
- {
- struct sched_domain *sd = env->sd;
- if (env->idle == CPU_NEWLY_IDLE) {
- /*
- * ASYM_PACKING needs to force migrate tasks from busy but
- * higher numbered CPUs in order to pack all tasks in the
- * lowest numbered CPUs.
- */
- if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
- return 1;
- }
- /*
- * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
- * It's worth migrating the task if the src_cpu's capacity is reduced
- * because of other sched_class or IRQs if more capacity stays
- * available on dst_cpu.
- */
- if ((env->idle != CPU_NOT_IDLE) &&
- (env->src_rq->cfs.h_nr_running == 1)) {
- if ((check_cpu_capacity(env->src_rq, sd)) &&
- (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
- return 1;
- }
- return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
- }
- static int active_load_balance_cpu_stop(void *data);
- static int should_we_balance(struct lb_env *env)
- {
- struct sched_group *sg = env->sd->groups;
- struct cpumask *sg_cpus, *sg_mask;
- int cpu, balance_cpu = -1;
- /*
- * In the newly idle case, we will allow all the cpu's
- * to do the newly idle load balance.
- */
- if (env->idle == CPU_NEWLY_IDLE)
- return 1;
- sg_cpus = sched_group_cpus(sg);
- sg_mask = sched_group_mask(sg);
- /* Try to find first idle cpu */
- for_each_cpu_and(cpu, sg_cpus, env->cpus) {
- if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
- continue;
- balance_cpu = cpu;
- break;
- }
- if (balance_cpu == -1)
- balance_cpu = group_balance_cpu(sg);
- /*
- * First idle cpu or the first cpu(busiest) in this sched group
- * is eligible for doing load balancing at this and above domains.
- */
- return balance_cpu == env->dst_cpu;
- }
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
- static int load_balance(int this_cpu, struct rq *this_rq,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *continue_balancing)
- {
- int ld_moved, cur_ld_moved, active_balance = 0;
- struct sched_domain *sd_parent = sd->parent;
- struct sched_group *group;
- struct rq *busiest;
- unsigned long flags;
- struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
- struct lb_env env = {
- .sd = sd,
- .dst_cpu = this_cpu,
- .dst_rq = this_rq,
- .dst_grpmask = sched_group_cpus(sd->groups),
- .idle = idle,
- .loop_break = sched_nr_migrate_break,
- .cpus = cpus,
- .fbq_type = all,
- .tasks = LIST_HEAD_INIT(env.tasks),
- };
- /*
- * For NEWLY_IDLE load_balancing, we don't need to consider
- * other cpus in our group
- */
- if (idle == CPU_NEWLY_IDLE)
- env.dst_grpmask = NULL;
- cpumask_copy(cpus, cpu_active_mask);
- schedstat_inc(sd, lb_count[idle]);
- redo:
- if (!should_we_balance(&env)) {
- *continue_balancing = 0;
- goto out_balanced;
- }
- group = find_busiest_group(&env);
- if (!group) {
- schedstat_inc(sd, lb_nobusyg[idle]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(&env, group);
- if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[idle]);
- goto out_balanced;
- }
- BUG_ON(busiest == env.dst_rq);
- schedstat_add(sd, lb_imbalance[idle], env.imbalance);
- env.src_cpu = busiest->cpu;
- env.src_rq = busiest;
- ld_moved = 0;
- if (busiest->nr_running > 1) {
- /*
- * Attempt to move tasks. If find_busiest_group has found
- * an imbalance but busiest->nr_running <= 1, the group is
- * still unbalanced. ld_moved simply stays zero, so it is
- * correctly treated as an imbalance.
- */
- env.flags |= LBF_ALL_PINNED;
- env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
- more_balance:
- raw_spin_lock_irqsave(&busiest->lock, flags);
- /*
- * cur_ld_moved - load moved in current iteration
- * ld_moved - cumulative load moved across iterations
- */
- cur_ld_moved = detach_tasks(&env);
- /*
- * We've detached some tasks from busiest_rq. Every
- * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
- * unlock busiest->lock, and we are able to be sure
- * that nobody can manipulate the tasks in parallel.
- * See task_rq_lock() family for the details.
- */
- raw_spin_unlock(&busiest->lock);
- if (cur_ld_moved) {
- attach_tasks(&env);
- ld_moved += cur_ld_moved;
- }
- local_irq_restore(flags);
- if (env.flags & LBF_NEED_BREAK) {
- env.flags &= ~LBF_NEED_BREAK;
- goto more_balance;
- }
- /*
- * Revisit (affine) tasks on src_cpu that couldn't be moved to
- * us and move them to an alternate dst_cpu in our sched_group
- * where they can run. The upper limit on how many times we
- * iterate on same src_cpu is dependent on number of cpus in our
- * sched_group.
