core.c 202 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. if (static_key_enabled(&sched_feat_keys[i]))
  142. static_key_slow_dec(&sched_feat_keys[i]);
  143. }
  144. static void sched_feat_enable(int i)
  145. {
  146. if (!static_key_enabled(&sched_feat_keys[i]))
  147. static_key_slow_inc(&sched_feat_keys[i]);
  148. }
  149. #else
  150. static void sched_feat_disable(int i) { };
  151. static void sched_feat_enable(int i) { };
  152. #endif /* HAVE_JUMP_LABEL */
  153. static int sched_feat_set(char *cmp)
  154. {
  155. int i;
  156. int neg = 0;
  157. if (strncmp(cmp, "NO_", 3) == 0) {
  158. neg = 1;
  159. cmp += 3;
  160. }
  161. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  162. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  163. if (neg) {
  164. sysctl_sched_features &= ~(1UL << i);
  165. sched_feat_disable(i);
  166. } else {
  167. sysctl_sched_features |= (1UL << i);
  168. sched_feat_enable(i);
  169. }
  170. break;
  171. }
  172. }
  173. return i;
  174. }
  175. static ssize_t
  176. sched_feat_write(struct file *filp, const char __user *ubuf,
  177. size_t cnt, loff_t *ppos)
  178. {
  179. char buf[64];
  180. char *cmp;
  181. int i;
  182. struct inode *inode;
  183. if (cnt > 63)
  184. cnt = 63;
  185. if (copy_from_user(&buf, ubuf, cnt))
  186. return -EFAULT;
  187. buf[cnt] = 0;
  188. cmp = strstrip(buf);
  189. /* Ensure the static_key remains in a consistent state */
  190. inode = file_inode(filp);
  191. mutex_lock(&inode->i_mutex);
  192. i = sched_feat_set(cmp);
  193. mutex_unlock(&inode->i_mutex);
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /* cpus with isolated domains */
  242. cpumask_var_t cpu_isolated_map;
  243. /*
  244. * this_rq_lock - lock this runqueue and disable interrupts.
  245. */
  246. static struct rq *this_rq_lock(void)
  247. __acquires(rq->lock)
  248. {
  249. struct rq *rq;
  250. local_irq_disable();
  251. rq = this_rq();
  252. raw_spin_lock(&rq->lock);
  253. return rq;
  254. }
  255. #ifdef CONFIG_SCHED_HRTICK
  256. /*
  257. * Use HR-timers to deliver accurate preemption points.
  258. */
  259. static void hrtick_clear(struct rq *rq)
  260. {
  261. if (hrtimer_active(&rq->hrtick_timer))
  262. hrtimer_cancel(&rq->hrtick_timer);
  263. }
  264. /*
  265. * High-resolution timer tick.
  266. * Runs from hardirq context with interrupts disabled.
  267. */
  268. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  269. {
  270. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  271. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  272. raw_spin_lock(&rq->lock);
  273. update_rq_clock(rq);
  274. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  275. raw_spin_unlock(&rq->lock);
  276. return HRTIMER_NORESTART;
  277. }
  278. #ifdef CONFIG_SMP
  279. static void __hrtick_restart(struct rq *rq)
  280. {
  281. struct hrtimer *timer = &rq->hrtick_timer;
  282. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  283. }
  284. /*
  285. * called from hardirq (IPI) context
  286. */
  287. static void __hrtick_start(void *arg)
  288. {
  289. struct rq *rq = arg;
  290. raw_spin_lock(&rq->lock);
  291. __hrtick_restart(rq);
  292. rq->hrtick_csd_pending = 0;
  293. raw_spin_unlock(&rq->lock);
  294. }
  295. /*
  296. * Called to set the hrtick timer state.
  297. *
  298. * called with rq->lock held and irqs disabled
  299. */
  300. void hrtick_start(struct rq *rq, u64 delay)
  301. {
  302. struct hrtimer *timer = &rq->hrtick_timer;
  303. ktime_t time;
  304. s64 delta;
  305. /*
  306. * Don't schedule slices shorter than 10000ns, that just
  307. * doesn't make sense and can cause timer DoS.
  308. */
  309. delta = max_t(s64, delay, 10000LL);
  310. time = ktime_add_ns(timer->base->get_time(), delta);
  311. hrtimer_set_expires(timer, time);
  312. if (rq == this_rq()) {
  313. __hrtick_restart(rq);
  314. } else if (!rq->hrtick_csd_pending) {
  315. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  316. rq->hrtick_csd_pending = 1;
  317. }
  318. }
  319. static int
  320. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  321. {
  322. int cpu = (int)(long)hcpu;
  323. switch (action) {
  324. case CPU_UP_CANCELED:
  325. case CPU_UP_CANCELED_FROZEN:
  326. case CPU_DOWN_PREPARE:
  327. case CPU_DOWN_PREPARE_FROZEN:
  328. case CPU_DEAD:
  329. case CPU_DEAD_FROZEN:
  330. hrtick_clear(cpu_rq(cpu));
  331. return NOTIFY_OK;
  332. }
  333. return NOTIFY_DONE;
  334. }
  335. static __init void init_hrtick(void)
  336. {
  337. hotcpu_notifier(hotplug_hrtick, 0);
  338. }
  339. #else
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. /*
  348. * Don't schedule slices shorter than 10000ns, that just
  349. * doesn't make sense. Rely on vruntime for fairness.
  350. */
  351. delay = max_t(u64, delay, 10000LL);
  352. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  353. HRTIMER_MODE_REL_PINNED);
  354. }
  355. static inline void init_hrtick(void)
  356. {
  357. }
  358. #endif /* CONFIG_SMP */
  359. static void init_rq_hrtick(struct rq *rq)
  360. {
  361. #ifdef CONFIG_SMP
  362. rq->hrtick_csd_pending = 0;
  363. rq->hrtick_csd.flags = 0;
  364. rq->hrtick_csd.func = __hrtick_start;
  365. rq->hrtick_csd.info = rq;
  366. #endif
  367. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  368. rq->hrtick_timer.function = hrtick;
  369. }
  370. #else /* CONFIG_SCHED_HRTICK */
  371. static inline void hrtick_clear(struct rq *rq)
  372. {
  373. }
  374. static inline void init_rq_hrtick(struct rq *rq)
  375. {
  376. }
  377. static inline void init_hrtick(void)
  378. {
  379. }
  380. #endif /* CONFIG_SCHED_HRTICK */
  381. /*
  382. * cmpxchg based fetch_or, macro so it works for different integer types
  383. */
  384. #define fetch_or(ptr, val) \
  385. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  386. for (;;) { \
  387. __old = cmpxchg((ptr), __val, __val | (val)); \
  388. if (__old == __val) \
  389. break; \
  390. __val = __old; \
  391. } \
  392. __old; \
  393. })
  394. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  395. /*
  396. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  397. * this avoids any races wrt polling state changes and thereby avoids
  398. * spurious IPIs.
  399. */
  400. static bool set_nr_and_not_polling(struct task_struct *p)
  401. {
  402. struct thread_info *ti = task_thread_info(p);
  403. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  404. }
  405. /*
  406. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  407. *
  408. * If this returns true, then the idle task promises to call
  409. * sched_ttwu_pending() and reschedule soon.
  410. */
  411. static bool set_nr_if_polling(struct task_struct *p)
  412. {
  413. struct thread_info *ti = task_thread_info(p);
  414. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  415. for (;;) {
  416. if (!(val & _TIF_POLLING_NRFLAG))
  417. return false;
  418. if (val & _TIF_NEED_RESCHED)
  419. return true;
  420. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  421. if (old == val)
  422. break;
  423. val = old;
  424. }
  425. return true;
  426. }
  427. #else
  428. static bool set_nr_and_not_polling(struct task_struct *p)
  429. {
  430. set_tsk_need_resched(p);
  431. return true;
  432. }
  433. #ifdef CONFIG_SMP
  434. static bool set_nr_if_polling(struct task_struct *p)
  435. {
  436. return false;
  437. }
  438. #endif
  439. #endif
  440. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  441. {
  442. struct wake_q_node *node = &task->wake_q;
  443. /*
  444. * Atomically grab the task, if ->wake_q is !nil already it means
  445. * its already queued (either by us or someone else) and will get the
  446. * wakeup due to that.
  447. *
  448. * This cmpxchg() implies a full barrier, which pairs with the write
  449. * barrier implied by the wakeup in wake_up_list().
  450. */
  451. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  452. return;
  453. get_task_struct(task);
  454. /*
  455. * The head is context local, there can be no concurrency.
  456. */
  457. *head->lastp = node;
  458. head->lastp = &node->next;
  459. }
  460. void wake_up_q(struct wake_q_head *head)
  461. {
  462. struct wake_q_node *node = head->first;
  463. while (node != WAKE_Q_TAIL) {
  464. struct task_struct *task;
  465. task = container_of(node, struct task_struct, wake_q);
  466. BUG_ON(!task);
  467. /* task can safely be re-inserted now */
  468. node = node->next;
  469. task->wake_q.next = NULL;
  470. /*
  471. * wake_up_process() implies a wmb() to pair with the queueing
  472. * in wake_q_add() so as not to miss wakeups.
  473. */
  474. wake_up_process(task);
  475. put_task_struct(task);
  476. }
  477. }
  478. /*
  479. * resched_curr - mark rq's current task 'to be rescheduled now'.
  480. *
  481. * On UP this means the setting of the need_resched flag, on SMP it
  482. * might also involve a cross-CPU call to trigger the scheduler on
  483. * the target CPU.
  484. */
  485. void resched_curr(struct rq *rq)
  486. {
  487. struct task_struct *curr = rq->curr;
  488. int cpu;
  489. lockdep_assert_held(&rq->lock);
  490. if (test_tsk_need_resched(curr))
  491. return;
  492. cpu = cpu_of(rq);
  493. if (cpu == smp_processor_id()) {
  494. set_tsk_need_resched(curr);
  495. set_preempt_need_resched();
  496. return;
  497. }
  498. if (set_nr_and_not_polling(curr))
  499. smp_send_reschedule(cpu);
  500. else
  501. trace_sched_wake_idle_without_ipi(cpu);
  502. }
  503. void resched_cpu(int cpu)
  504. {
  505. struct rq *rq = cpu_rq(cpu);
  506. unsigned long flags;
  507. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  508. return;
  509. resched_curr(rq);
  510. raw_spin_unlock_irqrestore(&rq->lock, flags);
  511. }
  512. #ifdef CONFIG_SMP
  513. #ifdef CONFIG_NO_HZ_COMMON
  514. /*
  515. * In the semi idle case, use the nearest busy cpu for migrating timers
  516. * from an idle cpu. This is good for power-savings.
  517. *
  518. * We don't do similar optimization for completely idle system, as
  519. * selecting an idle cpu will add more delays to the timers than intended
  520. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  521. */
  522. int get_nohz_timer_target(void)
  523. {
  524. int i, cpu = smp_processor_id();
  525. struct sched_domain *sd;
  526. if (!idle_cpu(cpu))
  527. return cpu;
  528. rcu_read_lock();
  529. for_each_domain(cpu, sd) {
  530. for_each_cpu(i, sched_domain_span(sd)) {
  531. if (!idle_cpu(i)) {
  532. cpu = i;
  533. goto unlock;
  534. }
  535. }
  536. }
  537. unlock:
  538. rcu_read_unlock();
  539. return cpu;
  540. }
  541. /*
  542. * When add_timer_on() enqueues a timer into the timer wheel of an
  543. * idle CPU then this timer might expire before the next timer event
  544. * which is scheduled to wake up that CPU. In case of a completely
  545. * idle system the next event might even be infinite time into the
  546. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  547. * leaves the inner idle loop so the newly added timer is taken into
  548. * account when the CPU goes back to idle and evaluates the timer
  549. * wheel for the next timer event.
  550. */
  551. static void wake_up_idle_cpu(int cpu)
  552. {
  553. struct rq *rq = cpu_rq(cpu);
  554. if (cpu == smp_processor_id())
  555. return;
  556. if (set_nr_and_not_polling(rq->idle))
  557. smp_send_reschedule(cpu);
  558. else
  559. trace_sched_wake_idle_without_ipi(cpu);
  560. }
  561. static bool wake_up_full_nohz_cpu(int cpu)
  562. {
  563. /*
  564. * We just need the target to call irq_exit() and re-evaluate
  565. * the next tick. The nohz full kick at least implies that.
  566. * If needed we can still optimize that later with an
  567. * empty IRQ.
  568. */
  569. if (tick_nohz_full_cpu(cpu)) {
  570. if (cpu != smp_processor_id() ||
  571. tick_nohz_tick_stopped())
  572. tick_nohz_full_kick_cpu(cpu);
  573. return true;
  574. }
  575. return false;
  576. }
  577. void wake_up_nohz_cpu(int cpu)
  578. {
  579. if (!wake_up_full_nohz_cpu(cpu))
  580. wake_up_idle_cpu(cpu);
  581. }
  582. static inline bool got_nohz_idle_kick(void)
  583. {
  584. int cpu = smp_processor_id();
  585. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  586. return false;
  587. if (idle_cpu(cpu) && !need_resched())
  588. return true;
  589. /*
  590. * We can't run Idle Load Balance on this CPU for this time so we
  591. * cancel it and clear NOHZ_BALANCE_KICK
  592. */
  593. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  594. return false;
  595. }
  596. #else /* CONFIG_NO_HZ_COMMON */
  597. static inline bool got_nohz_idle_kick(void)
  598. {
  599. return false;
  600. }
  601. #endif /* CONFIG_NO_HZ_COMMON */
  602. #ifdef CONFIG_NO_HZ_FULL
  603. bool sched_can_stop_tick(void)
  604. {
  605. /*
  606. * FIFO realtime policy runs the highest priority task. Other runnable
  607. * tasks are of a lower priority. The scheduler tick does nothing.
  608. */
  609. if (current->policy == SCHED_FIFO)
  610. return true;
  611. /*
  612. * Round-robin realtime tasks time slice with other tasks at the same
  613. * realtime priority. Is this task the only one at this priority?
  614. */
  615. if (current->policy == SCHED_RR) {
  616. struct sched_rt_entity *rt_se = &current->rt;
  617. return rt_se->run_list.prev == rt_se->run_list.next;
  618. }
  619. /*
  620. * More than one running task need preemption.
  621. * nr_running update is assumed to be visible
  622. * after IPI is sent from wakers.
  623. */
  624. if (this_rq()->nr_running > 1)
  625. return false;
  626. return true;
  627. }
  628. #endif /* CONFIG_NO_HZ_FULL */
  629. void sched_avg_update(struct rq *rq)
  630. {
  631. s64 period = sched_avg_period();
  632. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  633. /*
  634. * Inline assembly required to prevent the compiler
  635. * optimising this loop into a divmod call.
  636. * See __iter_div_u64_rem() for another example of this.
  637. */
  638. asm("" : "+rm" (rq->age_stamp));
  639. rq->age_stamp += period;
  640. rq->rt_avg /= 2;
  641. }
  642. }
  643. #endif /* CONFIG_SMP */
  644. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  645. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  646. /*
  647. * Iterate task_group tree rooted at *from, calling @down when first entering a
  648. * node and @up when leaving it for the final time.
  649. *
  650. * Caller must hold rcu_lock or sufficient equivalent.
  651. */
  652. int walk_tg_tree_from(struct task_group *from,
  653. tg_visitor down, tg_visitor up, void *data)
  654. {
  655. struct task_group *parent, *child;
  656. int ret;
  657. parent = from;
  658. down:
  659. ret = (*down)(parent, data);
  660. if (ret)
  661. goto out;
  662. list_for_each_entry_rcu(child, &parent->children, siblings) {
  663. parent = child;
  664. goto down;
  665. up:
  666. continue;
  667. }
  668. ret = (*up)(parent, data);
  669. if (ret || parent == from)
  670. goto out;
  671. child = parent;
  672. parent = parent->parent;
  673. if (parent)
  674. goto up;
  675. out:
  676. return ret;
  677. }
  678. int tg_nop(struct task_group *tg, void *data)
  679. {
  680. return 0;
  681. }
  682. #endif
  683. static void set_load_weight(struct task_struct *p)
  684. {
  685. int prio = p->static_prio - MAX_RT_PRIO;
  686. struct load_weight *load = &p->se.load;
  687. /*
  688. * SCHED_IDLE tasks get minimal weight:
  689. */
  690. if (p->policy == SCHED_IDLE) {
  691. load->weight = scale_load(WEIGHT_IDLEPRIO);
  692. load->inv_weight = WMULT_IDLEPRIO;
  693. return;
  694. }
  695. load->weight = scale_load(prio_to_weight[prio]);
  696. load->inv_weight = prio_to_wmult[prio];
  697. }
  698. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  699. {
  700. update_rq_clock(rq);
  701. sched_info_queued(rq, p);
  702. p->sched_class->enqueue_task(rq, p, flags);
  703. }
  704. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  705. {
  706. update_rq_clock(rq);
  707. sched_info_dequeued(rq, p);
  708. p->sched_class->dequeue_task(rq, p, flags);
  709. }
  710. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  711. {
  712. if (task_contributes_to_load(p))
  713. rq->nr_uninterruptible--;
  714. enqueue_task(rq, p, flags);
  715. }
  716. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  717. {
  718. if (task_contributes_to_load(p))
  719. rq->nr_uninterruptible++;
  720. dequeue_task(rq, p, flags);
  721. }
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. rq->prev_steal_time_rq += steal;
  760. delta -= steal;
  761. }
  762. #endif
  763. rq->clock_task += delta;
  764. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  765. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  766. sched_rt_avg_update(rq, irq_delta + steal);
  767. #endif
  768. }
  769. void sched_set_stop_task(int cpu, struct task_struct *stop)
  770. {
  771. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  772. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  773. if (stop) {
  774. /*
  775. * Make it appear like a SCHED_FIFO task, its something
  776. * userspace knows about and won't get confused about.
  777. *
  778. * Also, it will make PI more or less work without too
  779. * much confusion -- but then, stop work should not
  780. * rely on PI working anyway.
  781. */
  782. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  783. stop->sched_class = &stop_sched_class;
  784. }
  785. cpu_rq(cpu)->stop = stop;
  786. if (old_stop) {
  787. /*
  788. * Reset it back to a normal scheduling class so that
  789. * it can die in pieces.
  790. */
  791. old_stop->sched_class = &rt_sched_class;
  792. }
  793. }
  794. /*
  795. * __normal_prio - return the priority that is based on the static prio
  796. */
  797. static inline int __normal_prio(struct task_struct *p)
  798. {
  799. return p->static_prio;
  800. }
  801. /*
  802. * Calculate the expected normal priority: i.e. priority
  803. * without taking RT-inheritance into account. Might be
  804. * boosted by interactivity modifiers. Changes upon fork,
  805. * setprio syscalls, and whenever the interactivity
  806. * estimator recalculates.
  807. */
  808. static inline int normal_prio(struct task_struct *p)
  809. {
  810. int prio;
  811. if (task_has_dl_policy(p))
  812. prio = MAX_DL_PRIO-1;
  813. else if (task_has_rt_policy(p))
  814. prio = MAX_RT_PRIO-1 - p->rt_priority;
  815. else
  816. prio = __normal_prio(p);
  817. return prio;
  818. }
  819. /*
  820. * Calculate the current priority, i.e. the priority
  821. * taken into account by the scheduler. This value might
  822. * be boosted by RT tasks, or might be boosted by
  823. * interactivity modifiers. Will be RT if the task got
  824. * RT-boosted. If not then it returns p->normal_prio.
  825. */
  826. static int effective_prio(struct task_struct *p)
  827. {
  828. p->normal_prio = normal_prio(p);
  829. /*
  830. * If we are RT tasks or we were boosted to RT priority,
  831. * keep the priority unchanged. Otherwise, update priority
  832. * to the normal priority:
  833. */
  834. if (!rt_prio(p->prio))
  835. return p->normal_prio;
  836. return p->prio;
  837. }
  838. /**
  839. * task_curr - is this task currently executing on a CPU?
  840. * @p: the task in question.
  841. *
  842. * Return: 1 if the task is currently executing. 0 otherwise.
  843. */
  844. inline int task_curr(const struct task_struct *p)
  845. {
  846. return cpu_curr(task_cpu(p)) == p;
  847. }
  848. /*
  849. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  850. * use the balance_callback list if you want balancing.
  851. *
  852. * this means any call to check_class_changed() must be followed by a call to
  853. * balance_callback().
  854. */
  855. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  856. const struct sched_class *prev_class,
  857. int oldprio)
  858. {
  859. if (prev_class != p->sched_class) {
  860. if (prev_class->switched_from)
  861. prev_class->switched_from(rq, p);
  862. p->sched_class->switched_to(rq, p);
  863. } else if (oldprio != p->prio || dl_task(p))
  864. p->sched_class->prio_changed(rq, p, oldprio);
  865. }
  866. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  867. {
  868. const struct sched_class *class;
  869. if (p->sched_class == rq->curr->sched_class) {
  870. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  871. } else {
  872. for_each_class(class) {
  873. if (class == rq->curr->sched_class)
  874. break;
  875. if (class == p->sched_class) {
  876. resched_curr(rq);
  877. break;
  878. }
  879. }
  880. }
  881. /*
  882. * A queue event has occurred, and we're going to schedule. In
  883. * this case, we can save a useless back to back clock update.
  884. */
  885. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  886. rq_clock_skip_update(rq, true);
  887. }
  888. #ifdef CONFIG_SMP
  889. /*
  890. * This is how migration works:
  891. *
  892. * 1) we invoke migration_cpu_stop() on the target CPU using
  893. * stop_one_cpu().
  894. * 2) stopper starts to run (implicitly forcing the migrated thread
  895. * off the CPU)
  896. * 3) it checks whether the migrated task is still in the wrong runqueue.
  897. * 4) if it's in the wrong runqueue then the migration thread removes
  898. * it and puts it into the right queue.
  899. * 5) stopper completes and stop_one_cpu() returns and the migration
  900. * is done.
  901. */
  902. /*
  903. * move_queued_task - move a queued task to new rq.
  904. *
  905. * Returns (locked) new rq. Old rq's lock is released.
  906. */
  907. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  908. {
  909. lockdep_assert_held(&rq->lock);
  910. dequeue_task(rq, p, 0);
  911. p->on_rq = TASK_ON_RQ_MIGRATING;
  912. set_task_cpu(p, new_cpu);
  913. raw_spin_unlock(&rq->lock);
  914. rq = cpu_rq(new_cpu);
  915. raw_spin_lock(&rq->lock);
  916. BUG_ON(task_cpu(p) != new_cpu);
  917. p->on_rq = TASK_ON_RQ_QUEUED;
  918. enqueue_task(rq, p, 0);
  919. check_preempt_curr(rq, p, 0);
  920. return rq;
  921. }
  922. struct migration_arg {
  923. struct task_struct *task;
  924. int dest_cpu;
  925. };
  926. /*
  927. * Move (not current) task off this cpu, onto dest cpu. We're doing
  928. * this because either it can't run here any more (set_cpus_allowed()
  929. * away from this CPU, or CPU going down), or because we're
  930. * attempting to rebalance this task on exec (sched_exec).
  931. *
  932. * So we race with normal scheduler movements, but that's OK, as long
  933. * as the task is no longer on this CPU.
  934. */
  935. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  936. {
  937. if (unlikely(!cpu_active(dest_cpu)))
  938. return rq;
  939. /* Affinity changed (again). */
  940. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  941. return rq;
  942. rq = move_queued_task(rq, p, dest_cpu);
  943. return rq;
  944. }
  945. /*
  946. * migration_cpu_stop - this will be executed by a highprio stopper thread
  947. * and performs thread migration by bumping thread off CPU then
  948. * 'pushing' onto another runqueue.
  949. */
  950. static int migration_cpu_stop(void *data)
  951. {
  952. struct migration_arg *arg = data;
  953. struct task_struct *p = arg->task;
  954. struct rq *rq = this_rq();
  955. /*
  956. * The original target cpu might have gone down and we might
  957. * be on another cpu but it doesn't matter.
  958. */
  959. local_irq_disable();
  960. /*
  961. * We need to explicitly wake pending tasks before running
  962. * __migrate_task() such that we will not miss enforcing cpus_allowed
  963. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  964. */
  965. sched_ttwu_pending();
  966. raw_spin_lock(&p->pi_lock);
  967. raw_spin_lock(&rq->lock);
  968. /*
  969. * If task_rq(p) != rq, it cannot be migrated here, because we're
  970. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  971. * we're holding p->pi_lock.
  972. */
  973. if (task_rq(p) == rq && task_on_rq_queued(p))
  974. rq = __migrate_task(rq, p, arg->dest_cpu);
  975. raw_spin_unlock(&rq->lock);
  976. raw_spin_unlock(&p->pi_lock);
  977. local_irq_enable();
  978. return 0;
  979. }
  980. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  981. {
  982. if (p->sched_class->set_cpus_allowed)
  983. p->sched_class->set_cpus_allowed(p, new_mask);
  984. cpumask_copy(&p->cpus_allowed, new_mask);
  985. p->nr_cpus_allowed = cpumask_weight(new_mask);
  986. }
  987. /*
  988. * Change a given task's CPU affinity. Migrate the thread to a
  989. * proper CPU and schedule it away if the CPU it's executing on
  990. * is removed from the allowed bitmask.
  991. *
  992. * NOTE: the caller must have a valid reference to the task, the
  993. * task must not exit() & deallocate itself prematurely. The
  994. * call is not atomic; no spinlocks may be held.
  995. */
  996. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  997. {
  998. unsigned long flags;
  999. struct rq *rq;
  1000. unsigned int dest_cpu;
  1001. int ret = 0;
  1002. rq = task_rq_lock(p, &flags);
  1003. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1004. goto out;
  1005. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1006. ret = -EINVAL;
  1007. goto out;
  1008. }
  1009. do_set_cpus_allowed(p, new_mask);
  1010. /* Can the task run on the task's current CPU? If so, we're done */
  1011. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1012. goto out;
  1013. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1014. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1015. struct migration_arg arg = { p, dest_cpu };
  1016. /* Need help from migration thread: drop lock and wait. */
  1017. task_rq_unlock(rq, p, &flags);
  1018. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1019. tlb_migrate_finish(p->mm);
  1020. return 0;
  1021. } else if (task_on_rq_queued(p)) {
  1022. /*
  1023. * OK, since we're going to drop the lock immediately
  1024. * afterwards anyway.