- *
- * This changes load balance semantics a bit on who can move
- * load to a given_cpu. In addition to the given_cpu itself
- * (or a ilb_cpu acting on its behalf where given_cpu is
- * nohz-idle), we now have balance_cpu in a position to move
- * load to given_cpu. In rare situations, this may cause
- * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
- * _independently_ and at _same_ time to move some load to
- * given_cpu) causing exceess load to be moved to given_cpu.
- * This however should not happen so much in practice and
- * moreover subsequent load balance cycles should correct the
- * excess load moved.
- */
- if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
- /* Prevent to re-select dst_cpu via env's cpus */
- cpumask_clear_cpu(env.dst_cpu, env.cpus);
- env.dst_rq = cpu_rq(env.new_dst_cpu);
- env.dst_cpu = env.new_dst_cpu;
- env.flags &= ~LBF_DST_PINNED;
- env.loop = 0;
- env.loop_break = sched_nr_migrate_break;
- /*
- * Go back to "more_balance" rather than "redo" since we
- * need to continue with same src_cpu.
- */
- goto more_balance;
- }
- /*
- * We failed to reach balance because of affinity.
- */
- if (sd_parent) {
- int *group_imbalance = &sd_parent->groups->sgc->imbalance;
- if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
- *group_imbalance = 1;
- }
- /* All tasks on this runqueue were pinned by CPU affinity */
- if (unlikely(env.flags & LBF_ALL_PINNED)) {
- cpumask_clear_cpu(cpu_of(busiest), cpus);
- if (!cpumask_empty(cpus)) {
- env.loop = 0;
- env.loop_break = sched_nr_migrate_break;
- goto redo;
- }
- goto out_all_pinned;
- }
- }
- if (!ld_moved) {
- schedstat_inc(sd, lb_failed[idle]);
- /*
- * Increment the failure counter only on periodic balance.
- * We do not want newidle balance, which can be very
- * frequent, pollute the failure counter causing
- * excessive cache_hot migrations and active balances.
- */
- if (idle != CPU_NEWLY_IDLE)
- sd->nr_balance_failed++;
- if (need_active_balance(&env)) {
- raw_spin_lock_irqsave(&busiest->lock, flags);
- /* don't kick the active_load_balance_cpu_stop,
- * if the curr task on busiest cpu can't be
- * moved to this_cpu
- */
- if (!cpumask_test_cpu(this_cpu,
- tsk_cpus_allowed(busiest->curr))) {
- raw_spin_unlock_irqrestore(&busiest->lock,
- flags);
- env.flags |= LBF_ALL_PINNED;
- goto out_one_pinned;
- }
- /*
- * ->active_balance synchronizes accesses to
- * ->active_balance_work. Once set, it's cleared
- * only after active load balance is finished.
- */
- if (!busiest->active_balance) {
- busiest->active_balance = 1;
- busiest->push_cpu = this_cpu;
- active_balance = 1;
- }
- raw_spin_unlock_irqrestore(&busiest->lock, flags);
- if (active_balance) {
- stop_one_cpu_nowait(cpu_of(busiest),
- active_load_balance_cpu_stop, busiest,
- &busiest->active_balance_work);
- }
- /*
- * We've kicked active balancing, reset the failure
- * counter.
- */
- sd->nr_balance_failed = sd->cache_nice_tries+1;
- }
- } else
- sd->nr_balance_failed = 0;
- if (likely(!active_balance)) {
- /* We were unbalanced, so reset the balancing interval */
- sd->balance_interval = sd->min_interval;
- } else {
- /*
- * If we've begun active balancing, start to back off. This
- * case may not be covered by the all_pinned logic if there
- * is only 1 task on the busy runqueue (because we don't call
- * detach_tasks).
- */
- if (sd->balance_interval < sd->max_interval)
- sd->balance_interval *= 2;
- }
- goto out;
- out_balanced:
- /*
- * We reach balance although we may have faced some affinity
- * constraints. Clear the imbalance flag if it was set.
- */
- if (sd_parent) {
- int *group_imbalance = &sd_parent->groups->sgc->imbalance;
- if (*group_imbalance)
- *group_imbalance = 0;
- }
- out_all_pinned:
- /*
- * We reach balance because all tasks are pinned at this level so
- * we can't migrate them. Let the imbalance flag set so parent level
- * can try to migrate them.