  1025. */
  1026. lockdep_unpin_lock(&rq->lock);
  1027. rq = move_queued_task(rq, p, dest_cpu);
  1028. lockdep_pin_lock(&rq->lock);
  1029. }
  1030. out:
  1031. task_rq_unlock(rq, p, &flags);
  1032. return ret;
  1033. }
  1034. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1035. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1036. {
  1037. #ifdef CONFIG_SCHED_DEBUG
  1038. /*
  1039. * We should never call set_task_cpu() on a blocked task,
  1040. * ttwu() will sort out the placement.
  1041. */
  1042. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1043. !p->on_rq);
  1044. #ifdef CONFIG_LOCKDEP
  1045. /*
  1046. * The caller should hold either p->pi_lock or rq->lock, when changing
  1047. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1048. *
  1049. * sched_move_task() holds both and thus holding either pins the cgroup,
  1050. * see task_group().
  1051. *
  1052. * Furthermore, all task_rq users should acquire both locks, see
  1053. * task_rq_lock().
  1054. */
  1055. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1056. lockdep_is_held(&task_rq(p)->lock)));
  1057. #endif
  1058. #endif
  1059. trace_sched_migrate_task(p, new_cpu);
  1060. if (task_cpu(p) != new_cpu) {
  1061. if (p->sched_class->migrate_task_rq)
  1062. p->sched_class->migrate_task_rq(p, new_cpu);
  1063. p->se.nr_migrations++;
  1064. perf_event_task_migrate(p);
  1065. }
  1066. __set_task_cpu(p, new_cpu);
  1067. }
  1068. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1069. {
  1070. if (task_on_rq_queued(p)) {
  1071. struct rq *src_rq, *dst_rq;
  1072. src_rq = task_rq(p);
  1073. dst_rq = cpu_rq(cpu);
  1074. deactivate_task(src_rq, p, 0);
  1075. set_task_cpu(p, cpu);
  1076. activate_task(dst_rq, p, 0);
  1077. check_preempt_curr(dst_rq, p, 0);
  1078. } else {
  1079. /*
  1080. * Task isn't running anymore; make it appear like we migrated
  1081. * it before it went to sleep. This means on wakeup we make the
  1082. * previous cpu our targer instead of where it really is.
  1083. */
  1084. p->wake_cpu = cpu;
  1085. }
  1086. }
  1087. struct migration_swap_arg {
  1088. struct task_struct *src_task, *dst_task;
  1089. int src_cpu, dst_cpu;
  1090. };
  1091. static int migrate_swap_stop(void *data)
  1092. {
  1093. struct migration_swap_arg *arg = data;
  1094. struct rq *src_rq, *dst_rq;
  1095. int ret = -EAGAIN;
  1096. src_rq = cpu_rq(arg->src_cpu);
  1097. dst_rq = cpu_rq(arg->dst_cpu);
  1098. double_raw_lock(&arg->src_task->pi_lock,
  1099. &arg->dst_task->pi_lock);
  1100. double_rq_lock(src_rq, dst_rq);
  1101. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1102. goto unlock;
  1103. if (task_cpu(arg->src_task) != arg->src_cpu)
  1104. goto unlock;
  1105. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1106. goto unlock;
  1107. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1108. goto unlock;
  1109. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1110. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1111. ret = 0;
  1112. unlock:
  1113. double_rq_unlock(src_rq, dst_rq);
  1114. raw_spin_unlock(&arg->dst_task->pi_lock);
  1115. raw_spin_unlock(&arg->src_task->pi_lock);
  1116. return ret;
  1117. }
  1118. /*
  1119. * Cross migrate two tasks
  1120. */
  1121. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1122. {
  1123. struct migration_swap_arg arg;
  1124. int ret = -EINVAL;
  1125. arg = (struct migration_swap_arg){
  1126. .src_task = cur,
  1127. .src_cpu = task_cpu(cur),
  1128. .dst_task = p,
  1129. .dst_cpu = task_cpu(p),
  1130. };
  1131. if (arg.src_cpu == arg.dst_cpu)
  1132. goto out;
  1133. /*
  1134. * These three tests are all lockless; this is OK since all of them
  1135. * will be re-checked with proper locks held further down the line.
  1136. */
  1137. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1138. goto out;
  1139. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1140. goto out;
  1141. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1142. goto out;
  1143. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1144. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1145. out:
  1146. return ret;
  1147. }
  1148. /*
  1149. * wait_task_inactive - wait for a thread to unschedule.
  1150. *
  1151. * If @match_state is nonzero, it's the @p->state value just checked and
  1152. * not expected to change. If it changes, i.e. @p might have woken up,
  1153. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1154. * we return a positive number (its total switch count). If a second call
  1155. * a short while later returns the same number, the caller can be sure that
  1156. * @p has remained unscheduled the whole time.
  1157. *
  1158. * The caller must ensure that the task *will* unschedule sometime soon,
  1159. * else this function might spin for a *long* time. This function can't
  1160. * be called with interrupts off, or it may introduce deadlock with
  1161. * smp_call_function() if an IPI is sent by the same process we are
  1162. * waiting to become inactive.
  1163. */
  1164. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1165. {
  1166. unsigned long flags;
  1167. int running, queued;
  1168. unsigned long ncsw;
  1169. struct rq *rq;
  1170. for (;;) {
  1171. /*
  1172. * We do the initial early heuristics without holding
  1173. * any task-queue locks at all. We'll only try to get
  1174. * the runqueue lock when things look like they will
  1175. * work out!
  1176. */
  1177. rq = task_rq(p);
  1178. /*
  1179. * If the task is actively running on another CPU
  1180. * still, just relax and busy-wait without holding
  1181. * any locks.
  1182. *
  1183. * NOTE! Since we don't hold any locks, it's not
  1184. * even sure that "rq" stays as the right runqueue!
  1185. * But we don't care, since "task_running()" will
  1186. * return false if the runqueue has changed and p
  1187. * is actually now running somewhere else!
  1188. */
  1189. while (task_running(rq, p)) {
  1190. if (match_state && unlikely(p->state != match_state))
  1191. return 0;
  1192. cpu_relax();
  1193. }
  1194. /*
  1195. * Ok, time to look more closely! We need the rq
  1196. * lock now, to be *sure*. If we're wrong, we'll
  1197. * just go back and repeat.
  1198. */
  1199. rq = task_rq_lock(p, &flags);
  1200. trace_sched_wait_task(p);
  1201. running = task_running(rq, p);
  1202. queued = task_on_rq_queued(p);
  1203. ncsw = 0;
  1204. if (!match_state || p->state == match_state)
  1205. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1206. task_rq_unlock(rq, p, &flags);
  1207. /*
  1208. * If it changed from the expected state, bail out now.
  1209. */
  1210. if (unlikely(!ncsw))
  1211. break;
  1212. /*
  1213. * Was it really running after all now that we
  1214. * checked with the proper locks actually held?
  1215. *
  1216. * Oops. Go back and try again..
  1217. */
  1218. if (unlikely(running)) {
  1219. cpu_relax();
  1220. continue;
  1221. }
  1222. /*
  1223. * It's not enough that it's not actively running,
  1224. * it must be off the runqueue _entirely_, and not
  1225. * preempted!
  1226. *
  1227. * So if it was still runnable (but just not actively
  1228. * running right now), it's preempted, and we should
  1229. * yield - it could be a while.
  1230. */
  1231. if (unlikely(queued)) {
  1232. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1233. set_current_state(TASK_UNINTERRUPTIBLE);
  1234. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1235. continue;
  1236. }
  1237. /*
  1238. * Ahh, all good. It wasn't running, and it wasn't
  1239. * runnable, which means that it will never become
  1240. * running in the future either. We're all done!
  1241. */
  1242. break;
  1243. }
  1244. return ncsw;
  1245. }
  1246. /***
  1247. * kick_process - kick a running thread to enter/exit the kernel
  1248. * @p: the to-be-kicked thread
  1249. *
  1250. * Cause a process which is running on another CPU to enter
  1251. * kernel-mode, without any delay. (to get signals handled.)
  1252. *
  1253. * NOTE: this function doesn't have to take the runqueue lock,
  1254. * because all it wants to ensure is that the remote task enters
  1255. * the kernel. If the IPI races and the task has been migrated
  1256. * to another CPU then no harm is done and the purpose has been
  1257. * achieved as well.
  1258. */
  1259. void kick_process(struct task_struct *p)
  1260. {
  1261. int cpu;
  1262. preempt_disable();
  1263. cpu = task_cpu(p);
  1264. if ((cpu != smp_processor_id()) && task_curr(p))
  1265. smp_send_reschedule(cpu);
  1266. preempt_enable();
  1267. }
  1268. EXPORT_SYMBOL_GPL(kick_process);
  1269. /*
  1270. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1271. */
  1272. static int select_fallback_rq(int cpu, struct task_struct *p)
  1273. {
  1274. int nid = cpu_to_node(cpu);
  1275. const struct cpumask *nodemask = NULL;
  1276. enum { cpuset, possible, fail } state = cpuset;
  1277. int dest_cpu;
  1278. /*
  1279. * If the node that the cpu is on has been offlined, cpu_to_node()
  1280. * will return -1. There is no cpu on the node, and we should
  1281. * select the cpu on the other node.
  1282. */
  1283. if (nid != -1) {
  1284. nodemask = cpumask_of_node(nid);
  1285. /* Look for allowed, online CPU in same node. */
  1286. for_each_cpu(dest_cpu, nodemask) {
  1287. if (!cpu_online(dest_cpu))
  1288. continue;
  1289. if (!cpu_active(dest_cpu))
  1290. continue;
  1291. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1292. return dest_cpu;
  1293. }
  1294. }
  1295. for (;;) {
  1296. /* Any allowed, online CPU? */
  1297. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1298. if (!cpu_online(dest_cpu))
  1299. continue;
  1300. if (!cpu_active(dest_cpu))
  1301. continue;
  1302. goto out;
  1303. }
  1304. switch (state) {
  1305. case cpuset:
  1306. /* No more Mr. Nice Guy. */
  1307. cpuset_cpus_allowed_fallback(p);
  1308. state = possible;
  1309. break;
  1310. case possible:
  1311. do_set_cpus_allowed(p, cpu_possible_mask);
  1312. state = fail;
  1313. break;
  1314. case fail:
  1315. BUG();
  1316. break;
  1317. }
  1318. }
  1319. out:
  1320. if (state != cpuset) {
  1321. /*
  1322. * Don't tell them about moving exiting tasks or
  1323. * kernel threads (both mm NULL), since they never
  1324. * leave kernel.
  1325. */
  1326. if (p->mm && printk_ratelimit()) {
  1327. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1328. task_pid_nr(p), p->comm, cpu);
  1329. }
  1330. }
  1331. return dest_cpu;
  1332. }
  1333. /*
  1334. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1335. */
  1336. static inline
  1337. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1338. {
  1339. lockdep_assert_held(&p->pi_lock);
  1340. if (p->nr_cpus_allowed > 1)
  1341. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1342. /*
  1343. * In order not to call set_task_cpu() on a blocking task we need
  1344. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1345. * cpu.
  1346. *
  1347. * Since this is common to all placement strategies, this lives here.
  1348. *
  1349. * [ this allows ->select_task() to simply return task_cpu(p) and
  1350. * not worry about this generic constraint ]
  1351. */
  1352. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1353. !cpu_online(cpu)))
  1354. cpu = select_fallback_rq(task_cpu(p), p);
  1355. return cpu;
  1356. }
  1357. static void update_avg(u64 *avg, u64 sample)
  1358. {
  1359. s64 diff = sample - *avg;
  1360. *avg += diff >> 3;
  1361. }
  1362. #endif /* CONFIG_SMP */
  1363. static void
  1364. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1365. {
  1366. #ifdef CONFIG_SCHEDSTATS
  1367. struct rq *rq = this_rq();
  1368. #ifdef CONFIG_SMP
  1369. int this_cpu = smp_processor_id();
  1370. if (cpu == this_cpu) {
  1371. schedstat_inc(rq, ttwu_local);
  1372. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1373. } else {
  1374. struct sched_domain *sd;
  1375. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1376. rcu_read_lock();
  1377. for_each_domain(this_cpu, sd) {
  1378. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1379. schedstat_inc(sd, ttwu_wake_remote);
  1380. break;
  1381. }
  1382. }
  1383. rcu_read_unlock();
  1384. }
  1385. if (wake_flags & WF_MIGRATED)
  1386. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1387. #endif /* CONFIG_SMP */
  1388. schedstat_inc(rq, ttwu_count);
  1389. schedstat_inc(p, se.statistics.nr_wakeups);
  1390. if (wake_flags & WF_SYNC)
  1391. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1392. #endif /* CONFIG_SCHEDSTATS */
  1393. }
  1394. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1395. {
  1396. activate_task(rq, p, en_flags);
  1397. p->on_rq = TASK_ON_RQ_QUEUED;
  1398. /* if a worker is waking up, notify workqueue */
  1399. if (p->flags & PF_WQ_WORKER)
  1400. wq_worker_waking_up(p, cpu_of(rq));
  1401. }
  1402. /*
  1403. * Mark the task runnable and perform wakeup-preemption.
  1404. */
  1405. static void
  1406. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1407. {
  1408. check_preempt_curr(rq, p, wake_flags);
  1409. trace_sched_wakeup(p, true);
  1410. p->state = TASK_RUNNING;
  1411. #ifdef CONFIG_SMP
  1412. if (p->sched_class->task_woken) {
  1413. /*
  1414. * Our task @p is fully woken up and running; so its safe to
  1415. * drop the rq->lock, hereafter rq is only used for statistics.
  1416. */
  1417. lockdep_unpin_lock(&rq->lock);
  1418. p->sched_class->task_woken(rq, p);
  1419. lockdep_pin_lock(&rq->lock);
  1420. }
  1421. if (rq->idle_stamp) {
  1422. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1423. u64 max = 2*rq->max_idle_balance_cost;
  1424. update_avg(&rq->avg_idle, delta);
  1425. if (rq->avg_idle > max)
  1426. rq->avg_idle = max;
  1427. rq->idle_stamp = 0;
  1428. }
  1429. #endif
  1430. }
  1431. static void
  1432. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1433. {
  1434. lockdep_assert_held(&rq->lock);
  1435. #ifdef CONFIG_SMP
  1436. if (p->sched_contributes_to_load)
  1437. rq->nr_uninterruptible--;
  1438. #endif
  1439. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1440. ttwu_do_wakeup(rq, p, wake_flags);
  1441. }
  1442. /*
  1443. * Called in case the task @p isn't fully descheduled from its runqueue,
  1444. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1445. * since all we need to do is flip p->state to TASK_RUNNING, since
  1446. * the task is still ->on_rq.
  1447. */
  1448. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1449. {
  1450. struct rq *rq;
  1451. int ret = 0;
  1452. rq = __task_rq_lock(p);
  1453. if (task_on_rq_queued(p)) {
  1454. /* check_preempt_curr() may use rq clock */
  1455. update_rq_clock(rq);
  1456. ttwu_do_wakeup(rq, p, wake_flags);
  1457. ret = 1;
  1458. }
  1459. __task_rq_unlock(rq);
  1460. return ret;
  1461. }
  1462. #ifdef CONFIG_SMP
  1463. void sched_ttwu_pending(void)
  1464. {
  1465. struct rq *rq = this_rq();
  1466. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1467. struct task_struct *p;
  1468. unsigned long flags;
  1469. if (!llist)
  1470. return;
  1471. raw_spin_lock_irqsave(&rq->lock, flags);
  1472. lockdep_pin_lock(&rq->lock);
  1473. while (llist) {
  1474. p = llist_entry(llist, struct task_struct, wake_entry);
  1475. llist = llist_next(llist);
  1476. ttwu_do_activate(rq, p, 0);
  1477. }
  1478. lockdep_unpin_lock(&rq->lock);
  1479. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1480. }
  1481. void scheduler_ipi(void)
  1482. {
  1483. /*
  1484. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1485. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1486. * this IPI.
  1487. */
  1488. preempt_fold_need_resched();
  1489. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1490. return;
  1491. /*
  1492. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1493. * traditionally all their work was done from the interrupt return
  1494. * path. Now that we actually do some work, we need to make sure
  1495. * we do call them.
  1496. *
  1497. * Some archs already do call them, luckily irq_enter/exit nest
  1498. * properly.
  1499. *
  1500. * Arguably we should visit all archs and update all handlers,
  1501. * however a fair share of IPIs are still resched only so this would
  1502. * somewhat pessimize the simple resched case.
  1503. */
  1504. irq_enter();
  1505. sched_ttwu_pending();
  1506. /*
  1507. * Check if someone kicked us for doing the nohz idle load balance.
  1508. */
  1509. if (unlikely(got_nohz_idle_kick())) {
  1510. this_rq()->idle_balance = 1;
  1511. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1512. }
  1513. irq_exit();
  1514. }
  1515. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1516. {
  1517. struct rq *rq = cpu_rq(cpu);
  1518. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1519. if (!set_nr_if_polling(rq->idle))
  1520. smp_send_reschedule(cpu);
  1521. else
  1522. trace_sched_wake_idle_without_ipi(cpu);
  1523. }
  1524. }
  1525. void wake_up_if_idle(int cpu)
  1526. {
  1527. struct rq *rq = cpu_rq(cpu);
  1528. unsigned long flags;
  1529. rcu_read_lock();
  1530. if (!is_idle_task(rcu_dereference(rq->curr)))
  1531. goto out;
  1532. if (set_nr_if_polling(rq->idle)) {
  1533. trace_sched_wake_idle_without_ipi(cpu);
  1534. } else {
  1535. raw_spin_lock_irqsave(&rq->lock, flags);
  1536. if (is_idle_task(rq->curr))
  1537. smp_send_reschedule(cpu);
  1538. /* Else cpu is not in idle, do nothing here */
  1539. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1540. }
  1541. out:
  1542. rcu_read_unlock();
  1543. }
  1544. bool cpus_share_cache(int this_cpu, int that_cpu)
  1545. {
  1546. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1547. }
  1548. #endif /* CONFIG_SMP */
  1549. static void ttwu_queue(struct task_struct *p, int cpu)
  1550. {
  1551. struct rq *rq = cpu_rq(cpu);
  1552. #if defined(CONFIG_SMP)
  1553. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1554. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1555. ttwu_queue_remote(p, cpu);
  1556. return;
  1557. }
  1558. #endif
  1559. raw_spin_lock(&rq->lock);
  1560. lockdep_pin_lock(&rq->lock);
  1561. ttwu_do_activate(rq, p, 0);
  1562. lockdep_unpin_lock(&rq->lock);
  1563. raw_spin_unlock(&rq->lock);
  1564. }
  1565. /**
  1566. * try_to_wake_up - wake up a thread
  1567. * @p: the thread to be awakened
  1568. * @state: the mask of task states that can be woken
  1569. * @wake_flags: wake modifier flags (WF_*)
  1570. *
  1571. * Put it on the run-queue if it's not already there. The "current"
  1572. * thread is always on the run-queue (except when the actual
  1573. * re-schedule is in progress), and as such you're allowed to do
  1574. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1575. * runnable without the overhead of this.
  1576. *
  1577. * Return: %true if @p was woken up, %false if it was already running.
  1578. * or @state didn't match @p's state.
  1579. */
  1580. static int
  1581. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1582. {
  1583. unsigned long flags;
  1584. int cpu, success = 0;
  1585. /*
  1586. * If we are going to wake up a thread waiting for CONDITION we
  1587. * need to ensure that CONDITION=1 done by the caller can not be
  1588. * reordered with p->state check below. This pairs with mb() in
  1589. * set_current_state() the waiting thread does.
  1590. */
  1591. smp_mb__before_spinlock();
  1592. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1593. if (!(p->state & state))
  1594. goto out;
  1595. success = 1; /* we're going to change ->state */
  1596. cpu = task_cpu(p);
  1597. if (p->on_rq && ttwu_remote(p, wake_flags))
  1598. goto stat;
  1599. #ifdef CONFIG_SMP
  1600. /*
  1601. * If the owning (remote) cpu is still in the middle of schedule() with
  1602. * this task as prev, wait until its done referencing the task.
  1603. */
  1604. while (p->on_cpu)
  1605. cpu_relax();
  1606. /*
  1607. * Pairs with the smp_wmb() in finish_lock_switch().
  1608. */
  1609. smp_rmb();
  1610. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1611. p->state = TASK_WAKING;
  1612. if (p->sched_class->task_waking)
  1613. p->sched_class->task_waking(p);
  1614. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1615. if (task_cpu(p) != cpu) {
  1616. wake_flags |= WF_MIGRATED;
  1617. set_task_cpu(p, cpu);
  1618. }
  1619. #endif /* CONFIG_SMP */
  1620. ttwu_queue(p, cpu);
  1621. stat:
  1622. ttwu_stat(p, cpu, wake_flags);
  1623. out:
  1624. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1625. return success;
  1626. }
  1627. /**
  1628. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1629. * @p: the thread to be awakened
  1630. *
  1631. * Put @p on the run-queue if it's not already there. The caller must
  1632. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1633. * the current task.
  1634. */
  1635. static void try_to_wake_up_local(struct task_struct *p)
  1636. {
  1637. struct rq *rq = task_rq(p);
  1638. if (WARN_ON_ONCE(rq != this_rq()) ||
  1639. WARN_ON_ONCE(p == current))
  1640. return;
  1641. lockdep_assert_held(&rq->lock);
  1642. if (!raw_spin_trylock(&p->pi_lock)) {
  1643. /*
  1644. * This is OK, because current is on_cpu, which avoids it being
  1645. * picked for load-balance and preemption/IRQs are still
  1646. * disabled avoiding further scheduler activity on it and we've
  1647. * not yet picked a replacement task.
  1648. */
  1649. lockdep_unpin_lock(&rq->lock);
  1650. raw_spin_unlock(&rq->lock);
  1651. raw_spin_lock(&p->pi_lock);
  1652. raw_spin_lock(&rq->lock);
  1653. lockdep_pin_lock(&rq->lock);
  1654. }
  1655. if (!(p->state & TASK_NORMAL))
  1656. goto out;
  1657. if (!task_on_rq_queued(p))
  1658. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1659. ttwu_do_wakeup(rq, p, 0);
  1660. ttwu_stat(p, smp_processor_id(), 0);
  1661. out:
  1662. raw_spin_unlock(&p->pi_lock);
  1663. }
  1664. /**
  1665. * wake_up_process - Wake up a specific process
  1666. * @p: The process to be woken up.
  1667. *
  1668. * Attempt to wake up the nominated process and move it to the set of runnable
  1669. * processes.
  1670. *
  1671. * Return: 1 if the process was woken up, 0 if it was already running.
  1672. *
  1673. * It may be assumed that this function implies a write memory barrier before
  1674. * changing the task state if and only if any tasks are woken up.
  1675. */
  1676. int wake_up_process(struct task_struct *p)
  1677. {
  1678. WARN_ON(task_is_stopped_or_traced(p));
  1679. return try_to_wake_up(p, TASK_NORMAL, 0);
  1680. }
  1681. EXPORT_SYMBOL(wake_up_process);
  1682. int wake_up_state(struct task_struct *p, unsigned int state)
  1683. {
  1684. return try_to_wake_up(p, state, 0);
  1685. }
  1686. /*
  1687. * This function clears the sched_dl_entity static params.
  1688. */
  1689. void __dl_clear_params(struct task_struct *p)
  1690. {
  1691. struct sched_dl_entity *dl_se = &p->dl;
  1692. dl_se->dl_runtime = 0;
  1693. dl_se->dl_deadline = 0;
  1694. dl_se->dl_period = 0;
  1695. dl_se->flags = 0;
  1696. dl_se->dl_bw = 0;
  1697. dl_se->dl_throttled = 0;
  1698. dl_se->dl_new = 1;
  1699. dl_se->dl_yielded = 0;
  1700. }
  1701. /*
  1702. * Perform scheduler related setup for a newly forked process p.
  1703. * p is forked by current.
  1704. *
  1705. * __sched_fork() is basic setup used by init_idle() too:
  1706. */
  1707. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1708. {
  1709. p->on_rq = 0;
  1710. p->se.on_rq = 0;
  1711. p->se.exec_start = 0;
  1712. p->se.sum_exec_runtime = 0;
  1713. p->se.prev_sum_exec_runtime = 0;
  1714. p->se.nr_migrations = 0;
  1715. p->se.vruntime = 0;
  1716. #ifdef CONFIG_SMP
  1717. p->se.avg.decay_count = 0;
  1718. #endif
  1719. INIT_LIST_HEAD(&p->se.group_node);
  1720. #ifdef CONFIG_SCHEDSTATS
  1721. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1722. #endif
  1723. RB_CLEAR_NODE(&p->dl.rb_node);
  1724. init_dl_task_timer(&p->dl);
  1725. __dl_clear_params(p);
  1726. INIT_LIST_HEAD(&p->rt.run_list);
  1727. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1728. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1729. #endif
  1730. #ifdef CONFIG_NUMA_BALANCING
  1731. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1732. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1733. p->mm->numa_scan_seq = 0;
  1734. }
  1735. if (clone_flags & CLONE_VM)
  1736. p->numa_preferred_nid = current->numa_preferred_nid;
  1737. else
  1738. p->numa_preferred_nid = -1;
  1739. p->node_stamp = 0ULL;
  1740. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1741. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1742. p->numa_work.next = &p->numa_work;
  1743. p->numa_faults = NULL;
  1744. p->last_task_numa_placement = 0;
  1745. p->last_sum_exec_runtime = 0;
  1746. p->numa_group = NULL;
  1747. #endif /* CONFIG_NUMA_BALANCING */
  1748. }
  1749. #ifdef CONFIG_NUMA_BALANCING
  1750. #ifdef CONFIG_SCHED_DEBUG
  1751. void set_numabalancing_state(bool enabled)
  1752. {
  1753. if (enabled)
  1754. sched_feat_set("NUMA");
  1755. else
  1756. sched_feat_set("NO_NUMA");
  1757. }
  1758. #else
  1759. __read_mostly bool numabalancing_enabled;
  1760. void set_numabalancing_state(bool enabled)
  1761. {
  1762. numabalancing_enabled = enabled;
  1763. }
  1764. #endif /* CONFIG_SCHED_DEBUG */
  1765. #ifdef CONFIG_PROC_SYSCTL
  1766. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1767. void __user *buffer, size_t *lenp, loff_t *ppos)
  1768. {
  1769. struct ctl_table t;
  1770. int err;
  1771. int state = numabalancing_enabled;
  1772. if (write && !capable(CAP_SYS_ADMIN))
  1773. return -EPERM;
  1774. t = *table;
  1775. t.data = &state;
  1776. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1777. if (err < 0)
  1778. return err;
  1779. if (write)
  1780. set_numabalancing_state(state);
  1781. return err;
  1782. }
  1783. #endif
  1784. #endif
  1785. /*
  1786. * fork()/clone()-time setup:
  1787. */
  1788. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1789. {
  1790. unsigned long flags;
  1791. int cpu = get_cpu();
  1792. __sched_fork(clone_flags, p);
  1793. /*
  1794. * We mark the process as running here. This guarantees that
  1795. * nobody will actually run it, and a signal or other external
  1796. * event cannot wake it up and insert it on the runqueue either.
  1797. */
  1798. p->state = TASK_RUNNING;
  1799. /*
  1800. * Make sure we do not leak PI boosting priority to the child.
  1801. */
  1802. p->prio = current->normal_prio;
  1803. /*
  1804. * Revert to default priority/policy on fork if requested.
  1805. */
  1806. if (unlikely(p->sched_reset_on_fork)) {
  1807. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1808. p->policy = SCHED_NORMAL;
  1809. p->static_prio = NICE_TO_PRIO(0);
  1810. p->rt_priority = 0;
  1811. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1812. p->static_prio = NICE_TO_PRIO(0);
  1813. p->prio = p->normal_prio = __normal_prio(p);
  1814. set_load_weight(p);
  1815. /*
  1816. * We don't need the reset flag anymore after the fork. It has
  1817. * fulfilled its duty:
  1818. */
  1819. p->sched_reset_on_fork = 0;
  1820. }
  1821. if (dl_prio(p->prio)) {
  1822. put_cpu();
  1823. return -EAGAIN;
  1824. } else if (rt_prio(p->prio)) {
  1825. p->sched_class = &rt_sched_class;
  1826. } else {
  1827. p->sched_class = &fair_sched_class;
  1828. }
  1829. if (p->sched_class->task_fork)
  1830. p->sched_class->task_fork(p);
  1831. /*
  1832. * The child is not yet in the pid-hash so no cgroup attach races,
  1833. * and the cgroup is pinned to this child due to cgroup_fork()
  1834. * is ran before sched_fork().
  1835. *
  1836. * Silence PROVE_RCU.
  1837. */
  1838. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1839. set_task_cpu(p, cpu);
  1840. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1841. #ifdef CONFIG_SCHED_INFO
  1842. if (likely(sched_info_on()))
  1843. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1844. #endif
  1845. #if defined(CONFIG_SMP)
  1846. p->on_cpu = 0;
  1847. #endif
  1848. init_task_preempt_count(p);
  1849. #ifdef CONFIG_SMP
  1850. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1851. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1852. #endif
  1853. put_cpu();
  1854. return 0;
  1855. }
  1856. unsigned long to_ratio(u64 period, u64 runtime)
  1857. {
  1858. if (runtime == RUNTIME_INF)
  1859. return 1ULL << 20;
  1860. /*
  1861. * Doing this here saves a lot of checks in all
  1862. * the calling paths, and returning zero seems
  1863. * safe for them anyway.
  1864. */
  1865. if (period == 0)
  1866. return 0;
  1867. return div64_u64(runtime << 20, period);
  1868. }
  1869. #ifdef CONFIG_SMP
  1870. inline struct dl_bw *dl_bw_of(int i)
  1871. {
  1872. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1873. "sched RCU must be held");
  1874. return &cpu_rq(i)->rd->dl_bw;
  1875. }
  1876. static inline int dl_bw_cpus(int i)
  1877. {
  1878. struct root_domain *rd = cpu_rq(i)->rd;
  1879. int cpus = 0;
  1880. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1881. "sched RCU must be held");
  1882. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1883. cpus++;
  1884. return cpus;
  1885. }
  1886. #else
  1887. inline struct dl_bw *dl_bw_of(int i)
  1888. {
  1889. return &cpu_rq(i)->dl.dl_bw;
  1890. }
  1891. static inline int dl_bw_cpus(int i)
  1892. {
  1893. return 1;
  1894. }
  1895. #endif
  1896. /*
  1897. * We must be sure that accepting a new task (or allowing changing the
  1898. * parameters of an existing one) is consistent with the bandwidth
  1899. * constraints. If yes, this function also accordingly updates the currently
  1900. * allocated bandwidth to reflect the new situation.
  1901. *
  1902. * This function is called while holding p's rq->lock.
  1903. *
  1904. * XXX we should delay bw change until the task's 0-lag point, see
  1905. * __setparam_dl().
  1906. */
  1907. static int dl_overflow(struct task_struct *p, int policy,
  1908. const struct sched_attr *attr)
  1909. {
  1910. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1911. u64 period = attr->sched_period ?: attr->sched_deadline;
  1912. u64 runtime = attr->sched_runtime;
  1913. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1914. int cpus, err = -1;
  1915. if (new_bw == p->dl.dl_bw)
  1916. return 0;
  1917. /*
  1918. * Either if a task, enters, leave, or stays -deadline but changes
  1919. * its parameters, we may need to update accordingly the total
  1920. * allocated bandwidth of the container.
  1921. */
  1922. raw_spin_lock(&dl_b->lock);
  1923. cpus = dl_bw_cpus(task_cpu(p));
  1924. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1925. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1926. __dl_add(dl_b, new_bw);
  1927. err = 0;
  1928. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1929. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1930. __dl_clear(dl_b, p->dl.dl_bw);
  1931. __dl_add(dl_b, new_bw);
  1932. err = 0;
  1933. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1934. __dl_clear(dl_b, p->dl.dl_bw);
  1935. err = 0;
  1936. }
  1937. raw_spin_unlock(&dl_b->lock);
  1938. return err;
  1939. }
  1940. extern void init_dl_bw(struct dl_bw *dl_b);
  1941. /*
  1942. * wake_up_new_task - wake up a newly created task for the first time.
  1943. *
  1944. * This function will do some initial scheduler statistics housekeeping
  1945. * that must be done for every newly created context, then puts the task
  1946. * on the runqueue and wakes it.
  1947. */
  1948. void wake_up_new_task(struct task_struct *p)
  1949. {
  1950. unsigned long flags;
  1951. struct rq *rq;
  1952. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1953. #ifdef CONFIG_SMP
  1954. /*
  1955. * Fork balancing, do it here and not earlier because:
  1956. * - cpus_allowed can change in the fork path
  1957. * - any previously selected cpu might disappear through hotplug
  1958. */
  1959. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1960. #endif
  1961. /* Initialize new task's runnable average */
  1962. init_task_runnable_average(p);
  1963. rq = __task_rq_lock(p);
  1964. activate_task(rq, p, 0);
  1965. p->on_rq = TASK_ON_RQ_QUEUED;
  1966. trace_sched_wakeup_new(p, true);
  1967. check_preempt_curr(rq, p, WF_FORK);
  1968. #ifdef CONFIG_SMP
  1969. if (p->sched_class->task_woken)
  1970. p->sched_class->task_woken(rq, p);
  1971. #endif
  1972. task_rq_unlock(rq, p, &flags);
  1973. }
  1974. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1975. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  1976. void preempt_notifier_inc(void)
  1977. {
  1978. static_key_slow_inc(&preempt_notifier_key);
  1979. }
  1980. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  1981. void preempt_notifier_dec(void)
  1982. {
  1983. static_key_slow_dec(&preempt_notifier_key);
  1984. }
  1985. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  1986. /**
  1987. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1988. * @notifier: notifier struct to register
  1989. */
  1990. void preempt_notifier_register(struct preempt_notifier *notifier)
  1991. {
  1992. if (!static_key_false(&preempt_notifier_key))
  1993. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  1994. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1995. }
  1996. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1997. /**
  1998. * preempt_notifier_unregister - no longer interested in preemption notifications
  1999. * @notifier: notifier struct to unregister
  2000. *
  2001. * This is *not* safe to call from within a preemption notifier.
  2002. */
  2003. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2004. {
  2005. hlist_del(&notifier->link);
  2006. }
  2007. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2008. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2009. {
  2010. struct preempt_notifier *notifier;
  2011. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2012. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2013. }
  2014. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2015. {
  2016. if (static_key_false(&preempt_notifier_key))
  2017. __fire_sched_in_preempt_notifiers(curr);
  2018. }
  2019. static void
  2020. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2021. struct task_struct *next)
  2022. {
  2023. struct preempt_notifier *notifier;
  2024. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2025. notifier->ops->sched_out(notifier, next);
  2026. }
  2027. static __always_inline void
  2028. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2029. struct task_struct *next)
  2030. {
  2031. if (static_key_false(&preempt_notifier_key))
  2032. __fire_sched_out_preempt_notifiers(curr, next);
  2033. }
  2034. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2035. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2036. {
  2037. }
  2038. static inline void
  2039. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2040. struct task_struct *next)
  2041. {
  2042. }
  2043. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2044. /**
  2045. * prepare_task_switch - prepare to switch tasks
  2046. * @rq: the runqueue preparing to switch
  2047. * @prev: the current task that is being switched out
  2048. * @next: the task we are going to switch to.
  2049. *
  2050. * This is called with the rq lock held and interrupts off. It must
  2051. * be paired with a subsequent finish_task_switch after the context
  2052. * switch.
  2053. *
  2054. * prepare_task_switch sets up locking and calls architecture specific
  2055. * hooks.
  2056. */
  2057. static inline void
  2058. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2059. struct task_struct *next)
  2060. {
  2061. trace_sched_switch(prev, next);
  2062. sched_info_switch(rq, prev, next);
  2063. perf_event_task_sched_out(prev, next);
  2064. fire_sched_out_preempt_notifiers(prev, next);
  2065. prepare_lock_switch(rq, next);
  2066. prepare_arch_switch(next);
  2067. }
  2068. /**
  2069. * finish_task_switch - clean up after a task-switch
  2070. * @prev: the thread we just switched away from.
  2071. *
  2072. * finish_task_switch must be called after the context switch, paired
  2073. * with a prepare_task_switch call before the context switch.
  2074. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2075. * and do any other architecture-specific cleanup actions.
  2076. *
  2077. * Note that we may have delayed dropping an mm in context_switch(). If
  2078. * so, we finish that here outside of the runqueue lock. (Doing it
  2079. * with the lock held can cause deadlocks; see schedule() for
  2080. * details.)
  2081. *
  2082. * The context switch have flipped the stack from under us and restored the
  2083. * local variables which were saved when this task called schedule() in the
  2084. * past. prev == current is still correct but we need to recalculate this_rq
  2085. * because prev may have moved to another CPU.
  2086. */
  2087. static struct rq *finish_task_switch(struct task_struct *prev)
  2088. __releases(rq->lock)
  2089. {
  2090. struct rq *rq = this_rq();
  2091. struct mm_struct *mm = rq->prev_mm;
  2092. long prev_state;
  2093. rq->prev_mm = NULL;
  2094. /*
  2095. * A task struct has one reference for the use as "current".
  2096. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2097. * schedule one last time. The schedule call will never return, and
  2098. * the scheduled task must drop that reference.
  2099. * The test for TASK_DEAD must occur while the runqueue locks are
  2100. * still held, otherwise prev could be scheduled on another cpu, die
  2101. * there before we look at prev->state, and then the reference would
  2102. * be dropped twice.
  2103. * Manfred Spraul <manfred@colorfullife.com>
  2104. */
  2105. prev_state = prev->state;
  2106. vtime_task_switch(prev);
  2107. finish_arch_switch(prev);
  2108. perf_event_task_sched_in(prev, current);
  2109. finish_lock_switch(rq, prev);
  2110. finish_arch_post_lock_switch();
  2111. fire_sched_in_preempt_notifiers(current);
  2112. if (mm)
  2113. mmdrop(mm);
  2114. if (unlikely(prev_state == TASK_DEAD)) {
  2115. if (prev->sched_class->task_dead)
  2116. prev->sched_class->task_dead(prev);
  2117. /*
  2118. * Remove function-return probe instances associated with this
  2119. * task and put them back on the free list.
  2120. */
  2121. kprobe_flush_task(prev);
  2122. put_task_struct(prev);
  2123. }
  2124. tick_nohz_task_switch(current);
  2125. return rq;
  2126. }
  2127. #ifdef CONFIG_SMP
  2128. /* rq->lock is NOT held, but preemption is disabled */
  2129. static void __balance_callback(struct rq *rq)
  2130. {
  2131. struct callback_head *head, *next;
  2132. void (*func)(struct rq *rq);
  2133. unsigned long flags;
  2134. raw_spin_lock_irqsave(&rq->lock, flags);
  2135. head = rq->balance_callback;
  2136. rq->balance_callback = NULL;
  2137. while (head) {
  2138. func = (void (*)(struct rq *))head->func;
  2139. next = head->next;
  2140. head->next = NULL;
  2141. head = next;
  2142. func(rq);
  2143. }
  2144. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2145. }
  2146. static inline void balance_callback(struct rq *rq)
  2147. {
  2148. if (unlikely(rq->balance_callback))
  2149. __balance_callback(rq);
  2150. }
  2151. #else
  2152. static inline void balance_callback(struct rq *rq)
  2153. {
  2154. }
  2155. #endif
  2156. /**
  2157. * schedule_tail - first thing a freshly forked thread must call.
  2158. * @prev: the thread we just switched away from.
  2159. */
  2160. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2161. __releases(rq->lock)
  2162. {
  2163. struct rq *rq;
  2164. /* finish_task_switch() drops rq->lock and enables preemtion */
  2165. preempt_disable();
  2166. rq = finish_task_switch(prev);
  2167. balance_callback(rq);
  2168. preempt_enable();
  2169. if (current->set_child_tid)
  2170. put_user(task_pid_vnr(current), current->set_child_tid);
  2171. }
  2172. /*
  2173. * context_switch - switch to the new MM and the new thread's register state.
  2174. */
  2175. static inline struct rq *
  2176. context_switch(struct rq *rq, struct task_struct *prev,
  2177. struct task_struct *next)
  2178. {
  2179. struct mm_struct *mm, *oldmm;
  2180. prepare_task_switch(rq, prev, next);
  2181. mm = next->mm;
  2182. oldmm = prev->active_mm;
  2183. /*
  2184. * For paravirt, this is coupled with an exit in switch_to to
  2185. * combine the page table reload and the switch backend into
  2186. * one hypercall.
  2187. */
  2188. arch_start_context_switch(prev);
  2189. if (!mm) {
  2190. next->active_mm = oldmm;
  2191. atomic_inc(&oldmm->mm_count);
  2192. enter_lazy_tlb(oldmm, next);
  2193. } else
  2194. switch_mm(oldmm, mm, next);
  2195. if (!prev->mm) {
  2196. prev->active_mm = NULL;
  2197. rq->prev_mm = oldmm;
  2198. }
  2199. /*
  2200. * Since the runqueue lock will be released by the next
  2201. * task (which is an invalid locking op but in the case
  2202. * of the scheduler it's an obvious special-case), so we
  2203. * do an early lockdep release here:
  2204. */
  2205. lockdep_unpin_lock(&rq->lock);
  2206. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2207. /* Here we just switch the register state and the stack. */
  2208. switch_to(prev, next, prev);
  2209. barrier();
  2210. return finish_task_switch(prev);
  2211. }
  2212. /*
  2213. * nr_running and nr_context_switches:
  2214. *
  2215. * externally visible scheduler statistics: current number of runnable
  2216. * threads, total number of context switches performed since bootup.
  2217. */
  2218. unsigned long nr_running(void)
  2219. {
  2220. unsigned long i, sum = 0;
  2221. for_each_online_cpu(i)
  2222. sum += cpu_rq(i)->nr_running;
  2223. return sum;
  2224. }
  2225. /*
  2226. * Check if only the current task is running on the cpu.
  2227. */
  2228. bool single_task_running(void)
  2229. {
  2230. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2231. return true;
  2232. else
  2233. return false;
  2234. }
  2235. EXPORT_SYMBOL(single_task_running);
  2236. unsigned long long nr_context_switches(void)
  2237. {
  2238. int i;
  2239. unsigned long long sum = 0;
  2240. for_each_possible_cpu(i)
  2241. sum += cpu_rq(i)->nr_switches;
  2242. return sum;
  2243. }
  2244. unsigned long nr_iowait(void)
  2245. {
  2246. unsigned long i, sum = 0;
  2247. for_each_possible_cpu(i)
  2248. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2249. return sum;
  2250. }
  2251. unsigned long nr_iowait_cpu(int cpu)
  2252. {
  2253. struct rq *this = cpu_rq(cpu);
  2254. return atomic_read(&this->nr_iowait);
  2255. }
  2256. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2257. {
  2258. struct rq *rq = this_rq();
  2259. *nr_waiters = atomic_read(&rq->nr_iowait);
  2260. *load = rq->load.weight;
  2261. }
  2262. #ifdef CONFIG_SMP
  2263. /*
  2264. * sched_exec - execve() is a valuable balancing opportunity, because at
  2265. * this point the task has the smallest effective memory and cache footprint.
  2266. */
  2267. void sched_exec(void)
  2268. {
  2269. struct task_struct *p = current;
  2270. unsigned long flags;
  2271. int dest_cpu;
  2272. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2273. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2274. if (dest_cpu == smp_processor_id())
  2275. goto unlock;
  2276. if (likely(cpu_active(dest_cpu))) {
  2277. struct migration_arg arg = { p, dest_cpu };
  2278. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2279. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2280. return;
  2281. }
  2282. unlock:
  2283. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2284. }
  2285. #endif
  2286. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2287. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2288. EXPORT_PER_CPU_SYMBOL(kstat);
  2289. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2290. /*
  2291. * Return accounted runtime for the task.
  2292. * In case the task is currently running, return the runtime plus current's
  2293. * pending runtime that have not been accounted yet.
  2294. */
  2295. unsigned long long task_sched_runtime(struct task_struct *p)
  2296. {
  2297. unsigned long flags;
  2298. struct rq *rq;
  2299. u64 ns;
  2300. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2301. /*
  2302. * 64-bit doesn't need locks to atomically read a 64bit value.
  2303. * So we have a optimization chance when the task's delta_exec is 0.
  2304. * Reading ->on_cpu is racy, but this is ok.
  2305. *
  2306. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2307. * If we race with it entering cpu, unaccounted time is 0. This is
  2308. * indistinguishable from the read occurring a few cycles earlier.
  2309. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2310. * been accounted, so we're correct here as well.
  2311. */
  2312. if (!p->on_cpu || !task_on_rq_queued(p))
  2313. return p->se.sum_exec_runtime;
  2314. #endif
  2315. rq = task_rq_lock(p, &flags);
  2316. /*
  2317. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2318. * project cycles that may never be accounted to this
  2319. * thread, breaking clock_gettime().
  2320. */
  2321. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2322. update_rq_clock(rq);
  2323. p->sched_class->update_curr(rq);
  2324. }
  2325. ns = p->se.sum_exec_runtime;
  2326. task_rq_unlock(rq, p, &flags);
  2327. return ns;
  2328. }
  2329. /*
  2330. * This function gets called by the timer code, with HZ frequency.
  2331. * We call it with interrupts disabled.
  2332. */
  2333. void scheduler_tick(void)
  2334. {
  2335. int cpu = smp_processor_id();
  2336. struct rq *rq = cpu_rq(cpu);
  2337. struct task_struct *curr = rq->curr;
  2338. sched_clock_tick();
  2339. raw_spin_lock(&rq->lock);
  2340. update_rq_clock(rq);
  2341. curr->sched_class->task_tick(rq, curr, 0);
  2342. update_cpu_load_active(rq);
  2343. calc_global_load_tick(rq);
  2344. raw_spin_unlock(&rq->lock);
  2345. perf_event_task_tick();
  2346. #ifdef CONFIG_SMP
  2347. rq->idle_balance = idle_cpu(cpu);
  2348. trigger_load_balance(rq);
  2349. #endif
  2350. rq_last_tick_reset(rq);
  2351. }
  2352. #ifdef CONFIG_NO_HZ_FULL
  2353. /**
  2354. * scheduler_tick_max_deferment
  2355. *
  2356. * Keep at least one tick per second when a single
  2357. * active task is running because the scheduler doesn't
  2358. * yet completely support full dynticks environment.
  2359. *
  2360. * This makes sure that uptime, CFS vruntime, load
  2361. * balancing, etc... continue to move forward, even
  2362. * with a very low granularity.
  2363. *
  2364. * Return: Maximum deferment in nanoseconds.
  2365. */
  2366. u64 scheduler_tick_max_deferment(void)
  2367. {
  2368. struct rq *rq = this_rq();
  2369. unsigned long next, now = READ_ONCE(jiffies);
  2370. next = rq->last_sched_tick + HZ;
  2371. if (time_before_eq(next, now))
  2372. return 0;
  2373. return jiffies_to_nsecs(next - now);
  2374. }
  2375. #endif
  2376. notrace unsigned long get_parent_ip(unsigned long addr)
  2377. {
  2378. if (in_lock_functions(addr)) {
  2379. addr = CALLER_ADDR2;
  2380. if (in_lock_functions(addr))
  2381. addr = CALLER_ADDR3;
  2382. }
  2383. return addr;
  2384. }
  2385. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2386. defined(CONFIG_PREEMPT_TRACER))
  2387. void preempt_count_add(int val)
  2388. {
  2389. #ifdef CONFIG_DEBUG_PREEMPT
  2390. /*
  2391. * Underflow?
  2392. */
  2393. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2394. return;
  2395. #endif
  2396. __preempt_count_add(val);
  2397. #ifdef CONFIG_DEBUG_PREEMPT
  2398. /*
  2399. * Spinlock count overflowing soon?
  2400. */
  2401. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2402. PREEMPT_MASK - 10);
  2403. #endif
  2404. if (preempt_count() == val) {
  2405. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2406. #ifdef CONFIG_DEBUG_PREEMPT
  2407. current->preempt_disable_ip = ip;
  2408. #endif
  2409. trace_preempt_off(CALLER_ADDR0, ip);
  2410. }
  2411. }
  2412. EXPORT_SYMBOL(preempt_count_add);
  2413. NOKPROBE_SYMBOL(preempt_count_add);
  2414. void preempt_count_sub(int val)
  2415. {
  2416. #ifdef CONFIG_DEBUG_PREEMPT
  2417. /*
  2418. * Underflow?
  2419. */
  2420. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2421. return;
  2422. /*
  2423. * Is the spinlock portion underflowing?
  2424. */
  2425. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2426. !(preempt_count() & PREEMPT_MASK)))
  2427. return;
  2428. #endif
  2429. if (preempt_count() == val)
  2430. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2431. __preempt_count_sub(val);
  2432. }
  2433. EXPORT_SYMBOL(preempt_count_sub);
  2434. NOKPROBE_SYMBOL(preempt_count_sub);
  2435. #endif
  2436. /*
  2437. * Print scheduling while atomic bug:
  2438. */
  2439. static noinline void __schedule_bug(struct task_struct *prev)
  2440. {
  2441. if (oops_in_progress)
  2442. return;
  2443. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2444. prev->comm, prev->pid, preempt_count());
  2445. debug_show_held_locks(prev);
  2446. print_modules();
  2447. if (irqs_disabled())
  2448. print_irqtrace_events(prev);
  2449. #ifdef CONFIG_DEBUG_PREEMPT
  2450. if (in_atomic_preempt_off()) {
  2451. pr_err("Preemption disabled at:");
  2452. print_ip_sym(current->preempt_disable_ip);
  2453. pr_cont("\n");
  2454. }
  2455. #endif
  2456. dump_stack();
  2457. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2458. }
  2459. /*
  2460. * Various schedule()-time debugging checks and statistics:
  2461. */
  2462. static inline void schedule_debug(struct task_struct *prev)
  2463. {
  2464. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2465. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2466. #endif
  2467. /*
  2468. * Test if we are atomic. Since do_exit() needs to call into
  2469. * schedule() atomically, we ignore that path. Otherwise whine
  2470. * if we are scheduling when we should not.
  2471. */
  2472. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2473. __schedule_bug(prev);
  2474. rcu_sleep_check();
  2475. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2476. schedstat_inc(this_rq(), sched_count);
  2477. }
  2478. /*
  2479. * Pick up the highest-prio task:
  2480. */
  2481. static inline struct task_struct *
  2482. pick_next_task(struct rq *rq, struct task_struct *prev)
  2483. {
  2484. const struct sched_class *class = &fair_sched_class;
  2485. struct task_struct *p;
  2486. /*
  2487. * Optimization: we know that if all tasks are in
  2488. * the fair class we can call that function directly:
  2489. */
  2490. if (likely(prev->sched_class == class &&
  2491. rq->nr_running == rq->cfs.h_nr_running)) {
  2492. p = fair_sched_class.pick_next_task(rq, prev);
  2493. if (unlikely(p == RETRY_TASK))
  2494. goto again;
  2495. /* assumes fair_sched_class->next == idle_sched_class */
  2496. if (unlikely(!p))
  2497. p = idle_sched_class.pick_next_task(rq, prev);
  2498. return p;
  2499. }
  2500. again:
  2501. for_each_class(class) {
  2502. p = class->pick_next_task(rq, prev);
  2503. if (p) {
  2504. if (unlikely(p == RETRY_TASK))
  2505. goto again;
  2506. return p;
  2507. }
  2508. }
  2509. BUG(); /* the idle class will always have a runnable task */
  2510. }
  2511. /*
  2512. * __schedule() is the main scheduler function.