- */
- schedstat_inc(sd, lb_balanced[idle]);
- sd->nr_balance_failed = 0;
- out_one_pinned:
- /* tune up the balancing interval */
- if (((env.flags & LBF_ALL_PINNED) &&
- sd->balance_interval < MAX_PINNED_INTERVAL) ||
- (sd->balance_interval < sd->max_interval))
- sd->balance_interval *= 2;
- ld_moved = 0;
- out:
- return ld_moved;
- }
- static inline unsigned long
- get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
- {
- unsigned long interval = sd->balance_interval;
- if (cpu_busy)
- interval *= sd->busy_factor;
- /* scale ms to jiffies */
- interval = msecs_to_jiffies(interval);
- interval = clamp(interval, 1UL, max_load_balance_interval);
- return interval;
- }
- static inline void
- update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
- {
- unsigned long interval, next;
- interval = get_sd_balance_interval(sd, cpu_busy);
- next = sd->last_balance + interval;
- if (time_after(*next_balance, next))
- *next_balance = next;
- }
- /*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
- static int idle_balance(struct rq *this_rq)
- {
- unsigned long next_balance = jiffies + HZ;
- int this_cpu = this_rq->cpu;
- struct sched_domain *sd;
- int pulled_task = 0;
- u64 curr_cost = 0;
- idle_enter_fair(this_rq);
- /*
- * We must set idle_stamp _before_ calling idle_balance(), such that we
- * measure the duration of idle_balance() as idle time.
- */
- this_rq->idle_stamp = rq_clock(this_rq);
- if (this_rq->avg_idle < sysctl_sched_migration_cost ||
- !this_rq->rd->overload) {
- rcu_read_lock();
- sd = rcu_dereference_check_sched_domain(this_rq->sd);
- if (sd)
- update_next_balance(sd, 0, &next_balance);
- rcu_read_unlock();
- goto out;
- }
- raw_spin_unlock(&this_rq->lock);
- update_blocked_averages(this_cpu);
- rcu_read_lock();
- for_each_domain(this_cpu, sd) {
- int continue_balancing = 1;
- u64 t0, domain_cost;
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
- update_next_balance(sd, 0, &next_balance);
- break;
- }
- if (sd->flags & SD_BALANCE_NEWIDLE) {
- t0 = sched_clock_cpu(this_cpu);
- pulled_task = load_balance(this_cpu, this_rq,
- sd, CPU_NEWLY_IDLE,
- &continue_balancing);
- domain_cost = sched_clock_cpu(this_cpu) - t0;
- if (domain_cost > sd->max_newidle_lb_cost)
- sd->max_newidle_lb_cost = domain_cost;
- curr_cost += domain_cost;
- }
- update_next_balance(sd, 0, &next_balance);
- /*
- * Stop searching for tasks to pull if there are
- * now runnable tasks on this rq.
- */
- if (pulled_task || this_rq->nr_running > 0)
- break;
- }
- rcu_read_unlock();
- raw_spin_lock(&this_rq->lock);
- if (curr_cost > this_rq->max_idle_balance_cost)
- this_rq->max_idle_balance_cost = curr_cost;
- /*
- * While browsing the domains, we released the rq lock, a task could
- * have been enqueued in the meantime. Since we're not going idle,
- * pretend we pulled a task.
- */
- if (this_rq->cfs.h_nr_running && !pulled_task)
- pulled_task = 1;
- out:
- /* Move the next balance forward */
- if (time_after(this_rq->next_balance, next_balance))
- this_rq->next_balance = next_balance;
- /* Is there a task of a high priority class? */
- if (this_rq->nr_running != this_rq->cfs.h_nr_running)
- pulled_task = -1;
- if (pulled_task) {
- idle_exit_fair(this_rq);
- this_rq->idle_stamp = 0;
- }
- return pulled_task;
- }
- /*
- * active_load_balance_cpu_stop is run by cpu stopper. It pushes
- * running tasks off the busiest CPU onto idle CPUs. It requires at
- * least 1 task to be running on each physical CPU where possible, and
- * avoids physical / logical imbalances.
- */
- static int active_load_balance_cpu_stop(void *data)
- {
- struct rq *busiest_rq = data;
- int busiest_cpu = cpu_of(busiest_rq);
- int target_cpu = busiest_rq->push_cpu;
- struct rq *target_rq = cpu_rq(target_cpu);
- struct sched_domain *sd;
- struct task_struct *p = NULL;
- raw_spin_lock_irq(&busiest_rq->lock);
- /* make sure the requested cpu hasn't gone down in the meantime */
- if (unlikely(busiest_cpu != smp_processor_id() ||
- !busiest_rq->active_balance))
- goto out_unlock;
- /* Is there any task to move? */
- if (busiest_rq->nr_running <= 1)
- goto out_unlock;
- /*
- * This condition is "impossible", if it occurs
- * we need to fix it. Originally reported by
- * Bjorn Helgaas on a 128-cpu setup.