  2513. *
  2514. * The main means of driving the scheduler and thus entering this function are:
  2515. *
  2516. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2517. *
  2518. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2519. * paths. For example, see arch/x86/entry_64.S.
  2520. *
  2521. * To drive preemption between tasks, the scheduler sets the flag in timer
  2522. * interrupt handler scheduler_tick().
  2523. *
  2524. * 3. Wakeups don't really cause entry into schedule(). They add a
  2525. * task to the run-queue and that's it.
  2526. *
  2527. * Now, if the new task added to the run-queue preempts the current
  2528. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2529. * called on the nearest possible occasion:
  2530. *
  2531. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2532. *
  2533. * - in syscall or exception context, at the next outmost
  2534. * preempt_enable(). (this might be as soon as the wake_up()'s
  2535. * spin_unlock()!)
  2536. *
  2537. * - in IRQ context, return from interrupt-handler to
  2538. * preemptible context
  2539. *
  2540. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2541. * then at the next:
  2542. *
  2543. * - cond_resched() call
  2544. * - explicit schedule() call
  2545. * - return from syscall or exception to user-space
  2546. * - return from interrupt-handler to user-space
  2547. *
  2548. * WARNING: must be called with preemption disabled!
  2549. */
  2550. static void __sched __schedule(void)
  2551. {
  2552. struct task_struct *prev, *next;
  2553. unsigned long *switch_count;
  2554. struct rq *rq;
  2555. int cpu;
  2556. cpu = smp_processor_id();
  2557. rq = cpu_rq(cpu);
  2558. rcu_note_context_switch();
  2559. prev = rq->curr;
  2560. schedule_debug(prev);
  2561. if (sched_feat(HRTICK))
  2562. hrtick_clear(rq);
  2563. /*
  2564. * Make sure that signal_pending_state()->signal_pending() below
  2565. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2566. * done by the caller to avoid the race with signal_wake_up().
  2567. */
  2568. smp_mb__before_spinlock();
  2569. raw_spin_lock_irq(&rq->lock);
  2570. lockdep_pin_lock(&rq->lock);
  2571. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2572. switch_count = &prev->nivcsw;
  2573. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2574. if (unlikely(signal_pending_state(prev->state, prev))) {
  2575. prev->state = TASK_RUNNING;
  2576. } else {
  2577. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2578. prev->on_rq = 0;
  2579. /*
  2580. * If a worker went to sleep, notify and ask workqueue
  2581. * whether it wants to wake up a task to maintain
  2582. * concurrency.
  2583. */
  2584. if (prev->flags & PF_WQ_WORKER) {
  2585. struct task_struct *to_wakeup;
  2586. to_wakeup = wq_worker_sleeping(prev, cpu);
  2587. if (to_wakeup)
  2588. try_to_wake_up_local(to_wakeup);
  2589. }
  2590. }
  2591. switch_count = &prev->nvcsw;
  2592. }
  2593. if (task_on_rq_queued(prev))
  2594. update_rq_clock(rq);
  2595. next = pick_next_task(rq, prev);
  2596. clear_tsk_need_resched(prev);
  2597. clear_preempt_need_resched();
  2598. rq->clock_skip_update = 0;
  2599. if (likely(prev != next)) {
  2600. rq->nr_switches++;
  2601. rq->curr = next;
  2602. ++*switch_count;
  2603. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2604. cpu = cpu_of(rq);
  2605. } else {
  2606. lockdep_unpin_lock(&rq->lock);
  2607. raw_spin_unlock_irq(&rq->lock);
  2608. }
  2609. balance_callback(rq);
  2610. }
  2611. static inline void sched_submit_work(struct task_struct *tsk)
  2612. {
  2613. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2614. return;
  2615. /*
  2616. * If we are going to sleep and we have plugged IO queued,
  2617. * make sure to submit it to avoid deadlocks.
  2618. */
  2619. if (blk_needs_flush_plug(tsk))
  2620. blk_schedule_flush_plug(tsk);
  2621. }
  2622. asmlinkage __visible void __sched schedule(void)
  2623. {
  2624. struct task_struct *tsk = current;
  2625. sched_submit_work(tsk);
  2626. do {
  2627. preempt_disable();
  2628. __schedule();
  2629. sched_preempt_enable_no_resched();
  2630. } while (need_resched());
  2631. }
  2632. EXPORT_SYMBOL(schedule);
  2633. #ifdef CONFIG_CONTEXT_TRACKING
  2634. asmlinkage __visible void __sched schedule_user(void)
  2635. {
  2636. /*
  2637. * If we come here after a random call to set_need_resched(),
  2638. * or we have been woken up remotely but the IPI has not yet arrived,
  2639. * we haven't yet exited the RCU idle mode. Do it here manually until
  2640. * we find a better solution.
  2641. *
  2642. * NB: There are buggy callers of this function. Ideally we
  2643. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2644. * too frequently to make sense yet.
  2645. */
  2646. enum ctx_state prev_state = exception_enter();
  2647. schedule();
  2648. exception_exit(prev_state);
  2649. }
  2650. #endif
  2651. /**
  2652. * schedule_preempt_disabled - called with preemption disabled
  2653. *
  2654. * Returns with preemption disabled. Note: preempt_count must be 1
  2655. */
  2656. void __sched schedule_preempt_disabled(void)
  2657. {
  2658. sched_preempt_enable_no_resched();
  2659. schedule();
  2660. preempt_disable();
  2661. }
  2662. static void __sched notrace preempt_schedule_common(void)
  2663. {
  2664. do {
  2665. preempt_active_enter();
  2666. __schedule();
  2667. preempt_active_exit();
  2668. /*
  2669. * Check again in case we missed a preemption opportunity
  2670. * between schedule and now.
  2671. */
  2672. } while (need_resched());
  2673. }
  2674. #ifdef CONFIG_PREEMPT
  2675. /*
  2676. * this is the entry point to schedule() from in-kernel preemption
  2677. * off of preempt_enable. Kernel preemptions off return from interrupt
  2678. * occur there and call schedule directly.
  2679. */
  2680. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2681. {
  2682. /*
  2683. * If there is a non-zero preempt_count or interrupts are disabled,
  2684. * we do not want to preempt the current task. Just return..
  2685. */
  2686. if (likely(!preemptible()))
  2687. return;
  2688. preempt_schedule_common();
  2689. }
  2690. NOKPROBE_SYMBOL(preempt_schedule);
  2691. EXPORT_SYMBOL(preempt_schedule);
  2692. /**
  2693. * preempt_schedule_notrace - preempt_schedule called by tracing
  2694. *
  2695. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2696. * recursion and tracing preempt enabling caused by the tracing
  2697. * infrastructure itself. But as tracing can happen in areas coming
  2698. * from userspace or just about to enter userspace, a preempt enable
  2699. * can occur before user_exit() is called. This will cause the scheduler
  2700. * to be called when the system is still in usermode.
  2701. *
  2702. * To prevent this, the preempt_enable_notrace will use this function
  2703. * instead of preempt_schedule() to exit user context if needed before
  2704. * calling the scheduler.
  2705. */
  2706. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2707. {
  2708. enum ctx_state prev_ctx;
  2709. if (likely(!preemptible()))
  2710. return;
  2711. do {
  2712. /*
  2713. * Use raw __prempt_count() ops that don't call function.
  2714. * We can't call functions before disabling preemption which
  2715. * disarm preemption tracing recursions.
  2716. */
  2717. __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2718. barrier();
  2719. /*
  2720. * Needs preempt disabled in case user_exit() is traced
  2721. * and the tracer calls preempt_enable_notrace() causing
  2722. * an infinite recursion.
  2723. */
  2724. prev_ctx = exception_enter();
  2725. __schedule();
  2726. exception_exit(prev_ctx);
  2727. barrier();
  2728. __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2729. } while (need_resched());
  2730. }
  2731. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2732. #endif /* CONFIG_PREEMPT */
  2733. /*
  2734. * this is the entry point to schedule() from kernel preemption
  2735. * off of irq context.
  2736. * Note, that this is called and return with irqs disabled. This will
  2737. * protect us against recursive calling from irq.
  2738. */
  2739. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2740. {
  2741. enum ctx_state prev_state;
  2742. /* Catch callers which need to be fixed */
  2743. BUG_ON(preempt_count() || !irqs_disabled());
  2744. prev_state = exception_enter();
  2745. do {
  2746. preempt_active_enter();
  2747. local_irq_enable();
  2748. __schedule();
  2749. local_irq_disable();
  2750. preempt_active_exit();
  2751. } while (need_resched());
  2752. exception_exit(prev_state);
  2753. }
  2754. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2755. void *key)
  2756. {
  2757. return try_to_wake_up(curr->private, mode, wake_flags);
  2758. }
  2759. EXPORT_SYMBOL(default_wake_function);
  2760. #ifdef CONFIG_RT_MUTEXES
  2761. /*
  2762. * rt_mutex_setprio - set the current priority of a task
  2763. * @p: task
  2764. * @prio: prio value (kernel-internal form)
  2765. *
  2766. * This function changes the 'effective' priority of a task. It does
  2767. * not touch ->normal_prio like __setscheduler().
  2768. *
  2769. * Used by the rt_mutex code to implement priority inheritance
  2770. * logic. Call site only calls if the priority of the task changed.
  2771. */
  2772. void rt_mutex_setprio(struct task_struct *p, int prio)
  2773. {
  2774. int oldprio, queued, running, enqueue_flag = 0;
  2775. struct rq *rq;
  2776. const struct sched_class *prev_class;
  2777. BUG_ON(prio > MAX_PRIO);
  2778. rq = __task_rq_lock(p);
  2779. /*
  2780. * Idle task boosting is a nono in general. There is one
  2781. * exception, when PREEMPT_RT and NOHZ is active:
  2782. *
  2783. * The idle task calls get_next_timer_interrupt() and holds
  2784. * the timer wheel base->lock on the CPU and another CPU wants
  2785. * to access the timer (probably to cancel it). We can safely
  2786. * ignore the boosting request, as the idle CPU runs this code
  2787. * with interrupts disabled and will complete the lock
  2788. * protected section without being interrupted. So there is no
  2789. * real need to boost.
  2790. */
  2791. if (unlikely(p == rq->idle)) {
  2792. WARN_ON(p != rq->curr);
  2793. WARN_ON(p->pi_blocked_on);
  2794. goto out_unlock;
  2795. }
  2796. trace_sched_pi_setprio(p, prio);
  2797. oldprio = p->prio;
  2798. prev_class = p->sched_class;
  2799. queued = task_on_rq_queued(p);
  2800. running = task_current(rq, p);
  2801. if (queued)
  2802. dequeue_task(rq, p, 0);
  2803. if (running)
  2804. put_prev_task(rq, p);
  2805. /*
  2806. * Boosting condition are:
  2807. * 1. -rt task is running and holds mutex A
  2808. * --> -dl task blocks on mutex A
  2809. *
  2810. * 2. -dl task is running and holds mutex A
  2811. * --> -dl task blocks on mutex A and could preempt the
  2812. * running task
  2813. */
  2814. if (dl_prio(prio)) {
  2815. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2816. if (!dl_prio(p->normal_prio) ||
  2817. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2818. p->dl.dl_boosted = 1;
  2819. enqueue_flag = ENQUEUE_REPLENISH;
  2820. } else
  2821. p->dl.dl_boosted = 0;
  2822. p->sched_class = &dl_sched_class;
  2823. } else if (rt_prio(prio)) {
  2824. if (dl_prio(oldprio))
  2825. p->dl.dl_boosted = 0;
  2826. if (oldprio < prio)
  2827. enqueue_flag = ENQUEUE_HEAD;
  2828. p->sched_class = &rt_sched_class;
  2829. } else {
  2830. if (dl_prio(oldprio))
  2831. p->dl.dl_boosted = 0;
  2832. if (rt_prio(oldprio))
  2833. p->rt.timeout = 0;
  2834. p->sched_class = &fair_sched_class;
  2835. }
  2836. p->prio = prio;
  2837. if (running)
  2838. p->sched_class->set_curr_task(rq);
  2839. if (queued)
  2840. enqueue_task(rq, p, enqueue_flag);
  2841. check_class_changed(rq, p, prev_class, oldprio);
  2842. out_unlock:
  2843. preempt_disable(); /* avoid rq from going away on us */
  2844. __task_rq_unlock(rq);
  2845. balance_callback(rq);
  2846. preempt_enable();
  2847. }
  2848. #endif
  2849. void set_user_nice(struct task_struct *p, long nice)
  2850. {
  2851. int old_prio, delta, queued;
  2852. unsigned long flags;
  2853. struct rq *rq;
  2854. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2855. return;
  2856. /*
  2857. * We have to be careful, if called from sys_setpriority(),
  2858. * the task might be in the middle of scheduling on another CPU.
  2859. */
  2860. rq = task_rq_lock(p, &flags);
  2861. /*
  2862. * The RT priorities are set via sched_setscheduler(), but we still
  2863. * allow the 'normal' nice value to be set - but as expected
  2864. * it wont have any effect on scheduling until the task is
  2865. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2866. */
  2867. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2868. p->static_prio = NICE_TO_PRIO(nice);
  2869. goto out_unlock;
  2870. }
  2871. queued = task_on_rq_queued(p);
  2872. if (queued)
  2873. dequeue_task(rq, p, 0);
  2874. p->static_prio = NICE_TO_PRIO(nice);
  2875. set_load_weight(p);
  2876. old_prio = p->prio;
  2877. p->prio = effective_prio(p);
  2878. delta = p->prio - old_prio;
  2879. if (queued) {
  2880. enqueue_task(rq, p, 0);
  2881. /*
  2882. * If the task increased its priority or is running and
  2883. * lowered its priority, then reschedule its CPU:
  2884. */
  2885. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2886. resched_curr(rq);
  2887. }
  2888. out_unlock:
  2889. task_rq_unlock(rq, p, &flags);
  2890. }
  2891. EXPORT_SYMBOL(set_user_nice);
  2892. /*
  2893. * can_nice - check if a task can reduce its nice value
  2894. * @p: task
  2895. * @nice: nice value
  2896. */
  2897. int can_nice(const struct task_struct *p, const int nice)
  2898. {
  2899. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2900. int nice_rlim = nice_to_rlimit(nice);
  2901. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2902. capable(CAP_SYS_NICE));
  2903. }
  2904. #ifdef __ARCH_WANT_SYS_NICE
  2905. /*
  2906. * sys_nice - change the priority of the current process.
  2907. * @increment: priority increment
  2908. *
  2909. * sys_setpriority is a more generic, but much slower function that
  2910. * does similar things.
  2911. */
  2912. SYSCALL_DEFINE1(nice, int, increment)
  2913. {
  2914. long nice, retval;
  2915. /*
  2916. * Setpriority might change our priority at the same moment.
  2917. * We don't have to worry. Conceptually one call occurs first
  2918. * and we have a single winner.
  2919. */
  2920. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2921. nice = task_nice(current) + increment;
  2922. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2923. if (increment < 0 && !can_nice(current, nice))
  2924. return -EPERM;
  2925. retval = security_task_setnice(current, nice);
  2926. if (retval)
  2927. return retval;
  2928. set_user_nice(current, nice);
  2929. return 0;
  2930. }
  2931. #endif
  2932. /**
  2933. * task_prio - return the priority value of a given task.
  2934. * @p: the task in question.
  2935. *
  2936. * Return: The priority value as seen by users in /proc.
  2937. * RT tasks are offset by -200. Normal tasks are centered
  2938. * around 0, value goes from -16 to +15.
  2939. */
  2940. int task_prio(const struct task_struct *p)
  2941. {
  2942. return p->prio - MAX_RT_PRIO;
  2943. }
  2944. /**
  2945. * idle_cpu - is a given cpu idle currently?
  2946. * @cpu: the processor in question.
  2947. *
  2948. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2949. */
  2950. int idle_cpu(int cpu)
  2951. {
  2952. struct rq *rq = cpu_rq(cpu);
  2953. if (rq->curr != rq->idle)
  2954. return 0;
  2955. if (rq->nr_running)
  2956. return 0;
  2957. #ifdef CONFIG_SMP
  2958. if (!llist_empty(&rq->wake_list))
  2959. return 0;
  2960. #endif
  2961. return 1;
  2962. }
  2963. /**
  2964. * idle_task - return the idle task for a given cpu.
  2965. * @cpu: the processor in question.
  2966. *
  2967. * Return: The idle task for the cpu @cpu.
  2968. */
  2969. struct task_struct *idle_task(int cpu)
  2970. {
  2971. return cpu_rq(cpu)->idle;
  2972. }
  2973. /**
  2974. * find_process_by_pid - find a process with a matching PID value.
  2975. * @pid: the pid in question.
  2976. *
  2977. * The task of @pid, if found. %NULL otherwise.
  2978. */
  2979. static struct task_struct *find_process_by_pid(pid_t pid)
  2980. {
  2981. return pid ? find_task_by_vpid(pid) : current;
  2982. }
  2983. /*
  2984. * This function initializes the sched_dl_entity of a newly becoming
  2985. * SCHED_DEADLINE task.
  2986. *
  2987. * Only the static values are considered here, the actual runtime and the
  2988. * absolute deadline will be properly calculated when the task is enqueued
  2989. * for the first time with its new policy.
  2990. */
  2991. static void
  2992. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2993. {
  2994. struct sched_dl_entity *dl_se = &p->dl;
  2995. dl_se->dl_runtime = attr->sched_runtime;
  2996. dl_se->dl_deadline = attr->sched_deadline;
  2997. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2998. dl_se->flags = attr->sched_flags;
  2999. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3000. /*
  3001. * Changing the parameters of a task is 'tricky' and we're not doing
  3002. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3003. *
  3004. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3005. * point. This would include retaining the task_struct until that time
  3006. * and change dl_overflow() to not immediately decrement the current
  3007. * amount.
  3008. *
  3009. * Instead we retain the current runtime/deadline and let the new
  3010. * parameters take effect after the current reservation period lapses.
  3011. * This is safe (albeit pessimistic) because the 0-lag point is always
  3012. * before the current scheduling deadline.
  3013. *
  3014. * We can still have temporary overloads because we do not delay the
  3015. * change in bandwidth until that time; so admission control is
  3016. * not on the safe side. It does however guarantee tasks will never
  3017. * consume more than promised.
  3018. */
  3019. }
  3020. /*
  3021. * sched_setparam() passes in -1 for its policy, to let the functions
  3022. * it calls know not to change it.
  3023. */
  3024. #define SETPARAM_POLICY -1
  3025. static void __setscheduler_params(struct task_struct *p,
  3026. const struct sched_attr *attr)
  3027. {
  3028. int policy = attr->sched_policy;
  3029. if (policy == SETPARAM_POLICY)
  3030. policy = p->policy;
  3031. p->policy = policy;
  3032. if (dl_policy(policy))
  3033. __setparam_dl(p, attr);
  3034. else if (fair_policy(policy))
  3035. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3036. /*
  3037. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3038. * !rt_policy. Always setting this ensures that things like
  3039. * getparam()/getattr() don't report silly values for !rt tasks.
  3040. */
  3041. p->rt_priority = attr->sched_priority;
  3042. p->normal_prio = normal_prio(p);
  3043. set_load_weight(p);
  3044. }
  3045. /* Actually do priority change: must hold pi & rq lock. */
  3046. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3047. const struct sched_attr *attr, bool keep_boost)
  3048. {
  3049. __setscheduler_params(p, attr);
  3050. /*
  3051. * Keep a potential priority boosting if called from
  3052. * sched_setscheduler().
  3053. */
  3054. if (keep_boost)
  3055. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3056. else
  3057. p->prio = normal_prio(p);
  3058. if (dl_prio(p->prio))
  3059. p->sched_class = &dl_sched_class;
  3060. else if (rt_prio(p->prio))
  3061. p->sched_class = &rt_sched_class;
  3062. else
  3063. p->sched_class = &fair_sched_class;
  3064. }
  3065. static void
  3066. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3067. {
  3068. struct sched_dl_entity *dl_se = &p->dl;
  3069. attr->sched_priority = p->rt_priority;
  3070. attr->sched_runtime = dl_se->dl_runtime;
  3071. attr->sched_deadline = dl_se->dl_deadline;
  3072. attr->sched_period = dl_se->dl_period;
  3073. attr->sched_flags = dl_se->flags;
  3074. }
  3075. /*
  3076. * This function validates the new parameters of a -deadline task.
  3077. * We ask for the deadline not being zero, and greater or equal
  3078. * than the runtime, as well as the period of being zero or
  3079. * greater than deadline. Furthermore, we have to be sure that
  3080. * user parameters are above the internal resolution of 1us (we
  3081. * check sched_runtime only since it is always the smaller one) and
  3082. * below 2^63 ns (we have to check both sched_deadline and
  3083. * sched_period, as the latter can be zero).
  3084. */
  3085. static bool
  3086. __checkparam_dl(const struct sched_attr *attr)
  3087. {
  3088. /* deadline != 0 */
  3089. if (attr->sched_deadline == 0)
  3090. return false;
  3091. /*
  3092. * Since we truncate DL_SCALE bits, make sure we're at least
  3093. * that big.
  3094. */
  3095. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3096. return false;
  3097. /*
  3098. * Since we use the MSB for wrap-around and sign issues, make
  3099. * sure it's not set (mind that period can be equal to zero).
  3100. */
  3101. if (attr->sched_deadline & (1ULL << 63) ||
  3102. attr->sched_period & (1ULL << 63))
  3103. return false;
  3104. /* runtime <= deadline <= period (if period != 0) */
  3105. if ((attr->sched_period != 0 &&
  3106. attr->sched_period < attr->sched_deadline) ||
  3107. attr->sched_deadline < attr->sched_runtime)
  3108. return false;
  3109. return true;
  3110. }
  3111. /*
  3112. * check the target process has a UID that matches the current process's
  3113. */
  3114. static bool check_same_owner(struct task_struct *p)
  3115. {
  3116. const struct cred *cred = current_cred(), *pcred;
  3117. bool match;
  3118. rcu_read_lock();
  3119. pcred = __task_cred(p);
  3120. match = (uid_eq(cred->euid, pcred->euid) ||
  3121. uid_eq(cred->euid, pcred->uid));
  3122. rcu_read_unlock();
  3123. return match;
  3124. }
  3125. static bool dl_param_changed(struct task_struct *p,
  3126. const struct sched_attr *attr)
  3127. {
  3128. struct sched_dl_entity *dl_se = &p->dl;
  3129. if (dl_se->dl_runtime != attr->sched_runtime ||
  3130. dl_se->dl_deadline != attr->sched_deadline ||
  3131. dl_se->dl_period != attr->sched_period ||
  3132. dl_se->flags != attr->sched_flags)
  3133. return true;
  3134. return false;
  3135. }
  3136. static int __sched_setscheduler(struct task_struct *p,
  3137. const struct sched_attr *attr,
  3138. bool user, bool pi)
  3139. {
  3140. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3141. MAX_RT_PRIO - 1 - attr->sched_priority;
  3142. int retval, oldprio, oldpolicy = -1, queued, running;
  3143. int new_effective_prio, policy = attr->sched_policy;
  3144. unsigned long flags;
  3145. const struct sched_class *prev_class;
  3146. struct rq *rq;
  3147. int reset_on_fork;
  3148. /* may grab non-irq protected spin_locks */
  3149. BUG_ON(in_interrupt());
  3150. recheck:
  3151. /* double check policy once rq lock held */
  3152. if (policy < 0) {
  3153. reset_on_fork = p->sched_reset_on_fork;
  3154. policy = oldpolicy = p->policy;
  3155. } else {
  3156. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3157. if (policy != SCHED_DEADLINE &&
  3158. policy != SCHED_FIFO && policy != SCHED_RR &&
  3159. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3160. policy != SCHED_IDLE)
  3161. return -EINVAL;
  3162. }
  3163. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3164. return -EINVAL;
  3165. /*
  3166. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3167. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3168. * SCHED_BATCH and SCHED_IDLE is 0.
  3169. */
  3170. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3171. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3172. return -EINVAL;
  3173. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3174. (rt_policy(policy) != (attr->sched_priority != 0)))
  3175. return -EINVAL;
  3176. /*
  3177. * Allow unprivileged RT tasks to decrease priority:
  3178. */
  3179. if (user && !capable(CAP_SYS_NICE)) {
  3180. if (fair_policy(policy)) {
  3181. if (attr->sched_nice < task_nice(p) &&
  3182. !can_nice(p, attr->sched_nice))
  3183. return -EPERM;
  3184. }
  3185. if (rt_policy(policy)) {
  3186. unsigned long rlim_rtprio =
  3187. task_rlimit(p, RLIMIT_RTPRIO);
  3188. /* can't set/change the rt policy */
  3189. if (policy != p->policy && !rlim_rtprio)
  3190. return -EPERM;
  3191. /* can't increase priority */
  3192. if (attr->sched_priority > p->rt_priority &&
  3193. attr->sched_priority > rlim_rtprio)
  3194. return -EPERM;
  3195. }
  3196. /*
  3197. * Can't set/change SCHED_DEADLINE policy at all for now
  3198. * (safest behavior); in the future we would like to allow
  3199. * unprivileged DL tasks to increase their relative deadline
  3200. * or reduce their runtime (both ways reducing utilization)
  3201. */
  3202. if (dl_policy(policy))
  3203. return -EPERM;
  3204. /*
  3205. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3206. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3207. */
  3208. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3209. if (!can_nice(p, task_nice(p)))
  3210. return -EPERM;
  3211. }
  3212. /* can't change other user's priorities */
  3213. if (!check_same_owner(p))
  3214. return -EPERM;
  3215. /* Normal users shall not reset the sched_reset_on_fork flag */
  3216. if (p->sched_reset_on_fork && !reset_on_fork)
  3217. return -EPERM;
  3218. }
  3219. if (user) {
  3220. retval = security_task_setscheduler(p);
  3221. if (retval)
  3222. return retval;
  3223. }
  3224. /*
  3225. * make sure no PI-waiters arrive (or leave) while we are
  3226. * changing the priority of the task:
  3227. *
  3228. * To be able to change p->policy safely, the appropriate
  3229. * runqueue lock must be held.
  3230. */
  3231. rq = task_rq_lock(p, &flags);
  3232. /*
  3233. * Changing the policy of the stop threads its a very bad idea
  3234. */
  3235. if (p == rq->stop) {
  3236. task_rq_unlock(rq, p, &flags);
  3237. return -EINVAL;
  3238. }
  3239. /*
  3240. * If not changing anything there's no need to proceed further,
  3241. * but store a possible modification of reset_on_fork.
  3242. */
  3243. if (unlikely(policy == p->policy)) {
  3244. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3245. goto change;
  3246. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3247. goto change;
  3248. if (dl_policy(policy) && dl_param_changed(p, attr))
  3249. goto change;
  3250. p->sched_reset_on_fork = reset_on_fork;
  3251. task_rq_unlock(rq, p, &flags);
  3252. return 0;
  3253. }
  3254. change:
  3255. if (user) {
  3256. #ifdef CONFIG_RT_GROUP_SCHED
  3257. /*
  3258. * Do not allow realtime tasks into groups that have no runtime
  3259. * assigned.
  3260. */
  3261. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3262. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3263. !task_group_is_autogroup(task_group(p))) {
  3264. task_rq_unlock(rq, p, &flags);
  3265. return -EPERM;
  3266. }
  3267. #endif
  3268. #ifdef CONFIG_SMP
  3269. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3270. cpumask_t *span = rq->rd->span;
  3271. /*
  3272. * Don't allow tasks with an affinity mask smaller than
  3273. * the entire root_domain to become SCHED_DEADLINE. We
  3274. * will also fail if there's no bandwidth available.
  3275. */
  3276. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3277. rq->rd->dl_bw.bw == 0) {
  3278. task_rq_unlock(rq, p, &flags);
  3279. return -EPERM;
  3280. }
  3281. }
  3282. #endif
  3283. }
  3284. /* recheck policy now with rq lock held */
  3285. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3286. policy = oldpolicy = -1;
  3287. task_rq_unlock(rq, p, &flags);
  3288. goto recheck;
  3289. }
  3290. /*
  3291. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3292. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3293. * is available.
  3294. */
  3295. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3296. task_rq_unlock(rq, p, &flags);
  3297. return -EBUSY;
  3298. }
  3299. p->sched_reset_on_fork = reset_on_fork;
  3300. oldprio = p->prio;
  3301. if (pi) {
  3302. /*
  3303. * Take priority boosted tasks into account. If the new
  3304. * effective priority is unchanged, we just store the new
  3305. * normal parameters and do not touch the scheduler class and
  3306. * the runqueue. This will be done when the task deboost
  3307. * itself.
  3308. */
  3309. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3310. if (new_effective_prio == oldprio) {
  3311. __setscheduler_params(p, attr);
  3312. task_rq_unlock(rq, p, &flags);
  3313. return 0;
  3314. }
  3315. }
  3316. queued = task_on_rq_queued(p);
  3317. running = task_current(rq, p);
  3318. if (queued)
  3319. dequeue_task(rq, p, 0);
  3320. if (running)
  3321. put_prev_task(rq, p);
  3322. prev_class = p->sched_class;
  3323. __setscheduler(rq, p, attr, pi);
  3324. if (running)
  3325. p->sched_class->set_curr_task(rq);
  3326. if (queued) {
  3327. /*
  3328. * We enqueue to tail when the priority of a task is
  3329. * increased (user space view).
  3330. */
  3331. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3332. }
  3333. check_class_changed(rq, p, prev_class, oldprio);
  3334. preempt_disable(); /* avoid rq from going away on us */
  3335. task_rq_unlock(rq, p, &flags);
  3336. if (pi)
  3337. rt_mutex_adjust_pi(p);
  3338. /*
  3339. * Run balance callbacks after we've adjusted the PI chain.
  3340. */
  3341. balance_callback(rq);
  3342. preempt_enable();
  3343. return 0;
  3344. }
  3345. static int _sched_setscheduler(struct task_struct *p, int policy,
  3346. const struct sched_param *param, bool check)
  3347. {
  3348. struct sched_attr attr = {
  3349. .sched_policy = policy,
  3350. .sched_priority = param->sched_priority,
  3351. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3352. };
  3353. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3354. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3355. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3356. policy &= ~SCHED_RESET_ON_FORK;
  3357. attr.sched_policy = policy;
  3358. }
  3359. return __sched_setscheduler(p, &attr, check, true);
  3360. }
  3361. /**
  3362. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3363. * @p: the task in question.
  3364. * @policy: new policy.
  3365. * @param: structure containing the new RT priority.
  3366. *
  3367. * Return: 0 on success. An error code otherwise.
  3368. *
  3369. * NOTE that the task may be already dead.
  3370. */
  3371. int sched_setscheduler(struct task_struct *p, int policy,
  3372. const struct sched_param *param)
  3373. {
  3374. return _sched_setscheduler(p, policy, param, true);
  3375. }
  3376. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3377. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3378. {
  3379. return __sched_setscheduler(p, attr, true, true);
  3380. }
  3381. EXPORT_SYMBOL_GPL(sched_setattr);
  3382. /**
  3383. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3384. * @p: the task in question.
  3385. * @policy: new policy.
  3386. * @param: structure containing the new RT priority.
  3387. *
  3388. * Just like sched_setscheduler, only don't bother checking if the
  3389. * current context has permission. For example, this is needed in
  3390. * stop_machine(): we create temporary high priority worker threads,
  3391. * but our caller might not have that capability.
  3392. *
  3393. * Return: 0 on success. An error code otherwise.
  3394. */
  3395. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3396. const struct sched_param *param)
  3397. {
  3398. return _sched_setscheduler(p, policy, param, false);
  3399. }
  3400. static int
  3401. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3402. {
  3403. struct sched_param lparam;
  3404. struct task_struct *p;
  3405. int retval;
  3406. if (!param || pid < 0)
  3407. return -EINVAL;
  3408. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3409. return -EFAULT;
  3410. rcu_read_lock();
  3411. retval = -ESRCH;
  3412. p = find_process_by_pid(pid);
  3413. if (p != NULL)
  3414. retval = sched_setscheduler(p, policy, &lparam);
  3415. rcu_read_unlock();
  3416. return retval;
  3417. }
  3418. /*
  3419. * Mimics kernel/events/core.c perf_copy_attr().
  3420. */
  3421. static int sched_copy_attr(struct sched_attr __user *uattr,
  3422. struct sched_attr *attr)
  3423. {
  3424. u32 size;
  3425. int ret;
  3426. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3427. return -EFAULT;
  3428. /*
  3429. * zero the full structure, so that a short copy will be nice.
  3430. */
  3431. memset(attr, 0, sizeof(*attr));
  3432. ret = get_user(size, &uattr->size);
  3433. if (ret)
  3434. return ret;
  3435. if (size > PAGE_SIZE) /* silly large */
  3436. goto err_size;
  3437. if (!size) /* abi compat */
  3438. size = SCHED_ATTR_SIZE_VER0;
  3439. if (size < SCHED_ATTR_SIZE_VER0)
  3440. goto err_size;
  3441. /*
  3442. * If we're handed a bigger struct than we know of,
  3443. * ensure all the unknown bits are 0 - i.e. new
  3444. * user-space does not rely on any kernel feature
  3445. * extensions we dont know about yet.
  3446. */
  3447. if (size > sizeof(*attr)) {
  3448. unsigned char __user *addr;
  3449. unsigned char __user *end;
  3450. unsigned char val;
  3451. addr = (void __user *)uattr + sizeof(*attr);
  3452. end = (void __user *)uattr + size;
  3453. for (; addr < end; addr++) {
  3454. ret = get_user(val, addr);
  3455. if (ret)
  3456. return ret;
  3457. if (val)
  3458. goto err_size;
  3459. }
  3460. size = sizeof(*attr);
  3461. }
  3462. ret = copy_from_user(attr, uattr, size);
  3463. if (ret)
  3464. return -EFAULT;
  3465. /*
  3466. * XXX: do we want to be lenient like existing syscalls; or do we want
  3467. * to be strict and return an error on out-of-bounds values?
  3468. */
  3469. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3470. return 0;
  3471. err_size:
  3472. put_user(sizeof(*attr), &uattr->size);
  3473. return -E2BIG;
  3474. }
  3475. /**
  3476. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3477. * @pid: the pid in question.
  3478. * @policy: new policy.
  3479. * @param: structure containing the new RT priority.
  3480. *
  3481. * Return: 0 on success. An error code otherwise.
  3482. */
  3483. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3484. struct sched_param __user *, param)
  3485. {
  3486. /* negative values for policy are not valid */
  3487. if (policy < 0)
  3488. return -EINVAL;
  3489. return do_sched_setscheduler(pid, policy, param);
  3490. }
  3491. /**
  3492. * sys_sched_setparam - set/change the RT priority of a thread
  3493. * @pid: the pid in question.
  3494. * @param: structure containing the new RT priority.
  3495. *
  3496. * Return: 0 on success. An error code otherwise.
  3497. */
  3498. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3499. {
  3500. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3501. }
  3502. /**
  3503. * sys_sched_setattr - same as above, but with extended sched_attr
  3504. * @pid: the pid in question.
  3505. * @uattr: structure containing the extended parameters.
  3506. * @flags: for future extension.
  3507. */
  3508. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3509. unsigned int, flags)
  3510. {
  3511. struct sched_attr attr;
  3512. struct task_struct *p;
  3513. int retval;
  3514. if (!uattr || pid < 0 || flags)
  3515. return -EINVAL;
  3516. retval = sched_copy_attr(uattr, &attr);
  3517. if (retval)
  3518. return retval;
  3519. if ((int)attr.sched_policy < 0)
  3520. return -EINVAL;
  3521. rcu_read_lock();
  3522. retval = -ESRCH;
  3523. p = find_process_by_pid(pid);
  3524. if (p != NULL)
  3525. retval = sched_setattr(p, &attr);
  3526. rcu_read_unlock();
  3527. return retval;
  3528. }
  3529. /**
  3530. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3531. * @pid: the pid in question.
  3532. *
  3533. * Return: On success, the policy of the thread. Otherwise, a negative error
  3534. * code.
  3535. */
  3536. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3537. {
  3538. struct task_struct *p;
  3539. int retval;
  3540. if (pid < 0)
  3541. return -EINVAL;
  3542. retval = -ESRCH;
  3543. rcu_read_lock();
  3544. p = find_process_by_pid(pid);
  3545. if (p) {
  3546. retval = security_task_getscheduler(p);
  3547. if (!retval)
  3548. retval = p->policy
  3549. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3550. }
  3551. rcu_read_unlock();
  3552. return retval;
  3553. }
  3554. /**
  3555. * sys_sched_getparam - get the RT priority of a thread
  3556. * @pid: the pid in question.
  3557. * @param: structure containing the RT priority.
  3558. *
  3559. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3560. * code.
  3561. */
  3562. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3563. {
  3564. struct sched_param lp = { .sched_priority = 0 };
  3565. struct task_struct *p;
  3566. int retval;
  3567. if (!param || pid < 0)
  3568. return -EINVAL;
  3569. rcu_read_lock();
  3570. p = find_process_by_pid(pid);
  3571. retval = -ESRCH;
  3572. if (!p)
  3573. goto out_unlock;
  3574. retval = security_task_getscheduler(p);
  3575. if (retval)
  3576. goto out_unlock;
  3577. if (task_has_rt_policy(p))
  3578. lp.sched_priority = p->rt_priority;
  3579. rcu_read_unlock();
  3580. /*
  3581. * This one might sleep, we cannot do it with a spinlock held ...
  3582. */
  3583. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3584. return retval;
  3585. out_unlock:
  3586. rcu_read_unlock();
  3587. return retval;
  3588. }
  3589. static int sched_read_attr(struct sched_attr __user *uattr,
  3590. struct sched_attr *attr,
  3591. unsigned int usize)
  3592. {
  3593. int ret;
  3594. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3595. return -EFAULT;
  3596. /*
  3597. * If we're handed a smaller struct than we know of,
  3598. * ensure all the unknown bits are 0 - i.e. old
  3599. * user-space does not get uncomplete information.
  3600. */
  3601. if (usize < sizeof(*attr)) {
  3602. unsigned char *addr;
  3603. unsigned char *end;
  3604. addr = (void *)attr + usize;
  3605. end = (void *)attr + sizeof(*attr);
  3606. for (; addr < end; addr++) {
  3607. if (*addr)
  3608. return -EFBIG;
  3609. }
  3610. attr->size = usize;
  3611. }
  3612. ret = copy_to_user(uattr, attr, attr->size);
  3613. if (ret)
  3614. return -EFAULT;
  3615. return 0;
  3616. }
  3617. /**
  3618. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3619. * @pid: the pid in question.
  3620. * @uattr: structure containing the extended parameters.
  3621. * @size: sizeof(attr) for fwd/bwd comp.
  3622. * @flags: for future extension.
  3623. */
  3624. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3625. unsigned int, size, unsigned int, flags)
  3626. {
  3627. struct sched_attr attr = {
  3628. .size = sizeof(struct sched_attr),
  3629. };
  3630. struct task_struct *p;
  3631. int retval;
  3632. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3633. size < SCHED_ATTR_SIZE_VER0 || flags)
  3634. return -EINVAL;
  3635. rcu_read_lock();
  3636. p = find_process_by_pid(pid);
  3637. retval = -ESRCH;
  3638. if (!p)
  3639. goto out_unlock;
  3640. retval = security_task_getscheduler(p);
  3641. if (retval)
  3642. goto out_unlock;
  3643. attr.sched_policy = p->policy;
  3644. if (p->sched_reset_on_fork)
  3645. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3646. if (task_has_dl_policy(p))
  3647. __getparam_dl(p, &attr);
  3648. else if (task_has_rt_policy(p))
  3649. attr.sched_priority = p->rt_priority;
  3650. else
  3651. attr.sched_nice = task_nice(p);
  3652. rcu_read_unlock();
  3653. retval = sched_read_attr(uattr, &attr, size);
  3654. return retval;
  3655. out_unlock:
  3656. rcu_read_unlock();
  3657. return retval;
  3658. }
  3659. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3660. {
  3661. cpumask_var_t cpus_allowed, new_mask;
  3662. struct task_struct *p;
  3663. int retval;
  3664. rcu_read_lock();
  3665. p = find_process_by_pid(pid);
  3666. if (!p) {
  3667. rcu_read_unlock();
  3668. return -ESRCH;
  3669. }
  3670. /* Prevent p going away */
  3671. get_task_struct(p);
  3672. rcu_read_unlock();
  3673. if (p->flags & PF_NO_SETAFFINITY) {
  3674. retval = -EINVAL;
  3675. goto out_put_task;
  3676. }
  3677. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3678. retval = -ENOMEM;
  3679. goto out_put_task;
  3680. }
  3681. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3682. retval = -ENOMEM;
  3683. goto out_free_cpus_allowed;
  3684. }
  3685. retval = -EPERM;
  3686. if (!check_same_owner(p)) {
  3687. rcu_read_lock();
  3688. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3689. rcu_read_unlock();
  3690. goto out_free_new_mask;
  3691. }
  3692. rcu_read_unlock();
  3693. }
  3694. retval = security_task_setscheduler(p);
  3695. if (retval)
  3696. goto out_free_new_mask;
  3697. cpuset_cpus_allowed(p, cpus_allowed);
  3698. cpumask_and(new_mask, in_mask, cpus_allowed);
  3699. /*
  3700. * Since bandwidth control happens on root_domain basis,
  3701. * if admission test is enabled, we only admit -deadline
  3702. * tasks allowed to run on all the CPUs in the task's
  3703. * root_domain.
  3704. */
  3705. #ifdef CONFIG_SMP
  3706. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3707. rcu_read_lock();
  3708. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3709. retval = -EBUSY;
  3710. rcu_read_unlock();
  3711. goto out_free_new_mask;
  3712. }
  3713. rcu_read_unlock();
  3714. }
  3715. #endif
  3716. again:
  3717. retval = set_cpus_allowed_ptr(p, new_mask);
  3718. if (!retval) {
  3719. cpuset_cpus_allowed(p, cpus_allowed);
  3720. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3721. /*
  3722. * We must have raced with a concurrent cpuset
  3723. * update. Just reset the cpus_allowed to the
  3724. * cpuset's cpus_allowed
  3725. */
  3726. cpumask_copy(new_mask, cpus_allowed);
  3727. goto again;
  3728. }
  3729. }
  3730. out_free_new_mask:
  3731. free_cpumask_var(new_mask);
  3732. out_free_cpus_allowed:
  3733. free_cpumask_var(cpus_allowed);
  3734. out_put_task:
  3735. put_task_struct(p);
  3736. return retval;
  3737. }
  3738. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3739. struct cpumask *new_mask)
  3740. {
  3741. if (len < cpumask_size())
  3742. cpumask_clear(new_mask);
  3743. else if (len > cpumask_size())
  3744. len = cpumask_size();
  3745. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3746. }
  3747. /**
  3748. * sys_sched_setaffinity - set the cpu affinity of a process
  3749. * @pid: pid of the process
  3750. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3751. * @user_mask_ptr: user-space pointer to the new cpu mask
  3752. *
  3753. * Return: 0 on success. An error code otherwise.
  3754. */
  3755. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3756. unsigned long __user *, user_mask_ptr)
  3757. {
  3758. cpumask_var_t new_mask;
  3759. int retval;
  3760. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3761. return -ENOMEM;
  3762. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3763. if (retval == 0)
  3764. retval = sched_setaffinity(pid, new_mask);
  3765. free_cpumask_var(new_mask);
  3766. return retval;
  3767. }
  3768. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3769. {
  3770. struct task_struct *p;
  3771. unsigned long flags;
  3772. int retval;
  3773. rcu_read_lock();
  3774. retval = -ESRCH;
  3775. p = find_process_by_pid(pid);
  3776. if (!p)
  3777. goto out_unlock;
  3778. retval = security_task_getscheduler(p);
  3779. if (retval)
  3780. goto out_unlock;
  3781. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3782. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3783. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3784. out_unlock:
  3785. rcu_read_unlock();
  3786. return retval;
  3787. }
  3788. /**
  3789. * sys_sched_getaffinity - get the cpu affinity of a process
  3790. * @pid: pid of the process
  3791. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3792. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3793. *
  3794. * Return: 0 on success. An error code otherwise.
  3795. */
  3796. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3797. unsigned long __user *, user_mask_ptr)
  3798. {
  3799. int ret;
  3800. cpumask_var_t mask;
  3801. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3802. return -EINVAL;
  3803. if (len & (sizeof(unsigned long)-1))
  3804. return -EINVAL;
  3805. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3806. return -ENOMEM;
  3807. ret = sched_getaffinity(pid, mask);
  3808. if (ret == 0) {
  3809. size_t retlen = min_t(size_t, len, cpumask_size());
  3810. if (copy_to_user(user_mask_ptr, mask, retlen))
  3811. ret = -EFAULT;
  3812. else
  3813. ret = retlen;
  3814. }
  3815. free_cpumask_var(mask);
  3816. return ret;
  3817. }
  3818. /**
  3819. * sys_sched_yield - yield the current processor to other threads.
  3820. *
  3821. * This function yields the current CPU to other tasks. If there are no
  3822. * other threads running on this CPU then this function will return.
  3823. *
  3824. * Return: 0.
  3825. */
  3826. SYSCALL_DEFINE0(sched_yield)
  3827. {
  3828. struct rq *rq = this_rq_lock();
  3829. schedstat_inc(rq, yld_count);
  3830. current->sched_class->yield_task(rq);
  3831. /*
  3832. * Since we are going to call schedule() anyway, there's
  3833. * no need to preempt or enable interrupts:
  3834. */
  3835. __release(rq->lock);
  3836. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3837. do_raw_spin_unlock(&rq->lock);
  3838. sched_preempt_enable_no_resched();
  3839. schedule();
  3840. return 0;
  3841. }
  3842. int __sched _cond_resched(void)
  3843. {
  3844. if (should_resched()) {
  3845. preempt_schedule_common();
  3846. return 1;
  3847. }
  3848. return 0;
  3849. }
  3850. EXPORT_SYMBOL(_cond_resched);
  3851. /*
  3852. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3853. * call schedule, and on return reacquire the lock.
  3854. *
  3855. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3856. * operations here to prevent schedule() from being called twice (once via
  3857. * spin_unlock(), once by hand).
  3858. */
  3859. int __cond_resched_lock(spinlock_t *lock)
  3860. {
  3861. int resched = should_resched();
  3862. int ret = 0;
  3863. lockdep_assert_held(lock);
  3864. if (spin_needbreak(lock) || resched) {
  3865. spin_unlock(lock);
  3866. if (resched)
  3867. preempt_schedule_common();
  3868. else
  3869. cpu_relax();
  3870. ret = 1;
  3871. spin_lock(lock);
  3872. }
  3873. return ret;
  3874. }
  3875. EXPORT_SYMBOL(__cond_resched_lock);
  3876. int __sched __cond_resched_softirq(void)
  3877. {
  3878. BUG_ON(!in_softirq());
  3879. if (should_resched()) {
  3880. local_bh_enable();
  3881. preempt_schedule_common();
  3882. local_bh_disable();
  3883. return 1;
  3884. }
  3885. return 0;
  3886. }
  3887. EXPORT_SYMBOL(__cond_resched_softirq);
  3888. /**
  3889. * yield - yield the current processor to other threads.
  3890. *
  3891. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3892. *
  3893. * The scheduler is at all times free to pick the calling task as the most
  3894. * eligible task to run, if removing the yield() call from your code breaks
  3895. * it, its already broken.
  3896. *
  3897. * Typical broken usage is:
  3898. *
  3899. * while (!event)
  3900. * yield();
  3901. *
  3902. * where one assumes that yield() will let 'the other' process run that will
  3903. * make event true. If the current task is a SCHED_FIFO task that will never
  3904. * happen. Never use yield() as a progress guarantee!!
  3905. *
  3906. * If you want to use yield() to wait for something, use wait_event().
  3907. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3908. * If you still want to use yield(), do not!
  3909. */
  3910. void __sched yield(void)
  3911. {
  3912. set_current_state(TASK_RUNNING);
  3913. sys_sched_yield();
  3914. }
  3915. EXPORT_SYMBOL(yield);
  3916. /**
  3917. * yield_to - yield the current processor to another thread in
  3918. * your thread group, or accelerate that thread toward the
  3919. * processor it's on.
  3920. * @p: target task
  3921. * @preempt: whether task preemption is allowed or not
  3922. *
  3923. * It's the caller's job to ensure that the target task struct
  3924. * can't go away on us before we can do any checks.
  3925. *
  3926. * Return:
  3927. * true (>0) if we indeed boosted the target task.
  3928. * false (0) if we failed to boost the target.
  3929. * -ESRCH if there's no task to yield to.
  3930. */
  3931. int __sched yield_to(struct task_struct *p, bool preempt)
  3932. {
  3933. struct task_struct *curr = current;
  3934. struct rq *rq, *p_rq;
  3935. unsigned long flags;
  3936. int yielded = 0;
  3937. local_irq_save(flags);
  3938. rq = this_rq();
  3939. again:
  3940. p_rq = task_rq(p);
  3941. /*
  3942. * If we're the only runnable task on the rq and target rq also
  3943. * has only one task, there's absolutely no point in yielding.
  3944. */
  3945. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3946. yielded = -ESRCH;
  3947. goto out_irq;
  3948. }
  3949. double_rq_lock(rq, p_rq);
  3950. if (task_rq(p) != p_rq) {
  3951. double_rq_unlock(rq, p_rq);
  3952. goto again;
  3953. }
  3954. if (!curr->sched_class->yield_to_task)
  3955. goto out_unlock;
  3956. if (curr->sched_class != p->sched_class)
  3957. goto out_unlock;
  3958. if (task_running(p_rq, p) || p->state)
  3959. goto out_unlock;
  3960. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3961. if (yielded) {
  3962. schedstat_inc(rq, yld_count);
  3963. /*
  3964. * Make p's CPU reschedule; pick_next_entity takes care of
  3965. * fairness.
  3966. */
  3967. if (preempt && rq != p_rq)
  3968. resched_curr(p_rq);
  3969. }
  3970. out_unlock:
  3971. double_rq_unlock(rq, p_rq);
  3972. out_irq:
  3973. local_irq_restore(flags);
  3974. if (yielded > 0)
  3975. schedule();
  3976. return yielded;
  3977. }
  3978. EXPORT_SYMBOL_GPL(yield_to);
  3979. /*
  3980. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3981. * that process accounting knows that this is a task in IO wait state.
  3982. */
  3983. long __sched io_schedule_timeout(long timeout)
  3984. {
  3985. int old_iowait = current->in_iowait;
  3986. struct rq *rq;
  3987. long ret;
  3988. current->in_iowait = 1;
  3989. blk_schedule_flush_plug(current);
  3990. delayacct_blkio_start();
  3991. rq = raw_rq();
  3992. atomic_inc(&rq->nr_iowait);
  3993. ret = schedule_timeout(timeout);
  3994. current->in_iowait = old_iowait;
  3995. atomic_dec(&rq->nr_iowait);
  3996. delayacct_blkio_end();
  3997. return ret;
  3998. }
  3999. EXPORT_SYMBOL(io_schedule_timeout);
  4000. /**
  4001. * sys_sched_get_priority_max - return maximum RT priority.