- */
- BUG_ON(busiest_rq == target_rq);
- /* Search for an sd spanning us and the target CPU. */
- rcu_read_lock();
- for_each_domain(target_cpu, sd) {
- if ((sd->flags & SD_LOAD_BALANCE) &&
- cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
- break;
- }
- if (likely(sd)) {
- struct lb_env env = {
- .sd = sd,
- .dst_cpu = target_cpu,
- .dst_rq = target_rq,
- .src_cpu = busiest_rq->cpu,
- .src_rq = busiest_rq,
- .idle = CPU_IDLE,
- };
- schedstat_inc(sd, alb_count);
- p = detach_one_task(&env);
- if (p)
- schedstat_inc(sd, alb_pushed);
- else
- schedstat_inc(sd, alb_failed);
- }
- rcu_read_unlock();
- out_unlock:
- busiest_rq->active_balance = 0;
- raw_spin_unlock(&busiest_rq->lock);
- if (p)
- attach_one_task(target_rq, p);
- local_irq_enable();
- return 0;
- }
- static inline int on_null_domain(struct rq *rq)
- {
- return unlikely(!rcu_dereference_sched(rq->sd));
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * idle load balancing details
- * - When one of the busy CPUs notice that there may be an idle rebalancing
- * needed, they will kick the idle load balancer, which then does idle
- * load balancing for all the idle CPUs.
- */
- static struct {
- cpumask_var_t idle_cpus_mask;
- atomic_t nr_cpus;
- unsigned long next_balance; /* in jiffy units */
- } nohz ____cacheline_aligned;
- static inline int find_new_ilb(void)
- {
- int ilb = cpumask_first(nohz.idle_cpus_mask);
- if (ilb < nr_cpu_ids && idle_cpu(ilb))
- return ilb;
- return nr_cpu_ids;
- }
- /*
- * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
- * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
- * CPU (if there is one).
- */
- static void nohz_balancer_kick(void)
- {
- int ilb_cpu;
- nohz.next_balance++;
- ilb_cpu = find_new_ilb();
- if (ilb_cpu >= nr_cpu_ids)
- return;
- if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
- return;
- /*
- * Use smp_send_reschedule() instead of resched_cpu().
- * This way we generate a sched IPI on the target cpu which
- * is idle. And the softirq performing nohz idle load balance
- * will be run before returning from the IPI.
- */
- smp_send_reschedule(ilb_cpu);
- return;
- }
- static inline void nohz_balance_exit_idle(int cpu)
- {
- if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
- /*
- * Completely isolated CPUs don't ever set, so we must test.
- */
- if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
- cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
- atomic_dec(&nohz.nr_cpus);
- }
- clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
- }
- }
- static inline void set_cpu_sd_state_busy(void)
- {
- struct sched_domain *sd;
- int cpu = smp_processor_id();
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_busy, cpu));
- if (!sd || !sd->nohz_idle)
- goto unlock;
- sd->nohz_idle = 0;
- atomic_inc(&sd->groups->sgc->nr_busy_cpus);
- unlock:
- rcu_read_unlock();
- }
- void set_cpu_sd_state_idle(void)
- {
- struct sched_domain *sd;
- int cpu = smp_processor_id();
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_busy, cpu));
- if (!sd || sd->nohz_idle)
- goto unlock;
- sd->nohz_idle = 1;
- atomic_dec(&sd->groups->sgc->nr_busy_cpus);
- unlock:
- rcu_read_unlock();
- }
- /*
- * This routine will record that the cpu is going idle with tick stopped.
- * This info will be used in performing idle load balancing in the future.
- */
- void nohz_balance_enter_idle(int cpu)
- {
- /*
- * If this cpu is going down, then nothing needs to be done.
- */
- if (!cpu_active(cpu))
- return;
- if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
- return;
- /*
- * If we're a completely isolated CPU, we don't play.
- */
- if (on_null_domain(cpu_rq(cpu)))
- return;
- cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
- atomic_inc(&nohz.nr_cpus);
- set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
- }
- static int sched_ilb_notifier(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_DYING:
- nohz_balance_exit_idle(smp_processor_id());
- return NOTIFY_OK;
- default:
- return NOTIFY_DONE;
- }
- }
- #endif
- static DEFINE_SPINLOCK(balancing);
- /*
- * Scale the max load_balance interval with the number of CPUs in the system.
- * This trades load-balance latency on larger machines for less cross talk.
- */
- void update_max_interval(void)
- {
- max_load_balance_interval = HZ*num_online_cpus()/10;
- }
- /*
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in init_sched_domains.
- */
- static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
- {
- int continue_balancing = 1;
- int cpu = rq->cpu;
- unsigned long interval;
- struct sched_domain *sd;
- /* Earliest time when we have to do rebalance again */
- unsigned long next_balance = jiffies + 60*HZ;
- int update_next_balance = 0;
- int need_serialize, need_decay = 0;
- u64 max_cost = 0;
- update_blocked_averages(cpu);
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- /*
- * Decay the newidle max times here because this is a regular
- * visit to all the domains. Decay ~1% per second.
- */
- if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
- sd->max_newidle_lb_cost =
- (sd->max_newidle_lb_cost * 253) / 256;
- sd->next_decay_max_lb_cost = jiffies + HZ;
- need_decay = 1;
- }
- max_cost += sd->max_newidle_lb_cost;
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- /*
- * Stop the load balance at this level. There is another
- * CPU in our sched group which is doing load balancing more
- * actively.
- */
- if (!continue_balancing) {
- if (need_decay)
- continue;
- break;
- }
- interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
- need_serialize = sd->flags & SD_SERIALIZE;
- if (need_serialize) {
- if (!spin_trylock(&balancing))
- goto out;
- }
- if (time_after_eq(jiffies, sd->last_balance + interval)) {
- if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
- /*
- * The LBF_DST_PINNED logic could have changed
- * env->dst_cpu, so we can't know our idle
- * state even if we migrated tasks. Update it.
- */
- idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
- }
- sd->last_balance = jiffies;
- interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
- }
- if (need_serialize)
- spin_unlock(&balancing);
- out:
- if (time_after(next_balance, sd->last_balance + interval)) {
- next_balance = sd->last_balance + interval;
- update_next_balance = 1;
- }
- }
- if (need_decay) {
- /*
- * Ensure the rq-wide value also decays but keep it at a
- * reasonable floor to avoid funnies with rq->avg_idle.
- */
- rq->max_idle_balance_cost =
- max((u64)sysctl_sched_migration_cost, max_cost);
- }
- rcu_read_unlock();
- /*
- * next_balance will be updated only when there is a need.
- * When the cpu is attached to null domain for ex, it will not be
- * updated.
- */
- if (likely(update_next_balance))
- rq->next_balance = next_balance;
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
- */
- static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
- {
- int this_cpu = this_rq->cpu;
- struct rq *rq;
- int balance_cpu;
- if (idle != CPU_IDLE ||
- !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
- goto end;
- for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
- if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
- continue;
- /*
- * If this cpu gets work to do, stop the load balancing
- * work being done for other cpus. Next load
- * balancing owner will pick it up.
- */
- if (need_resched())
- break;
- rq = cpu_rq(balance_cpu);
- /*
- * If time for next balance is due,
- * do the balance.
- */
- if (time_after_eq(jiffies, rq->next_balance)) {
- raw_spin_lock_irq(&rq->lock);
- update_rq_clock(rq);
- update_idle_cpu_load(rq);
- raw_spin_unlock_irq(&rq->lock);
- rebalance_domains(rq, CPU_IDLE);
- }
- if (time_after(this_rq->next_balance, rq->next_balance))
- this_rq->next_balance = rq->next_balance;
- }
- nohz.next_balance = this_rq->next_balance;
- end:
- clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
- }
- /*
- * Current heuristic for kicking the idle load balancer in the presence
- * of an idle cpu in the system.
- * - This rq has more than one task.
- * - This rq has at least one CFS task and the capacity of the CPU is
- * significantly reduced because of RT tasks or IRQs.
- * - At parent of LLC scheduler domain level, this cpu's scheduler group has
- * multiple busy cpu.
- * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
- * domain span are idle.
- */
- static inline bool nohz_kick_needed(struct rq *rq)
- {
- unsigned long now = jiffies;
- struct sched_domain *sd;
- struct sched_group_capacity *sgc;
- int nr_busy, cpu = rq->cpu;
- bool kick = false;
- if (unlikely(rq->idle_balance))
- return false;
- /*
- * We may be recently in ticked or tickless idle mode. At the first
- * busy tick after returning from idle, we will update the busy stats.
- */
- set_cpu_sd_state_busy();
- nohz_balance_exit_idle(cpu);
- /*
- * None are in tickless mode and hence no need for NOHZ idle load
- * balancing.