  4002. * @policy: scheduling class.
  4003. *
  4004. * Return: On success, this syscall returns the maximum
  4005. * rt_priority that can be used by a given scheduling class.
  4006. * On failure, a negative error code is returned.
  4007. */
  4008. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4009. {
  4010. int ret = -EINVAL;
  4011. switch (policy) {
  4012. case SCHED_FIFO:
  4013. case SCHED_RR:
  4014. ret = MAX_USER_RT_PRIO-1;
  4015. break;
  4016. case SCHED_DEADLINE:
  4017. case SCHED_NORMAL:
  4018. case SCHED_BATCH:
  4019. case SCHED_IDLE:
  4020. ret = 0;
  4021. break;
  4022. }
  4023. return ret;
  4024. }
  4025. /**
  4026. * sys_sched_get_priority_min - return minimum RT priority.
  4027. * @policy: scheduling class.
  4028. *
  4029. * Return: On success, this syscall returns the minimum
  4030. * rt_priority that can be used by a given scheduling class.
  4031. * On failure, a negative error code is returned.
  4032. */
  4033. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4034. {
  4035. int ret = -EINVAL;
  4036. switch (policy) {
  4037. case SCHED_FIFO:
  4038. case SCHED_RR:
  4039. ret = 1;
  4040. break;
  4041. case SCHED_DEADLINE:
  4042. case SCHED_NORMAL:
  4043. case SCHED_BATCH:
  4044. case SCHED_IDLE:
  4045. ret = 0;
  4046. }
  4047. return ret;
  4048. }
  4049. /**
  4050. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4051. * @pid: pid of the process.
  4052. * @interval: userspace pointer to the timeslice value.
  4053. *
  4054. * this syscall writes the default timeslice value of a given process
  4055. * into the user-space timespec buffer. A value of '0' means infinity.
  4056. *
  4057. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4058. * an error code.
  4059. */
  4060. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4061. struct timespec __user *, interval)
  4062. {
  4063. struct task_struct *p;
  4064. unsigned int time_slice;
  4065. unsigned long flags;
  4066. struct rq *rq;
  4067. int retval;
  4068. struct timespec t;
  4069. if (pid < 0)
  4070. return -EINVAL;
  4071. retval = -ESRCH;
  4072. rcu_read_lock();
  4073. p = find_process_by_pid(pid);
  4074. if (!p)
  4075. goto out_unlock;
  4076. retval = security_task_getscheduler(p);
  4077. if (retval)
  4078. goto out_unlock;
  4079. rq = task_rq_lock(p, &flags);
  4080. time_slice = 0;
  4081. if (p->sched_class->get_rr_interval)
  4082. time_slice = p->sched_class->get_rr_interval(rq, p);
  4083. task_rq_unlock(rq, p, &flags);
  4084. rcu_read_unlock();
  4085. jiffies_to_timespec(time_slice, &t);
  4086. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4087. return retval;
  4088. out_unlock:
  4089. rcu_read_unlock();
  4090. return retval;
  4091. }
  4092. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4093. void sched_show_task(struct task_struct *p)
  4094. {
  4095. unsigned long free = 0;
  4096. int ppid;
  4097. unsigned long state = p->state;
  4098. if (state)
  4099. state = __ffs(state) + 1;
  4100. printk(KERN_INFO "%-15.15s %c", p->comm,
  4101. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4102. #if BITS_PER_LONG == 32
  4103. if (state == TASK_RUNNING)
  4104. printk(KERN_CONT " running ");
  4105. else
  4106. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4107. #else
  4108. if (state == TASK_RUNNING)
  4109. printk(KERN_CONT " running task ");
  4110. else
  4111. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4112. #endif
  4113. #ifdef CONFIG_DEBUG_STACK_USAGE
  4114. free = stack_not_used(p);
  4115. #endif
  4116. ppid = 0;
  4117. rcu_read_lock();
  4118. if (pid_alive(p))
  4119. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4120. rcu_read_unlock();
  4121. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4122. task_pid_nr(p), ppid,
  4123. (unsigned long)task_thread_info(p)->flags);
  4124. print_worker_info(KERN_INFO, p);
  4125. show_stack(p, NULL);
  4126. }
  4127. void show_state_filter(unsigned long state_filter)
  4128. {
  4129. struct task_struct *g, *p;
  4130. #if BITS_PER_LONG == 32
  4131. printk(KERN_INFO
  4132. " task PC stack pid father\n");
  4133. #else
  4134. printk(KERN_INFO
  4135. " task PC stack pid father\n");
  4136. #endif
  4137. rcu_read_lock();
  4138. for_each_process_thread(g, p) {
  4139. /*
  4140. * reset the NMI-timeout, listing all files on a slow
  4141. * console might take a lot of time:
  4142. */
  4143. touch_nmi_watchdog();
  4144. if (!state_filter || (p->state & state_filter))
  4145. sched_show_task(p);
  4146. }
  4147. touch_all_softlockup_watchdogs();
  4148. #ifdef CONFIG_SCHED_DEBUG
  4149. sysrq_sched_debug_show();
  4150. #endif
  4151. rcu_read_unlock();
  4152. /*
  4153. * Only show locks if all tasks are dumped:
  4154. */
  4155. if (!state_filter)
  4156. debug_show_all_locks();
  4157. }
  4158. void init_idle_bootup_task(struct task_struct *idle)
  4159. {
  4160. idle->sched_class = &idle_sched_class;
  4161. }
  4162. /**
  4163. * init_idle - set up an idle thread for a given CPU
  4164. * @idle: task in question
  4165. * @cpu: cpu the idle task belongs to
  4166. *
  4167. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4168. * flag, to make booting more robust.
  4169. */
  4170. void init_idle(struct task_struct *idle, int cpu)
  4171. {
  4172. struct rq *rq = cpu_rq(cpu);
  4173. unsigned long flags;
  4174. raw_spin_lock_irqsave(&rq->lock, flags);
  4175. __sched_fork(0, idle);
  4176. idle->state = TASK_RUNNING;
  4177. idle->se.exec_start = sched_clock();
  4178. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4179. /*
  4180. * We're having a chicken and egg problem, even though we are
  4181. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4182. * lockdep check in task_group() will fail.
  4183. *
  4184. * Similar case to sched_fork(). / Alternatively we could
  4185. * use task_rq_lock() here and obtain the other rq->lock.
  4186. *
  4187. * Silence PROVE_RCU
  4188. */
  4189. rcu_read_lock();
  4190. __set_task_cpu(idle, cpu);
  4191. rcu_read_unlock();
  4192. rq->curr = rq->idle = idle;
  4193. idle->on_rq = TASK_ON_RQ_QUEUED;
  4194. #if defined(CONFIG_SMP)
  4195. idle->on_cpu = 1;
  4196. #endif
  4197. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4198. /* Set the preempt count _outside_ the spinlocks! */
  4199. init_idle_preempt_count(idle, cpu);
  4200. /*
  4201. * The idle tasks have their own, simple scheduling class:
  4202. */
  4203. idle->sched_class = &idle_sched_class;
  4204. ftrace_graph_init_idle_task(idle, cpu);
  4205. vtime_init_idle(idle, cpu);
  4206. #if defined(CONFIG_SMP)
  4207. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4208. #endif
  4209. }
  4210. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4211. const struct cpumask *trial)
  4212. {
  4213. int ret = 1, trial_cpus;
  4214. struct dl_bw *cur_dl_b;
  4215. unsigned long flags;
  4216. if (!cpumask_weight(cur))
  4217. return ret;
  4218. rcu_read_lock_sched();
  4219. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4220. trial_cpus = cpumask_weight(trial);
  4221. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4222. if (cur_dl_b->bw != -1 &&
  4223. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4224. ret = 0;
  4225. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4226. rcu_read_unlock_sched();
  4227. return ret;
  4228. }
  4229. int task_can_attach(struct task_struct *p,
  4230. const struct cpumask *cs_cpus_allowed)
  4231. {
  4232. int ret = 0;
  4233. /*
  4234. * Kthreads which disallow setaffinity shouldn't be moved
  4235. * to a new cpuset; we don't want to change their cpu
  4236. * affinity and isolating such threads by their set of
  4237. * allowed nodes is unnecessary. Thus, cpusets are not
  4238. * applicable for such threads. This prevents checking for
  4239. * success of set_cpus_allowed_ptr() on all attached tasks
  4240. * before cpus_allowed may be changed.
  4241. */
  4242. if (p->flags & PF_NO_SETAFFINITY) {
  4243. ret = -EINVAL;
  4244. goto out;
  4245. }
  4246. #ifdef CONFIG_SMP
  4247. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4248. cs_cpus_allowed)) {
  4249. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4250. cs_cpus_allowed);
  4251. struct dl_bw *dl_b;
  4252. bool overflow;
  4253. int cpus;
  4254. unsigned long flags;
  4255. rcu_read_lock_sched();
  4256. dl_b = dl_bw_of(dest_cpu);
  4257. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4258. cpus = dl_bw_cpus(dest_cpu);
  4259. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4260. if (overflow)
  4261. ret = -EBUSY;
  4262. else {
  4263. /*
  4264. * We reserve space for this task in the destination
  4265. * root_domain, as we can't fail after this point.
  4266. * We will free resources in the source root_domain
  4267. * later on (see set_cpus_allowed_dl()).
  4268. */
  4269. __dl_add(dl_b, p->dl.dl_bw);
  4270. }
  4271. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4272. rcu_read_unlock_sched();
  4273. }
  4274. #endif
  4275. out:
  4276. return ret;
  4277. }
  4278. #ifdef CONFIG_SMP
  4279. #ifdef CONFIG_NUMA_BALANCING
  4280. /* Migrate current task p to target_cpu */
  4281. int migrate_task_to(struct task_struct *p, int target_cpu)
  4282. {
  4283. struct migration_arg arg = { p, target_cpu };
  4284. int curr_cpu = task_cpu(p);
  4285. if (curr_cpu == target_cpu)
  4286. return 0;
  4287. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4288. return -EINVAL;
  4289. /* TODO: This is not properly updating schedstats */
  4290. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4291. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4292. }
  4293. /*
  4294. * Requeue a task on a given node and accurately track the number of NUMA
  4295. * tasks on the runqueues
  4296. */
  4297. void sched_setnuma(struct task_struct *p, int nid)
  4298. {
  4299. struct rq *rq;
  4300. unsigned long flags;
  4301. bool queued, running;
  4302. rq = task_rq_lock(p, &flags);
  4303. queued = task_on_rq_queued(p);
  4304. running = task_current(rq, p);
  4305. if (queued)
  4306. dequeue_task(rq, p, 0);
  4307. if (running)
  4308. put_prev_task(rq, p);
  4309. p->numa_preferred_nid = nid;
  4310. if (running)
  4311. p->sched_class->set_curr_task(rq);
  4312. if (queued)
  4313. enqueue_task(rq, p, 0);
  4314. task_rq_unlock(rq, p, &flags);
  4315. }
  4316. #endif /* CONFIG_NUMA_BALANCING */
  4317. #ifdef CONFIG_HOTPLUG_CPU
  4318. /*
  4319. * Ensures that the idle task is using init_mm right before its cpu goes
  4320. * offline.
  4321. */
  4322. void idle_task_exit(void)
  4323. {
  4324. struct mm_struct *mm = current->active_mm;
  4325. BUG_ON(cpu_online(smp_processor_id()));
  4326. if (mm != &init_mm) {
  4327. switch_mm(mm, &init_mm, current);
  4328. finish_arch_post_lock_switch();
  4329. }
  4330. mmdrop(mm);
  4331. }
  4332. /*
  4333. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4334. * we might have. Assumes we're called after migrate_tasks() so that the
  4335. * nr_active count is stable.
  4336. *
  4337. * Also see the comment "Global load-average calculations".
  4338. */
  4339. static void calc_load_migrate(struct rq *rq)
  4340. {
  4341. long delta = calc_load_fold_active(rq);
  4342. if (delta)
  4343. atomic_long_add(delta, &calc_load_tasks);
  4344. }
  4345. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4346. {
  4347. }
  4348. static const struct sched_class fake_sched_class = {
  4349. .put_prev_task = put_prev_task_fake,
  4350. };
  4351. static struct task_struct fake_task = {
  4352. /*
  4353. * Avoid pull_{rt,dl}_task()
  4354. */
  4355. .prio = MAX_PRIO + 1,
  4356. .sched_class = &fake_sched_class,
  4357. };
  4358. /*
  4359. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4360. * try_to_wake_up()->select_task_rq().
  4361. *
  4362. * Called with rq->lock held even though we'er in stop_machine() and
  4363. * there's no concurrency possible, we hold the required locks anyway
  4364. * because of lock validation efforts.
  4365. */
  4366. static void migrate_tasks(struct rq *dead_rq)
  4367. {
  4368. struct rq *rq = dead_rq;
  4369. struct task_struct *next, *stop = rq->stop;
  4370. int dest_cpu;
  4371. /*
  4372. * Fudge the rq selection such that the below task selection loop
  4373. * doesn't get stuck on the currently eligible stop task.
  4374. *
  4375. * We're currently inside stop_machine() and the rq is either stuck
  4376. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4377. * either way we should never end up calling schedule() until we're
  4378. * done here.
  4379. */
  4380. rq->stop = NULL;
  4381. /*
  4382. * put_prev_task() and pick_next_task() sched
  4383. * class method both need to have an up-to-date
  4384. * value of rq->clock[_task]
  4385. */
  4386. update_rq_clock(rq);
  4387. for (;;) {
  4388. /*
  4389. * There's this thread running, bail when that's the only
  4390. * remaining thread.
  4391. */
  4392. if (rq->nr_running == 1)
  4393. break;
  4394. /*
  4395. * Ensure rq->lock covers the entire task selection
  4396. * until the migration.
  4397. */
  4398. lockdep_pin_lock(&rq->lock);
  4399. next = pick_next_task(rq, &fake_task);
  4400. BUG_ON(!next);
  4401. next->sched_class->put_prev_task(rq, next);
  4402. /* Find suitable destination for @next, with force if needed. */
  4403. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4404. lockdep_unpin_lock(&rq->lock);
  4405. rq = __migrate_task(rq, next, dest_cpu);
  4406. if (rq != dead_rq) {
  4407. raw_spin_unlock(&rq->lock);
  4408. rq = dead_rq;
  4409. raw_spin_lock(&rq->lock);
  4410. }
  4411. }
  4412. rq->stop = stop;
  4413. }
  4414. #endif /* CONFIG_HOTPLUG_CPU */
  4415. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4416. static struct ctl_table sd_ctl_dir[] = {
  4417. {
  4418. .procname = "sched_domain",
  4419. .mode = 0555,
  4420. },
  4421. {}
  4422. };
  4423. static struct ctl_table sd_ctl_root[] = {
  4424. {
  4425. .procname = "kernel",
  4426. .mode = 0555,
  4427. .child = sd_ctl_dir,
  4428. },
  4429. {}
  4430. };
  4431. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4432. {
  4433. struct ctl_table *entry =
  4434. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4435. return entry;
  4436. }
  4437. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4438. {
  4439. struct ctl_table *entry;
  4440. /*
  4441. * In the intermediate directories, both the child directory and
  4442. * procname are dynamically allocated and could fail but the mode
  4443. * will always be set. In the lowest directory the names are
  4444. * static strings and all have proc handlers.
  4445. */
  4446. for (entry = *tablep; entry->mode; entry++) {
  4447. if (entry->child)
  4448. sd_free_ctl_entry(&entry->child);
  4449. if (entry->proc_handler == NULL)
  4450. kfree(entry->procname);
  4451. }
  4452. kfree(*tablep);
  4453. *tablep = NULL;
  4454. }
  4455. static int min_load_idx = 0;
  4456. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4457. static void
  4458. set_table_entry(struct ctl_table *entry,
  4459. const char *procname, void *data, int maxlen,
  4460. umode_t mode, proc_handler *proc_handler,
  4461. bool load_idx)
  4462. {
  4463. entry->procname = procname;
  4464. entry->data = data;
  4465. entry->maxlen = maxlen;
  4466. entry->mode = mode;
  4467. entry->proc_handler = proc_handler;
  4468. if (load_idx) {
  4469. entry->extra1 = &min_load_idx;
  4470. entry->extra2 = &max_load_idx;
  4471. }
  4472. }
  4473. static struct ctl_table *
  4474. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4475. {
  4476. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4477. if (table == NULL)
  4478. return NULL;
  4479. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4480. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4481. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4482. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4483. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4484. sizeof(int), 0644, proc_dointvec_minmax, true);
  4485. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4486. sizeof(int), 0644, proc_dointvec_minmax, true);
  4487. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4488. sizeof(int), 0644, proc_dointvec_minmax, true);
  4489. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4490. sizeof(int), 0644, proc_dointvec_minmax, true);
  4491. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4492. sizeof(int), 0644, proc_dointvec_minmax, true);
  4493. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4494. sizeof(int), 0644, proc_dointvec_minmax, false);
  4495. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4496. sizeof(int), 0644, proc_dointvec_minmax, false);
  4497. set_table_entry(&table[9], "cache_nice_tries",
  4498. &sd->cache_nice_tries,
  4499. sizeof(int), 0644, proc_dointvec_minmax, false);
  4500. set_table_entry(&table[10], "flags", &sd->flags,
  4501. sizeof(int), 0644, proc_dointvec_minmax, false);
  4502. set_table_entry(&table[11], "max_newidle_lb_cost",
  4503. &sd->max_newidle_lb_cost,
  4504. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4505. set_table_entry(&table[12], "name", sd->name,
  4506. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4507. /* &table[13] is terminator */
  4508. return table;
  4509. }
  4510. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4511. {
  4512. struct ctl_table *entry, *table;
  4513. struct sched_domain *sd;
  4514. int domain_num = 0, i;
  4515. char buf[32];
  4516. for_each_domain(cpu, sd)
  4517. domain_num++;
  4518. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4519. if (table == NULL)
  4520. return NULL;
  4521. i = 0;
  4522. for_each_domain(cpu, sd) {
  4523. snprintf(buf, 32, "domain%d", i);
  4524. entry->procname = kstrdup(buf, GFP_KERNEL);
  4525. entry->mode = 0555;
  4526. entry->child = sd_alloc_ctl_domain_table(sd);
  4527. entry++;
  4528. i++;
  4529. }
  4530. return table;
  4531. }
  4532. static struct ctl_table_header *sd_sysctl_header;
  4533. static void register_sched_domain_sysctl(void)
  4534. {
  4535. int i, cpu_num = num_possible_cpus();
  4536. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4537. char buf[32];
  4538. WARN_ON(sd_ctl_dir[0].child);
  4539. sd_ctl_dir[0].child = entry;
  4540. if (entry == NULL)
  4541. return;
  4542. for_each_possible_cpu(i) {
  4543. snprintf(buf, 32, "cpu%d", i);
  4544. entry->procname = kstrdup(buf, GFP_KERNEL);
  4545. entry->mode = 0555;
  4546. entry->child = sd_alloc_ctl_cpu_table(i);
  4547. entry++;
  4548. }
  4549. WARN_ON(sd_sysctl_header);
  4550. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4551. }
  4552. /* may be called multiple times per register */
  4553. static void unregister_sched_domain_sysctl(void)
  4554. {
  4555. if (sd_sysctl_header)
  4556. unregister_sysctl_table(sd_sysctl_header);
  4557. sd_sysctl_header = NULL;
  4558. if (sd_ctl_dir[0].child)
  4559. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4560. }
  4561. #else
  4562. static void register_sched_domain_sysctl(void)
  4563. {
  4564. }
  4565. static void unregister_sched_domain_sysctl(void)
  4566. {
  4567. }
  4568. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4569. static void set_rq_online(struct rq *rq)
  4570. {
  4571. if (!rq->online) {
  4572. const struct sched_class *class;
  4573. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4574. rq->online = 1;
  4575. for_each_class(class) {
  4576. if (class->rq_online)
  4577. class->rq_online(rq);
  4578. }
  4579. }
  4580. }
  4581. static void set_rq_offline(struct rq *rq)
  4582. {
  4583. if (rq->online) {
  4584. const struct sched_class *class;
  4585. for_each_class(class) {
  4586. if (class->rq_offline)
  4587. class->rq_offline(rq);
  4588. }
  4589. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4590. rq->online = 0;
  4591. }
  4592. }
  4593. /*
  4594. * migration_call - callback that gets triggered when a CPU is added.
  4595. * Here we can start up the necessary migration thread for the new CPU.
  4596. */
  4597. static int
  4598. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4599. {
  4600. int cpu = (long)hcpu;
  4601. unsigned long flags;
  4602. struct rq *rq = cpu_rq(cpu);
  4603. switch (action & ~CPU_TASKS_FROZEN) {
  4604. case CPU_UP_PREPARE:
  4605. rq->calc_load_update = calc_load_update;
  4606. break;
  4607. case CPU_ONLINE:
  4608. /* Update our root-domain */
  4609. raw_spin_lock_irqsave(&rq->lock, flags);
  4610. if (rq->rd) {
  4611. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4612. set_rq_online(rq);
  4613. }
  4614. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4615. break;
  4616. #ifdef CONFIG_HOTPLUG_CPU
  4617. case CPU_DYING:
  4618. sched_ttwu_pending();
  4619. /* Update our root-domain */
  4620. raw_spin_lock_irqsave(&rq->lock, flags);
  4621. if (rq->rd) {
  4622. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4623. set_rq_offline(rq);
  4624. }
  4625. migrate_tasks(rq);
  4626. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4627. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4628. break;
  4629. case CPU_DEAD:
  4630. calc_load_migrate(rq);
  4631. break;
  4632. #endif
  4633. }
  4634. update_max_interval();
  4635. return NOTIFY_OK;
  4636. }
  4637. /*
  4638. * Register at high priority so that task migration (migrate_all_tasks)
  4639. * happens before everything else. This has to be lower priority than
  4640. * the notifier in the perf_event subsystem, though.
  4641. */
  4642. static struct notifier_block migration_notifier = {
  4643. .notifier_call = migration_call,
  4644. .priority = CPU_PRI_MIGRATION,
  4645. };
  4646. static void set_cpu_rq_start_time(void)
  4647. {
  4648. int cpu = smp_processor_id();
  4649. struct rq *rq = cpu_rq(cpu);
  4650. rq->age_stamp = sched_clock_cpu(cpu);
  4651. }
  4652. static int sched_cpu_active(struct notifier_block *nfb,
  4653. unsigned long action, void *hcpu)
  4654. {
  4655. switch (action & ~CPU_TASKS_FROZEN) {
  4656. case CPU_STARTING:
  4657. set_cpu_rq_start_time();
  4658. return NOTIFY_OK;
  4659. case CPU_DOWN_FAILED:
  4660. set_cpu_active((long)hcpu, true);
  4661. return NOTIFY_OK;
  4662. default:
  4663. return NOTIFY_DONE;
  4664. }
  4665. }
  4666. static int sched_cpu_inactive(struct notifier_block *nfb,
  4667. unsigned long action, void *hcpu)
  4668. {
  4669. switch (action & ~CPU_TASKS_FROZEN) {
  4670. case CPU_DOWN_PREPARE:
  4671. set_cpu_active((long)hcpu, false);
  4672. return NOTIFY_OK;
  4673. default:
  4674. return NOTIFY_DONE;
  4675. }
  4676. }
  4677. static int __init migration_init(void)
  4678. {
  4679. void *cpu = (void *)(long)smp_processor_id();
  4680. int err;
  4681. /* Initialize migration for the boot CPU */
  4682. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4683. BUG_ON(err == NOTIFY_BAD);
  4684. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4685. register_cpu_notifier(&migration_notifier);
  4686. /* Register cpu active notifiers */
  4687. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4688. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4689. return 0;
  4690. }
  4691. early_initcall(migration_init);
  4692. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4693. #ifdef CONFIG_SCHED_DEBUG
  4694. static __read_mostly int sched_debug_enabled;
  4695. static int __init sched_debug_setup(char *str)
  4696. {
  4697. sched_debug_enabled = 1;
  4698. return 0;
  4699. }
  4700. early_param("sched_debug", sched_debug_setup);
  4701. static inline bool sched_debug(void)
  4702. {
  4703. return sched_debug_enabled;
  4704. }
  4705. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4706. struct cpumask *groupmask)
  4707. {
  4708. struct sched_group *group = sd->groups;
  4709. cpumask_clear(groupmask);
  4710. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4711. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4712. printk("does not load-balance\n");
  4713. if (sd->parent)
  4714. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4715. " has parent");
  4716. return -1;
  4717. }
  4718. printk(KERN_CONT "span %*pbl level %s\n",
  4719. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4720. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4721. printk(KERN_ERR "ERROR: domain->span does not contain "
  4722. "CPU%d\n", cpu);
  4723. }
  4724. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4725. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4726. " CPU%d\n", cpu);
  4727. }
  4728. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4729. do {
  4730. if (!group) {
  4731. printk("\n");
  4732. printk(KERN_ERR "ERROR: group is NULL\n");
  4733. break;
  4734. }
  4735. if (!cpumask_weight(sched_group_cpus(group))) {
  4736. printk(KERN_CONT "\n");
  4737. printk(KERN_ERR "ERROR: empty group\n");
  4738. break;
  4739. }
  4740. if (!(sd->flags & SD_OVERLAP) &&
  4741. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4742. printk(KERN_CONT "\n");
  4743. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4744. break;
  4745. }
  4746. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4747. printk(KERN_CONT " %*pbl",
  4748. cpumask_pr_args(sched_group_cpus(group)));
  4749. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4750. printk(KERN_CONT " (cpu_capacity = %d)",
  4751. group->sgc->capacity);
  4752. }
  4753. group = group->next;
  4754. } while (group != sd->groups);
  4755. printk(KERN_CONT "\n");
  4756. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4757. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4758. if (sd->parent &&
  4759. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4760. printk(KERN_ERR "ERROR: parent span is not a superset "
  4761. "of domain->span\n");
  4762. return 0;
  4763. }
  4764. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4765. {
  4766. int level = 0;
  4767. if (!sched_debug_enabled)
  4768. return;
  4769. if (!sd) {
  4770. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4771. return;
  4772. }
  4773. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4774. for (;;) {
  4775. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4776. break;
  4777. level++;
  4778. sd = sd->parent;
  4779. if (!sd)
  4780. break;
  4781. }
  4782. }
  4783. #else /* !CONFIG_SCHED_DEBUG */
  4784. # define sched_domain_debug(sd, cpu) do { } while (0)
  4785. static inline bool sched_debug(void)
  4786. {
  4787. return false;
  4788. }
  4789. #endif /* CONFIG_SCHED_DEBUG */
  4790. static int sd_degenerate(struct sched_domain *sd)
  4791. {
  4792. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4793. return 1;
  4794. /* Following flags need at least 2 groups */
  4795. if (sd->flags & (SD_LOAD_BALANCE |
  4796. SD_BALANCE_NEWIDLE |
  4797. SD_BALANCE_FORK |
  4798. SD_BALANCE_EXEC |
  4799. SD_SHARE_CPUCAPACITY |
  4800. SD_SHARE_PKG_RESOURCES |
  4801. SD_SHARE_POWERDOMAIN)) {
  4802. if (sd->groups != sd->groups->next)
  4803. return 0;
  4804. }
  4805. /* Following flags don't use groups */
  4806. if (sd->flags & (SD_WAKE_AFFINE))
  4807. return 0;
  4808. return 1;
  4809. }
  4810. static int
  4811. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4812. {
  4813. unsigned long cflags = sd->flags, pflags = parent->flags;
  4814. if (sd_degenerate(parent))
  4815. return 1;
  4816. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4817. return 0;
  4818. /* Flags needing groups don't count if only 1 group in parent */
  4819. if (parent->groups == parent->groups->next) {
  4820. pflags &= ~(SD_LOAD_BALANCE |
  4821. SD_BALANCE_NEWIDLE |
  4822. SD_BALANCE_FORK |
  4823. SD_BALANCE_EXEC |
  4824. SD_SHARE_CPUCAPACITY |
  4825. SD_SHARE_PKG_RESOURCES |
  4826. SD_PREFER_SIBLING |
  4827. SD_SHARE_POWERDOMAIN);
  4828. if (nr_node_ids == 1)
  4829. pflags &= ~SD_SERIALIZE;
  4830. }
  4831. if (~cflags & pflags)
  4832. return 0;
  4833. return 1;
  4834. }
  4835. static void free_rootdomain(struct rcu_head *rcu)
  4836. {
  4837. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4838. cpupri_cleanup(&rd->cpupri);
  4839. cpudl_cleanup(&rd->cpudl);
  4840. free_cpumask_var(rd->dlo_mask);
  4841. free_cpumask_var(rd->rto_mask);
  4842. free_cpumask_var(rd->online);
  4843. free_cpumask_var(rd->span);
  4844. kfree(rd);
  4845. }
  4846. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4847. {
  4848. struct root_domain *old_rd = NULL;
  4849. unsigned long flags;
  4850. raw_spin_lock_irqsave(&rq->lock, flags);
  4851. if (rq->rd) {
  4852. old_rd = rq->rd;
  4853. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4854. set_rq_offline(rq);
  4855. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4856. /*
  4857. * If we dont want to free the old_rd yet then
  4858. * set old_rd to NULL to skip the freeing later
  4859. * in this function:
  4860. */
  4861. if (!atomic_dec_and_test(&old_rd->refcount))
  4862. old_rd = NULL;
  4863. }
  4864. atomic_inc(&rd->refcount);
  4865. rq->rd = rd;
  4866. cpumask_set_cpu(rq->cpu, rd->span);
  4867. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4868. set_rq_online(rq);
  4869. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4870. if (old_rd)
  4871. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4872. }
  4873. static int init_rootdomain(struct root_domain *rd)
  4874. {
  4875. memset(rd, 0, sizeof(*rd));
  4876. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4877. goto out;
  4878. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4879. goto free_span;
  4880. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4881. goto free_online;
  4882. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4883. goto free_dlo_mask;
  4884. init_dl_bw(&rd->dl_bw);
  4885. if (cpudl_init(&rd->cpudl) != 0)
  4886. goto free_dlo_mask;
  4887. if (cpupri_init(&rd->cpupri) != 0)
  4888. goto free_rto_mask;
  4889. return 0;
  4890. free_rto_mask:
  4891. free_cpumask_var(rd->rto_mask);
  4892. free_dlo_mask:
  4893. free_cpumask_var(rd->dlo_mask);
  4894. free_online:
  4895. free_cpumask_var(rd->online);
  4896. free_span:
  4897. free_cpumask_var(rd->span);
  4898. out:
  4899. return -ENOMEM;
  4900. }
  4901. /*
  4902. * By default the system creates a single root-domain with all cpus as
  4903. * members (mimicking the global state we have today).
  4904. */
  4905. struct root_domain def_root_domain;
  4906. static void init_defrootdomain(void)
  4907. {
  4908. init_rootdomain(&def_root_domain);
  4909. atomic_set(&def_root_domain.refcount, 1);
  4910. }
  4911. static struct root_domain *alloc_rootdomain(void)
  4912. {
  4913. struct root_domain *rd;
  4914. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4915. if (!rd)
  4916. return NULL;
  4917. if (init_rootdomain(rd) != 0) {
  4918. kfree(rd);
  4919. return NULL;
  4920. }
  4921. return rd;
  4922. }
  4923. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4924. {
  4925. struct sched_group *tmp, *first;
  4926. if (!sg)
  4927. return;
  4928. first = sg;
  4929. do {
  4930. tmp = sg->next;
  4931. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4932. kfree(sg->sgc);
  4933. kfree(sg);
  4934. sg = tmp;
  4935. } while (sg != first);
  4936. }
  4937. static void free_sched_domain(struct rcu_head *rcu)
  4938. {
  4939. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4940. /*
  4941. * If its an overlapping domain it has private groups, iterate and
  4942. * nuke them all.
  4943. */
  4944. if (sd->flags & SD_OVERLAP) {
  4945. free_sched_groups(sd->groups, 1);
  4946. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4947. kfree(sd->groups->sgc);
  4948. kfree(sd->groups);
  4949. }
  4950. kfree(sd);
  4951. }
  4952. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4953. {
  4954. call_rcu(&sd->rcu, free_sched_domain);
  4955. }
  4956. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4957. {
  4958. for (; sd; sd = sd->parent)
  4959. destroy_sched_domain(sd, cpu);
  4960. }
  4961. /*
  4962. * Keep a special pointer to the highest sched_domain that has
  4963. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4964. * allows us to avoid some pointer chasing select_idle_sibling().
  4965. *
  4966. * Also keep a unique ID per domain (we use the first cpu number in
  4967. * the cpumask of the domain), this allows us to quickly tell if
  4968. * two cpus are in the same cache domain, see cpus_share_cache().
  4969. */
  4970. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4971. DEFINE_PER_CPU(int, sd_llc_size);
  4972. DEFINE_PER_CPU(int, sd_llc_id);
  4973. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4974. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4975. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4976. static void update_top_cache_domain(int cpu)
  4977. {
  4978. struct sched_domain *sd;
  4979. struct sched_domain *busy_sd = NULL;
  4980. int id = cpu;
  4981. int size = 1;
  4982. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4983. if (sd) {
  4984. id = cpumask_first(sched_domain_span(sd));
  4985. size = cpumask_weight(sched_domain_span(sd));
  4986. busy_sd = sd->parent; /* sd_busy */
  4987. }
  4988. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4989. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4990. per_cpu(sd_llc_size, cpu) = size;
  4991. per_cpu(sd_llc_id, cpu) = id;
  4992. sd = lowest_flag_domain(cpu, SD_NUMA);
  4993. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4994. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4995. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4996. }
  4997. /*
  4998. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4999. * hold the hotplug lock.
  5000. */
  5001. static void
  5002. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5003. {
  5004. struct rq *rq = cpu_rq(cpu);
  5005. struct sched_domain *tmp;
  5006. /* Remove the sched domains which do not contribute to scheduling. */
  5007. for (tmp = sd; tmp; ) {
  5008. struct sched_domain *parent = tmp->parent;
  5009. if (!parent)
  5010. break;
  5011. if (sd_parent_degenerate(tmp, parent)) {
  5012. tmp->parent = parent->parent;
  5013. if (parent->parent)
  5014. parent->parent->child = tmp;
  5015. /*
  5016. * Transfer SD_PREFER_SIBLING down in case of a
  5017. * degenerate parent; the spans match for this
  5018. * so the property transfers.
  5019. */
  5020. if (parent->flags & SD_PREFER_SIBLING)
  5021. tmp->flags |= SD_PREFER_SIBLING;
  5022. destroy_sched_domain(parent, cpu);
  5023. } else
  5024. tmp = tmp->parent;
  5025. }
  5026. if (sd && sd_degenerate(sd)) {
  5027. tmp = sd;
  5028. sd = sd->parent;
  5029. destroy_sched_domain(tmp, cpu);
  5030. if (sd)
  5031. sd->child = NULL;
  5032. }
  5033. sched_domain_debug(sd, cpu);
  5034. rq_attach_root(rq, rd);
  5035. tmp = rq->sd;
  5036. rcu_assign_pointer(rq->sd, sd);
  5037. destroy_sched_domains(tmp, cpu);
  5038. update_top_cache_domain(cpu);
  5039. }
  5040. /* Setup the mask of cpus configured for isolated domains */
  5041. static int __init isolated_cpu_setup(char *str)
  5042. {
  5043. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5044. cpulist_parse(str, cpu_isolated_map);
  5045. return 1;
  5046. }
  5047. __setup("isolcpus=", isolated_cpu_setup);
  5048. struct s_data {
  5049. struct sched_domain ** __percpu sd;
  5050. struct root_domain *rd;
  5051. };
  5052. enum s_alloc {
  5053. sa_rootdomain,
  5054. sa_sd,
  5055. sa_sd_storage,
  5056. sa_none,
  5057. };
  5058. /*
  5059. * Build an iteration mask that can exclude certain CPUs from the upwards
  5060. * domain traversal.
  5061. *
  5062. * Asymmetric node setups can result in situations where the domain tree is of
  5063. * unequal depth, make sure to skip domains that already cover the entire
  5064. * range.
  5065. *
  5066. * In that case build_sched_domains() will have terminated the iteration early
  5067. * and our sibling sd spans will be empty. Domains should always include the
  5068. * cpu they're built on, so check that.
  5069. *
  5070. */
  5071. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5072. {
  5073. const struct cpumask *span = sched_domain_span(sd);
  5074. struct sd_data *sdd = sd->private;
  5075. struct sched_domain *sibling;
  5076. int i;
  5077. for_each_cpu(i, span) {
  5078. sibling = *per_cpu_ptr(sdd->sd, i);
  5079. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5080. continue;
  5081. cpumask_set_cpu(i, sched_group_mask(sg));
  5082. }
  5083. }
  5084. /*
  5085. * Return the canonical balance cpu for this group, this is the first cpu
  5086. * of this group that's also in the iteration mask.
  5087. */
  5088. int group_balance_cpu(struct sched_group *sg)
  5089. {
  5090. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5091. }
  5092. static int
  5093. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5094. {
  5095. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5096. const struct cpumask *span = sched_domain_span(sd);
  5097. struct cpumask *covered = sched_domains_tmpmask;
  5098. struct sd_data *sdd = sd->private;
  5099. struct sched_domain *sibling;
  5100. int i;
  5101. cpumask_clear(covered);
  5102. for_each_cpu(i, span) {
  5103. struct cpumask *sg_span;
  5104. if (cpumask_test_cpu(i, covered))
  5105. continue;
  5106. sibling = *per_cpu_ptr(sdd->sd, i);
  5107. /* See the comment near build_group_mask(). */
  5108. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5109. continue;
  5110. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5111. GFP_KERNEL, cpu_to_node(cpu));
  5112. if (!sg)
  5113. goto fail;
  5114. sg_span = sched_group_cpus(sg);
  5115. if (sibling->child)
  5116. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5117. else
  5118. cpumask_set_cpu(i, sg_span);
  5119. cpumask_or(covered, covered, sg_span);
  5120. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5121. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5122. build_group_mask(sd, sg);
  5123. /*
  5124. * Initialize sgc->capacity such that even if we mess up the
  5125. * domains and no possible iteration will get us here, we won't
  5126. * die on a /0 trap.
  5127. */
  5128. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5129. /*
  5130. * Make sure the first group of this domain contains the
  5131. * canonical balance cpu. Otherwise the sched_domain iteration
  5132. * breaks. See update_sg_lb_stats().
  5133. */
  5134. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5135. group_balance_cpu(sg) == cpu)
  5136. groups = sg;
  5137. if (!first)
  5138. first = sg;
  5139. if (last)
  5140. last->next = sg;
  5141. last = sg;
  5142. last->next = first;
  5143. }
  5144. sd->groups = groups;
  5145. return 0;
  5146. fail:
  5147. free_sched_groups(first, 0);
  5148. return -ENOMEM;
  5149. }
  5150. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5151. {
  5152. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5153. struct sched_domain *child = sd->child;
  5154. if (child)
  5155. cpu = cpumask_first(sched_domain_span(child));
  5156. if (sg) {
  5157. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5158. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5159. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5160. }
  5161. return cpu;
  5162. }
  5163. /*
  5164. * build_sched_groups will build a circular linked list of the groups
  5165. * covered by the given span, and will set each group's ->cpumask correctly,
  5166. * and ->cpu_capacity to 0.
  5167. *
  5168. * Assumes the sched_domain tree is fully constructed
  5169. */
  5170. static int
  5171. build_sched_groups(struct sched_domain *sd, int cpu)
  5172. {
  5173. struct sched_group *first = NULL, *last = NULL;
  5174. struct sd_data *sdd = sd->private;
  5175. const struct cpumask *span = sched_domain_span(sd);
  5176. struct cpumask *covered;
  5177. int i;
  5178. get_group(cpu, sdd, &sd->groups);
  5179. atomic_inc(&sd->groups->ref);
  5180. if (cpu != cpumask_first(span))
  5181. return 0;
  5182. lockdep_assert_held(&sched_domains_mutex);
  5183. covered = sched_domains_tmpmask;
  5184. cpumask_clear(covered);
  5185. for_each_cpu(i, span) {
  5186. struct sched_group *sg;
  5187. int group, j;
  5188. if (cpumask_test_cpu(i, covered))
  5189. continue;
  5190. group = get_group(i, sdd, &sg);
  5191. cpumask_setall(sched_group_mask(sg));
  5192. for_each_cpu(j, span) {
  5193. if (get_group(j, sdd, NULL) != group)
  5194. continue;
  5195. cpumask_set_cpu(j, covered);
  5196. cpumask_set_cpu(j, sched_group_cpus(sg));
  5197. }
  5198. if (!first)
  5199. first = sg;
  5200. if (last)
  5201. last->next = sg;
  5202. last = sg;
  5203. }
  5204. last->next = first;
  5205. return 0;
  5206. }
  5207. /*
  5208. * Initialize sched groups cpu_capacity.
  5209. *
  5210. * cpu_capacity indicates the capacity of sched group, which is used while
  5211. * distributing the load between different sched groups in a sched domain.
  5212. * Typically cpu_capacity for all the groups in a sched domain will be same
  5213. * unless there are asymmetries in the topology. If there are asymmetries,
  5214. * group having more cpu_capacity will pickup more load compared to the
  5215. * group having less cpu_capacity.
  5216. */
  5217. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5218. {
  5219. struct sched_group *sg = sd->groups;
  5220. WARN_ON(!sg);
  5221. do {
  5222. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5223. sg = sg->next;
  5224. } while (sg != sd->groups);
  5225. if (cpu != group_balance_cpu(sg))
  5226. return;
  5227. update_group_capacity(sd, cpu);
  5228. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5229. }
  5230. /*
  5231. * Initializers for schedule domains
  5232. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5233. */
  5234. static int default_relax_domain_level = -1;
  5235. int sched_domain_level_max;
  5236. static int __init setup_relax_domain_level(char *str)
  5237. {
  5238. if (kstrtoint(str, 0, &default_relax_domain_level))
  5239. pr_warn("Unable to set relax_domain_level\n");
  5240. return 1;
  5241. }
  5242. __setup("relax_domain_level=", setup_relax_domain_level);
  5243. static void set_domain_attribute(struct sched_domain *sd,
  5244. struct sched_domain_attr *attr)
  5245. {
  5246. int request;
  5247. if (!attr || attr->relax_domain_level < 0) {
  5248. if (default_relax_domain_level < 0)
  5249. return;
  5250. else
  5251. request = default_relax_domain_level;
  5252. } else
  5253. request = attr->relax_domain_level;
  5254. if (request < sd->level) {
  5255. /* turn off idle balance on this domain */
  5256. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5257. } else {
  5258. /* turn on idle balance on this domain */
  5259. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5260. }
  5261. }
  5262. static void __sdt_free(const struct cpumask *cpu_map);
  5263. static int __sdt_alloc(const struct cpumask *cpu_map);
  5264. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5265. const struct cpumask *cpu_map)
  5266. {
  5267. switch (what) {
  5268. case sa_rootdomain:
  5269. if (!atomic_read(&d->rd->refcount))
  5270. free_rootdomain(&d->rd->rcu); /* fall through */
  5271. case sa_sd:
  5272. free_percpu(d->sd); /* fall through */
  5273. case sa_sd_storage:
  5274. __sdt_free(cpu_map); /* fall through */
  5275. case sa_none:
  5276. break;
  5277. }
  5278. }
  5279. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5280. const struct cpumask *cpu_map)
  5281. {
  5282. memset(d, 0, sizeof(*d));
  5283. if (__sdt_alloc(cpu_map))
  5284. return sa_sd_storage;
  5285. d->sd = alloc_percpu(struct sched_domain *);
  5286. if (!d->sd)
  5287. return sa_sd_storage;
  5288. d->rd = alloc_rootdomain();
  5289. if (!d->rd)
  5290. return sa_sd;
  5291. return sa_rootdomain;
  5292. }
  5293. /*
  5294. * NULL the sd_data elements we've used to build the sched_domain and
  5295. * sched_group structure so that the subsequent __free_domain_allocs()
  5296. * will not free the data we're using.
  5297. */
  5298. static void claim_allocations(int cpu, struct sched_domain *sd)
  5299. {
  5300. struct sd_data *sdd = sd->private;
  5301. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5302. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5303. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5304. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5305. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5306. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5307. }
  5308. #ifdef CONFIG_NUMA
  5309. static int sched_domains_numa_levels;
  5310. enum numa_topology_type sched_numa_topology_type;
  5311. static int *sched_domains_numa_distance;
  5312. int sched_max_numa_distance;
  5313. static struct cpumask ***sched_domains_numa_masks;
  5314. static int sched_domains_curr_level;
  5315. #endif
  5316. /*
  5317. * SD_flags allowed in topology descriptions.
  5318. *
  5319. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5320. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5321. * SD_NUMA - describes NUMA topologies
  5322. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5323. *
  5324. * Odd one out:
  5325. * SD_ASYM_PACKING - describes SMT quirks
  5326. */
  5327. #define TOPOLOGY_SD_FLAGS \
  5328. (SD_SHARE_CPUCAPACITY | \
  5329. SD_SHARE_PKG_RESOURCES | \
  5330. SD_NUMA | \
  5331. SD_ASYM_PACKING | \
  5332. SD_SHARE_POWERDOMAIN)
  5333. static struct sched_domain *
  5334. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5335. {
  5336. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5337. int sd_weight, sd_flags = 0;
  5338. #ifdef CONFIG_NUMA
  5339. /*
  5340. * Ugly hack to pass state to sd_numa_mask()...
  5341. */
  5342. sched_domains_curr_level = tl->numa_level;
  5343. #endif
  5344. sd_weight = cpumask_weight(tl->mask(cpu));
  5345. if (tl->sd_flags)
  5346. sd_flags = (*tl->sd_flags)();
  5347. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5348. "wrong sd_flags in topology description\n"))
  5349. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5350. *sd = (struct sched_domain){
  5351. .min_interval = sd_weight,
  5352. .max_interval = 2*sd_weight,
  5353. .busy_factor = 32,
  5354. .imbalance_pct = 125,
  5355. .cache_nice_tries = 0,
  5356. .busy_idx = 0,
  5357. .idle_idx = 0,
  5358. .newidle_idx = 0,
  5359. .wake_idx = 0,
  5360. .forkexec_idx = 0,
  5361. .flags = 1*SD_LOAD_BALANCE
  5362. | 1*SD_BALANCE_NEWIDLE
  5363. | 1*SD_BALANCE_EXEC
  5364. | 1*SD_BALANCE_FORK
  5365. | 0*SD_BALANCE_WAKE
  5366. | 1*SD_WAKE_AFFINE
  5367. | 0*SD_SHARE_CPUCAPACITY
  5368. | 0*SD_SHARE_PKG_RESOURCES
  5369. | 0*SD_SERIALIZE
  5370. | 0*SD_PREFER_SIBLING
  5371. | 0*SD_NUMA
  5372. | sd_flags
  5373. ,
  5374. .last_balance = jiffies,
  5375. .balance_interval = sd_weight,
  5376. .smt_gain = 0,
  5377. .max_newidle_lb_cost = 0,
  5378. .next_decay_max_lb_cost = jiffies,
  5379. #ifdef CONFIG_SCHED_DEBUG
  5380. .name = tl->name,
  5381. #endif
  5382. };
  5383. /*
  5384. * Convert topological properties into behaviour.
  5385. */
  5386. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5387. sd->flags |= SD_PREFER_SIBLING;
  5388. sd->imbalance_pct = 110;
  5389. sd->smt_gain = 1178; /* ~15% */
  5390. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5391. sd->imbalance_pct = 117;
  5392. sd->cache_nice_tries = 1;
  5393. sd->busy_idx = 2;
  5394. #ifdef CONFIG_NUMA
  5395. } else if (sd->flags & SD_NUMA) {
  5396. sd->cache_nice_tries = 2;
  5397. sd->busy_idx = 3;
  5398. sd->idle_idx = 2;
  5399. sd->flags |= SD_SERIALIZE;
  5400. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5401. sd->flags &= ~(SD_BALANCE_EXEC |
  5402. SD_BALANCE_FORK |
  5403. SD_WAKE_AFFINE);
  5404. }
  5405. #endif
  5406. } else {
  5407. sd->flags |= SD_PREFER_SIBLING;
  5408. sd->cache_nice_tries = 1;
  5409. sd->busy_idx = 2;
  5410. sd->idle_idx = 1;
  5411. }
  5412. sd->private = &tl->data;
  5413. return sd;
  5414. }
  5415. /*
  5416. * Topology list, bottom-up.
  5417. */
  5418. static struct sched_domain_topology_level default_topology[] = {
  5419. #ifdef CONFIG_SCHED_SMT
  5420. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5421. #endif
  5422. #ifdef CONFIG_SCHED_MC
  5423. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5424. #endif
  5425. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5426. { NULL, },
  5427. };
  5428. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5429. #define for_each_sd_topology(tl) \
  5430. for (tl = sched_domain_topology; tl->mask; tl++)
  5431. void set_sched_topology(struct sched_domain_topology_level *tl)
  5432. {
  5433. sched_domain_topology = tl;
  5434. }
  5435. #ifdef CONFIG_NUMA
  5436. static const struct cpumask *sd_numa_mask(int cpu)
  5437. {
  5438. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5439. }
  5440. static void sched_numa_warn(const char *str)
  5441. {
  5442. static int done = false;
  5443. int i,j;
  5444. if (done)
  5445. return;
  5446. done = true;
  5447. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5448. for (i = 0; i < nr_node_ids; i++) {
  5449. printk(KERN_WARNING " ");
  5450. for (j = 0; j < nr_node_ids; j++)
  5451. printk(KERN_CONT "%02d ", node_distance(i,j));
  5452. printk(KERN_CONT "\n");
  5453. }
  5454. printk(KERN_WARNING "\n");
  5455. }
  5456. bool find_numa_distance(int distance)
  5457. {
  5458. int i;
  5459. if (distance == node_distance(0, 0))
  5460. return true;
  5461. for (i = 0; i < sched_domains_numa_levels; i++) {
  5462. if (sched_domains_numa_distance[i] == distance)
  5463. return true;
  5464. }
  5465. return false;
  5466. }
  5467. /*
  5468. * A system can have three types of NUMA topology:
  5469. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5470. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5471. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5472. *
  5473. * The difference between a glueless mesh topology and a backplane
  5474. * topology lies in whether communication between not directly
  5475. * connected nodes goes through intermediary nodes (where programs
  5476. * could run), or through backplane controllers. This affects
  5477. * placement of programs.
  5478. *
  5479. * The type of topology can be discerned with the following tests:
  5480. * - If the maximum distance between any nodes is 1 hop, the system
  5481. * is directly connected.
  5482. * - If for two nodes A and B, located N > 1 hops away from each other,
  5483. * there is an intermediary node C, which is < N hops away from both
  5484. * nodes A and B, the system is a glueless mesh.
  5485. */
  5486. static void init_numa_topology_type(void)
  5487. {
  5488. int a, b, c, n;
  5489. n = sched_max_numa_distance;
  5490. if (n <= 1)
  5491. sched_numa_topology_type = NUMA_DIRECT;
  5492. for_each_online_node(a) {
  5493. for_each_online_node(b) {
  5494. /* Find two nodes furthest removed from each other. */
  5495. if (node_distance(a, b) < n)
  5496. continue;
  5497. /* Is there an intermediary node between a and b? */
  5498. for_each_online_node(c) {
  5499. if (node_distance(a, c) < n &&
  5500. node_distance(b, c) < n) {
  5501. sched_numa_topology_type =
  5502. NUMA_GLUELESS_MESH;
  5503. return;
  5504. }
  5505. }
  5506. sched_numa_topology_type = NUMA_BACKPLANE;
  5507. return;
  5508. }
  5509. }
  5510. }
  5511. static void sched_init_numa(void)
  5512. {
  5513. int next_distance, curr_distance = node_distance(0, 0);
  5514. struct sched_domain_topology_level *tl;
  5515. int level = 0;
  5516. int i, j, k;
  5517. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5518. if (!sched_domains_numa_distance)
  5519. return;
  5520. /*
  5521. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5522. * unique distances in the node_distance() table.