- */
- if (likely(!atomic_read(&nohz.nr_cpus)))
- return false;
- if (time_before(now, nohz.next_balance))
- return false;
- if (rq->nr_running >= 2)
- return true;
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_busy, cpu));
- if (sd) {
- sgc = sd->groups->sgc;
- nr_busy = atomic_read(&sgc->nr_busy_cpus);
- if (nr_busy > 1) {
- kick = true;
- goto unlock;
- }
- }
- sd = rcu_dereference(rq->sd);
- if (sd) {
- if ((rq->cfs.h_nr_running >= 1) &&
- check_cpu_capacity(rq, sd)) {
- kick = true;
- goto unlock;
- }
- }
- sd = rcu_dereference(per_cpu(sd_asym, cpu));
- if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
- sched_domain_span(sd)) < cpu)) {
- kick = true;
- goto unlock;
- }
- unlock:
- rcu_read_unlock();
- return kick;
- }
- #else
- static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
- #endif
- /*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
- */
- static void run_rebalance_domains(struct softirq_action *h)
- {
- struct rq *this_rq = this_rq();
- enum cpu_idle_type idle = this_rq->idle_balance ?
- CPU_IDLE : CPU_NOT_IDLE;
- /*
- * If this cpu has a pending nohz_balance_kick, then do the
- * balancing on behalf of the other idle cpus whose ticks are
- * stopped. Do nohz_idle_balance *before* rebalance_domains to
- * give the idle cpus a chance to load balance. Else we may
- * load balance only within the local sched_domain hierarchy
- * and abort nohz_idle_balance altogether if we pull some load.
- */
- nohz_idle_balance(this_rq, idle);
- rebalance_domains(this_rq, idle);
- }
- /*
- * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
- */
- void trigger_load_balance(struct rq *rq)
- {
- /* Don't need to rebalance while attached to NULL domain */
- if (unlikely(on_null_domain(rq)))
- return;
- if (time_after_eq(jiffies, rq->next_balance))
- raise_softirq(SCHED_SOFTIRQ);
- #ifdef CONFIG_NO_HZ_COMMON
- if (nohz_kick_needed(rq))
- nohz_balancer_kick();
- #endif
- }
- static void rq_online_fair(struct rq *rq)
- {
- update_sysctl();
- update_runtime_enabled(rq);
- }
- static void rq_offline_fair(struct rq *rq)
- {
- update_sysctl();
- /* Ensure any throttled groups are reachable by pick_next_task */
- unthrottle_offline_cfs_rqs(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * scheduler tick hitting a task of our scheduling class:
- */
- static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &curr->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- entity_tick(cfs_rq, se, queued);
- }
- if (numabalancing_enabled)
- task_tick_numa(rq, curr);
- update_rq_runnable_avg(rq, 1);
- }
- /*
- * called on fork with the child task as argument from the parent's context
- * - child not yet on the tasklist
- * - preemption disabled
- */
- static void task_fork_fair(struct task_struct *p)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se, *curr;
- int this_cpu = smp_processor_id();
- struct rq *rq = this_rq();
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- update_rq_clock(rq);
- cfs_rq = task_cfs_rq(current);
- curr = cfs_rq->curr;
- /*
- * Not only the cpu but also the task_group of the parent might have
- * been changed after parent->se.parent,cfs_rq were copied to
- * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
- * of child point to valid ones.
- */
- rcu_read_lock();
- __set_task_cpu(p, this_cpu);
- rcu_read_unlock();
- update_curr(cfs_rq);
- if (curr)
- se->vruntime = curr->vruntime;
- place_entity(cfs_rq, se, 1);
- if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
- /*
- * Upon rescheduling, sched_class::put_prev_task() will place
- * 'current' within the tree based on its new key value.
- */
- swap(curr->vruntime, se->vruntime);
- resched_curr(rq);
- }
- se->vruntime -= cfs_rq->min_vruntime;
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- /*
- * Priority of the task has changed. Check to see if we preempt
- * the current task.
- */
- static void
- prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
- {
- if (!task_on_rq_queued(p))
- return;
- /*
- * Reschedule if we are currently running on this runqueue and
- * our priority decreased, or if we are not currently running on
- * this runqueue and our priority is higher than the current's
- */
- if (rq->curr == p) {
- if (p->prio > oldprio)
- resched_curr(rq);
- } else
- check_preempt_curr(rq, p, 0);
- }
- static void switched_from_fair(struct rq *rq, struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- /*
- * Ensure the task's vruntime is normalized, so that when it's
- * switched back to the fair class the enqueue_entity(.flags=0) will
- * do the right thing.
- *
- * If it's queued, then the dequeue_entity(.flags=0) will already
- * have normalized the vruntime, if it's !queued, then only when
- * the task is sleeping will it still have non-normalized vruntime.
- */
- if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
- /*
- * Fix up our vruntime so that the current sleep doesn't
- * cause 'unlimited' sleep bonus.
- */
- place_entity(cfs_rq, se, 0);
- se->vruntime -= cfs_rq->min_vruntime;
- }
- #ifdef CONFIG_SMP
- /*
- * Remove our load from contribution when we leave sched_fair
- * and ensure we don't carry in an old decay_count if we
- * switch back.
- */
- if (se->avg.decay_count) {
- __synchronize_entity_decay(se);
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- }
- #endif
- }
- /*
- * We switched to the sched_fair class.
- */
- static void switched_to_fair(struct rq *rq, struct task_struct *p)
- {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity *se = &p->se;
- /*
- * Since the real-depth could have been changed (only FAIR
- * class maintain depth value), reset depth properly.
- */
- se->depth = se->parent ? se->parent->depth + 1 : 0;
- #endif
- if (!task_on_rq_queued(p))
- return;
- /*
- * We were most likely switched from sched_rt, so
- * kick off the schedule if running, otherwise just see
- * if we can still preempt the current task.
- */
- if (rq->curr == p)
- resched_curr(rq);
- else
- check_preempt_curr(rq, p, 0);
- }
- /* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
- static void set_curr_task_fair(struct rq *rq)
- {
- struct sched_entity *se = &rq->curr->se;
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- set_next_entity(cfs_rq, se);
- /* ensure bandwidth has been allocated on our new cfs_rq */
- account_cfs_rq_runtime(cfs_rq, 0);
- }
- }
- void init_cfs_rq(struct cfs_rq *cfs_rq)
- {
- cfs_rq->tasks_timeline = RB_ROOT;
- cfs_rq->min_vruntime = (u64)(-(1LL << 20));
- #ifndef CONFIG_64BIT
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
- #endif
- #ifdef CONFIG_SMP
- atomic64_set(&cfs_rq->decay_counter, 1);
- atomic_long_set(&cfs_rq->removed_load, 0);
- #endif
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void task_move_group_fair(struct task_struct *p, int queued)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq;
- /*
- * If the task was not on the rq at the time of this cgroup movement
- * it must have been asleep, sleeping tasks keep their ->vruntime
- * absolute on their old rq until wakeup (needed for the fair sleeper
- * bonus in place_entity()).
- *
- * If it was on the rq, we've just 'preempted' it, which does convert
- * ->vruntime to a relative base.
- *
- * Make sure both cases convert their relative position when migrating
- * to another cgroup's rq. This does somewhat interfere with the
- * fair sleeper stuff for the first placement, but who cares.
- */
- /*
- * When !queued, vruntime of the task has usually NOT been normalized.
- * But there are some cases where it has already been normalized:
- *
- * - Moving a forked child which is waiting for being woken up by
- * wake_up_new_task().
- * - Moving a task which has been woken up by try_to_wake_up() and
- * waiting for actually being woken up by sched_ttwu_pending().
- *
- * To prevent boost or penalty in the new cfs_rq caused by delta
- * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
- */
- if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
- queued = 1;
- if (!queued)
- se->vruntime -= cfs_rq_of(se)->min_vruntime;
- set_task_rq(p, task_cpu(p));
- se->depth = se->parent ? se->parent->depth + 1 : 0;
- if (!queued) {
- cfs_rq = cfs_rq_of(se);
- se->vruntime += cfs_rq->min_vruntime;
- #ifdef CONFIG_SMP
- /*
- * migrate_task_rq_fair() will have removed our previous
- * contribution, but we must synchronize for ongoing future
- * decay.
- */
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
- #endif
- }
- }
- void free_fair_sched_group(struct task_group *tg)
- {
- int i;
- destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
- for_each_possible_cpu(i) {
- if (tg->cfs_rq)
- kfree(tg->cfs_rq[i]);
- if (tg->se)
- kfree(tg->se[i]);
- }
- kfree(tg->cfs_rq);
- kfree(tg->se);
- }
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se;
- int i;
- tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->cfs_rq)
- goto err;
- tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->se)
- goto err;
- tg->shares = NICE_0_LOAD;
- init_cfs_bandwidth(tg_cfs_bandwidth(tg));
- for_each_possible_cpu(i) {
- cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
- GFP_KERNEL, cpu_to_node(i));
- if (!cfs_rq)
- goto err;
- se = kzalloc_node(sizeof(struct sched_entity),
- GFP_KERNEL, cpu_to_node(i));
- if (!se)
- goto err_free_rq;
- init_cfs_rq(cfs_rq);
- init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
- }
- return 1;
- err_free_rq:
- kfree(cfs_rq);
- err:
- return 0;
- }
- void unregister_fair_sched_group(struct task_group *tg, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- /*
- * Only empty task groups can be destroyed; so we can speculatively
- * check on_list without danger of it being re-added.
- */
- if (!tg->cfs_rq[cpu]->on_list)
- return;
- raw_spin_lock_irqsave(&rq->lock, flags);
- list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
- struct sched_entity *se, int cpu,
- struct sched_entity *parent)
- {
- struct rq *rq = cpu_rq(cpu);
- cfs_rq->tg = tg;
- cfs_rq->rq = rq;
- init_cfs_rq_runtime(cfs_rq);
- tg->cfs_rq[cpu] = cfs_rq;
- tg->se[cpu] = se;
- /* se could be NULL for root_task_group */
- if (!se)
- return;
- if (!parent) {
- se->cfs_rq = &rq->cfs;
- se->depth = 0;
- } else {
- se->cfs_rq = parent->my_q;
- se->depth = parent->depth + 1;
- }
- se->my_q = cfs_rq;
- /* guarantee group entities always have weight */
- update_load_set(&se->load, NICE_0_LOAD);
- se->parent = parent;
- }
- static DEFINE_MUTEX(shares_mutex);
- int sched_group_set_shares(struct task_group *tg, unsigned long shares)
- {
- int i;
- unsigned long flags;
- /*
- * We can't change the weight of the root cgroup.
- */
- if (!tg->se[0])
- return -EINVAL;
- shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
- mutex_lock(&shares_mutex);
- if (tg->shares == shares)
- goto done;
- tg->shares = shares;
- for_each_possible_cpu(i) {
- struct rq *rq = cpu_rq(i);
- struct sched_entity *se;
- se = tg->se[i];
- /* Propagate contribution to hierarchy */
- raw_spin_lock_irqsave(&rq->lock, flags);
- /* Possible calls to update_curr() need rq clock */
- update_rq_clock(rq);
- for_each_sched_entity(se)
- update_cfs_shares(group_cfs_rq(se));
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- done:
- mutex_unlock(&shares_mutex);
- return 0;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- void free_fair_sched_group(struct task_group *tg) { }
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- return 1;
- }
- void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
- {
- struct sched_entity *se = &task->se;
- unsigned int rr_interval = 0;
- /*
- * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
- * idle runqueue:
- */
- if (rq->cfs.load.weight)
- rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
- return rr_interval;
- }
- /*
- * All the scheduling class methods:
- */
- const struct sched_class fair_sched_class = {
- .next = &idle_sched_class,
- .enqueue_task = enqueue_task_fair,
- .dequeue_task = dequeue_task_fair,
- .yield_task = yield_task_fair,
- .yield_to_task = yield_to_task_fair,
- .check_preempt_curr = check_preempt_wakeup,
- .pick_next_task = pick_next_task_fair,
- .put_prev_task = put_prev_task_fair,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_fair,
- .migrate_task_rq = migrate_task_rq_fair,
- .rq_online = rq_online_fair,
- .rq_offline = rq_offline_fair,
- .task_waking = task_waking_fair,
- #endif
- .set_curr_task = set_curr_task_fair,
- .task_tick = task_tick_fair,
- .task_fork = task_fork_fair,
- .prio_changed = prio_changed_fair,
- .switched_from = switched_from_fair,
- .switched_to = switched_to_fair,
- .get_rr_interval = get_rr_interval_fair,
- .update_curr = update_curr_fair,
- #ifdef CONFIG_FAIR_GROUP_SCHED
- .task_move_group = task_move_group_fair,
- #endif
- };
- #ifdef CONFIG_SCHED_DEBUG
- void print_cfs_stats(struct seq_file *m, int cpu)
- {
- struct cfs_rq *cfs_rq;
- rcu_read_lock();
- for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
- print_cfs_rq(m, cpu, cfs_rq);
- rcu_read_unlock();
- }
- #ifdef CONFIG_NUMA_BALANCING
- void show_numa_stats(struct task_struct *p, struct seq_file *m)
- {
- int node;
- unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
- for_each_online_node(node) {
- if (p->numa_faults) {
- tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
- tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- if (p->numa_group) {
- gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
- gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- print_numa_stats(m, node, tsf, tpf, gsf, gpf);
- }
- }
- #endif /* CONFIG_NUMA_BALANCING */
- #endif /* CONFIG_SCHED_DEBUG */
- __init void init_sched_fair_class(void)
- {
- #ifdef CONFIG_SMP
- open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
- #ifdef CONFIG_NO_HZ_COMMON
- nohz.next_balance = jiffies;
- zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
- cpu_notifier(sched_ilb_notifier, 0);
- #endif
- #endif /* SMP */
- }
|