  5523. *
  5524. * Assumes node_distance(0,j) includes all distances in
  5525. * node_distance(i,j) in order to avoid cubic time.
  5526. */
  5527. next_distance = curr_distance;
  5528. for (i = 0; i < nr_node_ids; i++) {
  5529. for (j = 0; j < nr_node_ids; j++) {
  5530. for (k = 0; k < nr_node_ids; k++) {
  5531. int distance = node_distance(i, k);
  5532. if (distance > curr_distance &&
  5533. (distance < next_distance ||
  5534. next_distance == curr_distance))
  5535. next_distance = distance;
  5536. /*
  5537. * While not a strong assumption it would be nice to know
  5538. * about cases where if node A is connected to B, B is not
  5539. * equally connected to A.
  5540. */
  5541. if (sched_debug() && node_distance(k, i) != distance)
  5542. sched_numa_warn("Node-distance not symmetric");
  5543. if (sched_debug() && i && !find_numa_distance(distance))
  5544. sched_numa_warn("Node-0 not representative");
  5545. }
  5546. if (next_distance != curr_distance) {
  5547. sched_domains_numa_distance[level++] = next_distance;
  5548. sched_domains_numa_levels = level;
  5549. curr_distance = next_distance;
  5550. } else break;
  5551. }
  5552. /*
  5553. * In case of sched_debug() we verify the above assumption.
  5554. */
  5555. if (!sched_debug())
  5556. break;
  5557. }
  5558. if (!level)
  5559. return;
  5560. /*
  5561. * 'level' contains the number of unique distances, excluding the
  5562. * identity distance node_distance(i,i).
  5563. *
  5564. * The sched_domains_numa_distance[] array includes the actual distance
  5565. * numbers.
  5566. */
  5567. /*
  5568. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5569. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5570. * the array will contain less then 'level' members. This could be
  5571. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5572. * in other functions.
  5573. *
  5574. * We reset it to 'level' at the end of this function.
  5575. */
  5576. sched_domains_numa_levels = 0;
  5577. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5578. if (!sched_domains_numa_masks)
  5579. return;
  5580. /*
  5581. * Now for each level, construct a mask per node which contains all
  5582. * cpus of nodes that are that many hops away from us.
  5583. */
  5584. for (i = 0; i < level; i++) {
  5585. sched_domains_numa_masks[i] =
  5586. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5587. if (!sched_domains_numa_masks[i])
  5588. return;
  5589. for (j = 0; j < nr_node_ids; j++) {
  5590. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5591. if (!mask)
  5592. return;
  5593. sched_domains_numa_masks[i][j] = mask;
  5594. for (k = 0; k < nr_node_ids; k++) {
  5595. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5596. continue;
  5597. cpumask_or(mask, mask, cpumask_of_node(k));
  5598. }
  5599. }
  5600. }
  5601. /* Compute default topology size */
  5602. for (i = 0; sched_domain_topology[i].mask; i++);
  5603. tl = kzalloc((i + level + 1) *
  5604. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5605. if (!tl)
  5606. return;
  5607. /*
  5608. * Copy the default topology bits..
  5609. */
  5610. for (i = 0; sched_domain_topology[i].mask; i++)
  5611. tl[i] = sched_domain_topology[i];
  5612. /*
  5613. * .. and append 'j' levels of NUMA goodness.
  5614. */
  5615. for (j = 0; j < level; i++, j++) {
  5616. tl[i] = (struct sched_domain_topology_level){
  5617. .mask = sd_numa_mask,
  5618. .sd_flags = cpu_numa_flags,
  5619. .flags = SDTL_OVERLAP,
  5620. .numa_level = j,
  5621. SD_INIT_NAME(NUMA)
  5622. };
  5623. }
  5624. sched_domain_topology = tl;
  5625. sched_domains_numa_levels = level;
  5626. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5627. init_numa_topology_type();
  5628. }
  5629. static void sched_domains_numa_masks_set(int cpu)
  5630. {
  5631. int i, j;
  5632. int node = cpu_to_node(cpu);
  5633. for (i = 0; i < sched_domains_numa_levels; i++) {
  5634. for (j = 0; j < nr_node_ids; j++) {
  5635. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5636. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5637. }
  5638. }
  5639. }
  5640. static void sched_domains_numa_masks_clear(int cpu)
  5641. {
  5642. int i, j;
  5643. for (i = 0; i < sched_domains_numa_levels; i++) {
  5644. for (j = 0; j < nr_node_ids; j++)
  5645. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5646. }
  5647. }
  5648. /*
  5649. * Update sched_domains_numa_masks[level][node] array when new cpus
  5650. * are onlined.
  5651. */
  5652. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5653. unsigned long action,
  5654. void *hcpu)
  5655. {
  5656. int cpu = (long)hcpu;
  5657. switch (action & ~CPU_TASKS_FROZEN) {
  5658. case CPU_ONLINE:
  5659. sched_domains_numa_masks_set(cpu);
  5660. break;
  5661. case CPU_DEAD:
  5662. sched_domains_numa_masks_clear(cpu);
  5663. break;
  5664. default:
  5665. return NOTIFY_DONE;
  5666. }
  5667. return NOTIFY_OK;
  5668. }
  5669. #else
  5670. static inline void sched_init_numa(void)
  5671. {
  5672. }
  5673. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5674. unsigned long action,
  5675. void *hcpu)
  5676. {
  5677. return 0;
  5678. }
  5679. #endif /* CONFIG_NUMA */
  5680. static int __sdt_alloc(const struct cpumask *cpu_map)
  5681. {
  5682. struct sched_domain_topology_level *tl;
  5683. int j;
  5684. for_each_sd_topology(tl) {
  5685. struct sd_data *sdd = &tl->data;
  5686. sdd->sd = alloc_percpu(struct sched_domain *);
  5687. if (!sdd->sd)
  5688. return -ENOMEM;
  5689. sdd->sg = alloc_percpu(struct sched_group *);
  5690. if (!sdd->sg)
  5691. return -ENOMEM;
  5692. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5693. if (!sdd->sgc)
  5694. return -ENOMEM;
  5695. for_each_cpu(j, cpu_map) {
  5696. struct sched_domain *sd;
  5697. struct sched_group *sg;
  5698. struct sched_group_capacity *sgc;
  5699. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5700. GFP_KERNEL, cpu_to_node(j));
  5701. if (!sd)
  5702. return -ENOMEM;
  5703. *per_cpu_ptr(sdd->sd, j) = sd;
  5704. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5705. GFP_KERNEL, cpu_to_node(j));
  5706. if (!sg)
  5707. return -ENOMEM;
  5708. sg->next = sg;
  5709. *per_cpu_ptr(sdd->sg, j) = sg;
  5710. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5711. GFP_KERNEL, cpu_to_node(j));
  5712. if (!sgc)
  5713. return -ENOMEM;
  5714. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5715. }
  5716. }
  5717. return 0;
  5718. }
  5719. static void __sdt_free(const struct cpumask *cpu_map)
  5720. {
  5721. struct sched_domain_topology_level *tl;
  5722. int j;
  5723. for_each_sd_topology(tl) {
  5724. struct sd_data *sdd = &tl->data;
  5725. for_each_cpu(j, cpu_map) {
  5726. struct sched_domain *sd;
  5727. if (sdd->sd) {
  5728. sd = *per_cpu_ptr(sdd->sd, j);
  5729. if (sd && (sd->flags & SD_OVERLAP))
  5730. free_sched_groups(sd->groups, 0);
  5731. kfree(*per_cpu_ptr(sdd->sd, j));
  5732. }
  5733. if (sdd->sg)
  5734. kfree(*per_cpu_ptr(sdd->sg, j));
  5735. if (sdd->sgc)
  5736. kfree(*per_cpu_ptr(sdd->sgc, j));
  5737. }
  5738. free_percpu(sdd->sd);
  5739. sdd->sd = NULL;
  5740. free_percpu(sdd->sg);
  5741. sdd->sg = NULL;
  5742. free_percpu(sdd->sgc);
  5743. sdd->sgc = NULL;
  5744. }
  5745. }
  5746. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5747. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5748. struct sched_domain *child, int cpu)
  5749. {
  5750. struct sched_domain *sd = sd_init(tl, cpu);
  5751. if (!sd)
  5752. return child;
  5753. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5754. if (child) {
  5755. sd->level = child->level + 1;
  5756. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5757. child->parent = sd;
  5758. sd->child = child;
  5759. if (!cpumask_subset(sched_domain_span(child),
  5760. sched_domain_span(sd))) {
  5761. pr_err("BUG: arch topology borken\n");
  5762. #ifdef CONFIG_SCHED_DEBUG
  5763. pr_err(" the %s domain not a subset of the %s domain\n",
  5764. child->name, sd->name);
  5765. #endif
  5766. /* Fixup, ensure @sd has at least @child cpus. */
  5767. cpumask_or(sched_domain_span(sd),
  5768. sched_domain_span(sd),
  5769. sched_domain_span(child));
  5770. }
  5771. }
  5772. set_domain_attribute(sd, attr);
  5773. return sd;
  5774. }
  5775. /*
  5776. * Build sched domains for a given set of cpus and attach the sched domains
  5777. * to the individual cpus
  5778. */
  5779. static int build_sched_domains(const struct cpumask *cpu_map,
  5780. struct sched_domain_attr *attr)
  5781. {
  5782. enum s_alloc alloc_state;
  5783. struct sched_domain *sd;
  5784. struct s_data d;
  5785. int i, ret = -ENOMEM;
  5786. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5787. if (alloc_state != sa_rootdomain)
  5788. goto error;
  5789. /* Set up domains for cpus specified by the cpu_map. */
  5790. for_each_cpu(i, cpu_map) {
  5791. struct sched_domain_topology_level *tl;
  5792. sd = NULL;
  5793. for_each_sd_topology(tl) {
  5794. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5795. if (tl == sched_domain_topology)
  5796. *per_cpu_ptr(d.sd, i) = sd;
  5797. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5798. sd->flags |= SD_OVERLAP;
  5799. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5800. break;
  5801. }
  5802. }
  5803. /* Build the groups for the domains */
  5804. for_each_cpu(i, cpu_map) {
  5805. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5806. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5807. if (sd->flags & SD_OVERLAP) {
  5808. if (build_overlap_sched_groups(sd, i))
  5809. goto error;
  5810. } else {
  5811. if (build_sched_groups(sd, i))
  5812. goto error;
  5813. }
  5814. }
  5815. }
  5816. /* Calculate CPU capacity for physical packages and nodes */
  5817. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5818. if (!cpumask_test_cpu(i, cpu_map))
  5819. continue;
  5820. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5821. claim_allocations(i, sd);
  5822. init_sched_groups_capacity(i, sd);
  5823. }
  5824. }
  5825. /* Attach the domains */
  5826. rcu_read_lock();
  5827. for_each_cpu(i, cpu_map) {
  5828. sd = *per_cpu_ptr(d.sd, i);
  5829. cpu_attach_domain(sd, d.rd, i);
  5830. }
  5831. rcu_read_unlock();
  5832. ret = 0;
  5833. error:
  5834. __free_domain_allocs(&d, alloc_state, cpu_map);
  5835. return ret;
  5836. }
  5837. static cpumask_var_t *doms_cur; /* current sched domains */
  5838. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5839. static struct sched_domain_attr *dattr_cur;
  5840. /* attribues of custom domains in 'doms_cur' */
  5841. /*
  5842. * Special case: If a kmalloc of a doms_cur partition (array of
  5843. * cpumask) fails, then fallback to a single sched domain,
  5844. * as determined by the single cpumask fallback_doms.
  5845. */
  5846. static cpumask_var_t fallback_doms;
  5847. /*
  5848. * arch_update_cpu_topology lets virtualized architectures update the
  5849. * cpu core maps. It is supposed to return 1 if the topology changed
  5850. * or 0 if it stayed the same.
  5851. */
  5852. int __weak arch_update_cpu_topology(void)
  5853. {
  5854. return 0;
  5855. }
  5856. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5857. {
  5858. int i;
  5859. cpumask_var_t *doms;
  5860. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5861. if (!doms)
  5862. return NULL;
  5863. for (i = 0; i < ndoms; i++) {
  5864. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5865. free_sched_domains(doms, i);
  5866. return NULL;
  5867. }
  5868. }
  5869. return doms;
  5870. }
  5871. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5872. {
  5873. unsigned int i;
  5874. for (i = 0; i < ndoms; i++)
  5875. free_cpumask_var(doms[i]);
  5876. kfree(doms);
  5877. }
  5878. /*
  5879. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5880. * For now this just excludes isolated cpus, but could be used to
  5881. * exclude other special cases in the future.
  5882. */
  5883. static int init_sched_domains(const struct cpumask *cpu_map)
  5884. {
  5885. int err;
  5886. arch_update_cpu_topology();
  5887. ndoms_cur = 1;
  5888. doms_cur = alloc_sched_domains(ndoms_cur);
  5889. if (!doms_cur)
  5890. doms_cur = &fallback_doms;
  5891. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5892. err = build_sched_domains(doms_cur[0], NULL);
  5893. register_sched_domain_sysctl();
  5894. return err;
  5895. }
  5896. /*
  5897. * Detach sched domains from a group of cpus specified in cpu_map
  5898. * These cpus will now be attached to the NULL domain
  5899. */
  5900. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5901. {
  5902. int i;
  5903. rcu_read_lock();
  5904. for_each_cpu(i, cpu_map)
  5905. cpu_attach_domain(NULL, &def_root_domain, i);
  5906. rcu_read_unlock();
  5907. }
  5908. /* handle null as "default" */
  5909. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5910. struct sched_domain_attr *new, int idx_new)
  5911. {
  5912. struct sched_domain_attr tmp;
  5913. /* fast path */
  5914. if (!new && !cur)
  5915. return 1;
  5916. tmp = SD_ATTR_INIT;
  5917. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5918. new ? (new + idx_new) : &tmp,
  5919. sizeof(struct sched_domain_attr));
  5920. }
  5921. /*
  5922. * Partition sched domains as specified by the 'ndoms_new'
  5923. * cpumasks in the array doms_new[] of cpumasks. This compares
  5924. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5925. * It destroys each deleted domain and builds each new domain.
  5926. *
  5927. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5928. * The masks don't intersect (don't overlap.) We should setup one
  5929. * sched domain for each mask. CPUs not in any of the cpumasks will
  5930. * not be load balanced. If the same cpumask appears both in the
  5931. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5932. * it as it is.
  5933. *
  5934. * The passed in 'doms_new' should be allocated using
  5935. * alloc_sched_domains. This routine takes ownership of it and will
  5936. * free_sched_domains it when done with it. If the caller failed the
  5937. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5938. * and partition_sched_domains() will fallback to the single partition
  5939. * 'fallback_doms', it also forces the domains to be rebuilt.
  5940. *
  5941. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5942. * ndoms_new == 0 is a special case for destroying existing domains,
  5943. * and it will not create the default domain.
  5944. *
  5945. * Call with hotplug lock held
  5946. */
  5947. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5948. struct sched_domain_attr *dattr_new)
  5949. {
  5950. int i, j, n;
  5951. int new_topology;
  5952. mutex_lock(&sched_domains_mutex);
  5953. /* always unregister in case we don't destroy any domains */
  5954. unregister_sched_domain_sysctl();
  5955. /* Let architecture update cpu core mappings. */
  5956. new_topology = arch_update_cpu_topology();
  5957. n = doms_new ? ndoms_new : 0;
  5958. /* Destroy deleted domains */
  5959. for (i = 0; i < ndoms_cur; i++) {
  5960. for (j = 0; j < n && !new_topology; j++) {
  5961. if (cpumask_equal(doms_cur[i], doms_new[j])
  5962. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5963. goto match1;
  5964. }
  5965. /* no match - a current sched domain not in new doms_new[] */
  5966. detach_destroy_domains(doms_cur[i]);
  5967. match1:
  5968. ;
  5969. }
  5970. n = ndoms_cur;
  5971. if (doms_new == NULL) {
  5972. n = 0;
  5973. doms_new = &fallback_doms;
  5974. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5975. WARN_ON_ONCE(dattr_new);
  5976. }
  5977. /* Build new domains */
  5978. for (i = 0; i < ndoms_new; i++) {
  5979. for (j = 0; j < n && !new_topology; j++) {
  5980. if (cpumask_equal(doms_new[i], doms_cur[j])
  5981. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5982. goto match2;
  5983. }
  5984. /* no match - add a new doms_new */
  5985. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5986. match2:
  5987. ;
  5988. }
  5989. /* Remember the new sched domains */
  5990. if (doms_cur != &fallback_doms)
  5991. free_sched_domains(doms_cur, ndoms_cur);
  5992. kfree(dattr_cur); /* kfree(NULL) is safe */
  5993. doms_cur = doms_new;
  5994. dattr_cur = dattr_new;
  5995. ndoms_cur = ndoms_new;
  5996. register_sched_domain_sysctl();
  5997. mutex_unlock(&sched_domains_mutex);
  5998. }
  5999. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6000. /*
  6001. * Update cpusets according to cpu_active mask. If cpusets are
  6002. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6003. * around partition_sched_domains().
  6004. *
  6005. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6006. * want to restore it back to its original state upon resume anyway.
  6007. */
  6008. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6009. void *hcpu)
  6010. {
  6011. switch (action) {
  6012. case CPU_ONLINE_FROZEN:
  6013. case CPU_DOWN_FAILED_FROZEN:
  6014. /*
  6015. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6016. * resume sequence. As long as this is not the last online
  6017. * operation in the resume sequence, just build a single sched
  6018. * domain, ignoring cpusets.
  6019. */
  6020. num_cpus_frozen--;
  6021. if (likely(num_cpus_frozen)) {
  6022. partition_sched_domains(1, NULL, NULL);
  6023. break;
  6024. }
  6025. /*
  6026. * This is the last CPU online operation. So fall through and
  6027. * restore the original sched domains by considering the
  6028. * cpuset configurations.
  6029. */
  6030. case CPU_ONLINE:
  6031. cpuset_update_active_cpus(true);
  6032. break;
  6033. default:
  6034. return NOTIFY_DONE;
  6035. }
  6036. return NOTIFY_OK;
  6037. }
  6038. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6039. void *hcpu)
  6040. {
  6041. unsigned long flags;
  6042. long cpu = (long)hcpu;
  6043. struct dl_bw *dl_b;
  6044. bool overflow;
  6045. int cpus;
  6046. switch (action) {
  6047. case CPU_DOWN_PREPARE:
  6048. rcu_read_lock_sched();
  6049. dl_b = dl_bw_of(cpu);
  6050. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6051. cpus = dl_bw_cpus(cpu);
  6052. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6053. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6054. rcu_read_unlock_sched();
  6055. if (overflow)
  6056. return notifier_from_errno(-EBUSY);
  6057. cpuset_update_active_cpus(false);
  6058. break;
  6059. case CPU_DOWN_PREPARE_FROZEN:
  6060. num_cpus_frozen++;
  6061. partition_sched_domains(1, NULL, NULL);
  6062. break;
  6063. default:
  6064. return NOTIFY_DONE;
  6065. }
  6066. return NOTIFY_OK;
  6067. }
  6068. void __init sched_init_smp(void)
  6069. {
  6070. cpumask_var_t non_isolated_cpus;
  6071. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6072. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6073. /* nohz_full won't take effect without isolating the cpus. */
  6074. tick_nohz_full_add_cpus_to(cpu_isolated_map);
  6075. sched_init_numa();
  6076. /*
  6077. * There's no userspace yet to cause hotplug operations; hence all the
  6078. * cpu masks are stable and all blatant races in the below code cannot
  6079. * happen.
  6080. */
  6081. mutex_lock(&sched_domains_mutex);
  6082. init_sched_domains(cpu_active_mask);
  6083. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6084. if (cpumask_empty(non_isolated_cpus))
  6085. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6086. mutex_unlock(&sched_domains_mutex);
  6087. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6088. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6089. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6090. init_hrtick();
  6091. /* Move init over to a non-isolated CPU */
  6092. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6093. BUG();
  6094. sched_init_granularity();
  6095. free_cpumask_var(non_isolated_cpus);
  6096. init_sched_rt_class();
  6097. init_sched_dl_class();
  6098. }
  6099. #else
  6100. void __init sched_init_smp(void)
  6101. {
  6102. sched_init_granularity();
  6103. }
  6104. #endif /* CONFIG_SMP */
  6105. int in_sched_functions(unsigned long addr)
  6106. {
  6107. return in_lock_functions(addr) ||
  6108. (addr >= (unsigned long)__sched_text_start
  6109. && addr < (unsigned long)__sched_text_end);
  6110. }
  6111. #ifdef CONFIG_CGROUP_SCHED
  6112. /*
  6113. * Default task group.
  6114. * Every task in system belongs to this group at bootup.
  6115. */
  6116. struct task_group root_task_group;
  6117. LIST_HEAD(task_groups);
  6118. #endif
  6119. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6120. void __init sched_init(void)
  6121. {
  6122. int i, j;
  6123. unsigned long alloc_size = 0, ptr;
  6124. #ifdef CONFIG_FAIR_GROUP_SCHED
  6125. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6126. #endif
  6127. #ifdef CONFIG_RT_GROUP_SCHED
  6128. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6129. #endif
  6130. if (alloc_size) {
  6131. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6132. #ifdef CONFIG_FAIR_GROUP_SCHED
  6133. root_task_group.se = (struct sched_entity **)ptr;
  6134. ptr += nr_cpu_ids * sizeof(void **);
  6135. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6136. ptr += nr_cpu_ids * sizeof(void **);
  6137. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6138. #ifdef CONFIG_RT_GROUP_SCHED
  6139. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6140. ptr += nr_cpu_ids * sizeof(void **);
  6141. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6142. ptr += nr_cpu_ids * sizeof(void **);
  6143. #endif /* CONFIG_RT_GROUP_SCHED */
  6144. }
  6145. #ifdef CONFIG_CPUMASK_OFFSTACK
  6146. for_each_possible_cpu(i) {
  6147. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6148. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6149. }
  6150. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6151. init_rt_bandwidth(&def_rt_bandwidth,
  6152. global_rt_period(), global_rt_runtime());
  6153. init_dl_bandwidth(&def_dl_bandwidth,
  6154. global_rt_period(), global_rt_runtime());
  6155. #ifdef CONFIG_SMP
  6156. init_defrootdomain();
  6157. #endif
  6158. #ifdef CONFIG_RT_GROUP_SCHED
  6159. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6160. global_rt_period(), global_rt_runtime());
  6161. #endif /* CONFIG_RT_GROUP_SCHED */
  6162. #ifdef CONFIG_CGROUP_SCHED
  6163. list_add(&root_task_group.list, &task_groups);
  6164. INIT_LIST_HEAD(&root_task_group.children);
  6165. INIT_LIST_HEAD(&root_task_group.siblings);
  6166. autogroup_init(&init_task);
  6167. #endif /* CONFIG_CGROUP_SCHED */
  6168. for_each_possible_cpu(i) {
  6169. struct rq *rq;
  6170. rq = cpu_rq(i);
  6171. raw_spin_lock_init(&rq->lock);
  6172. rq->nr_running = 0;
  6173. rq->calc_load_active = 0;
  6174. rq->calc_load_update = jiffies + LOAD_FREQ;
  6175. init_cfs_rq(&rq->cfs);
  6176. init_rt_rq(&rq->rt);
  6177. init_dl_rq(&rq->dl);
  6178. #ifdef CONFIG_FAIR_GROUP_SCHED
  6179. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6180. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6181. /*
  6182. * How much cpu bandwidth does root_task_group get?
  6183. *
  6184. * In case of task-groups formed thr' the cgroup filesystem, it
  6185. * gets 100% of the cpu resources in the system. This overall
  6186. * system cpu resource is divided among the tasks of
  6187. * root_task_group and its child task-groups in a fair manner,
  6188. * based on each entity's (task or task-group's) weight
  6189. * (se->load.weight).
  6190. *
  6191. * In other words, if root_task_group has 10 tasks of weight
  6192. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6193. * then A0's share of the cpu resource is:
  6194. *
  6195. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6196. *
  6197. * We achieve this by letting root_task_group's tasks sit
  6198. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6199. */
  6200. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6201. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6202. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6203. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6204. #ifdef CONFIG_RT_GROUP_SCHED
  6205. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6206. #endif
  6207. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6208. rq->cpu_load[j] = 0;
  6209. rq->last_load_update_tick = jiffies;
  6210. #ifdef CONFIG_SMP
  6211. rq->sd = NULL;
  6212. rq->rd = NULL;
  6213. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6214. rq->balance_callback = NULL;
  6215. rq->active_balance = 0;
  6216. rq->next_balance = jiffies;
  6217. rq->push_cpu = 0;
  6218. rq->cpu = i;
  6219. rq->online = 0;
  6220. rq->idle_stamp = 0;
  6221. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6222. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6223. INIT_LIST_HEAD(&rq->cfs_tasks);
  6224. rq_attach_root(rq, &def_root_domain);
  6225. #ifdef CONFIG_NO_HZ_COMMON
  6226. rq->nohz_flags = 0;
  6227. #endif
  6228. #ifdef CONFIG_NO_HZ_FULL
  6229. rq->last_sched_tick = 0;
  6230. #endif
  6231. #endif
  6232. init_rq_hrtick(rq);
  6233. atomic_set(&rq->nr_iowait, 0);
  6234. }
  6235. set_load_weight(&init_task);
  6236. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6237. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6238. #endif
  6239. /*
  6240. * The boot idle thread does lazy MMU switching as well:
  6241. */
  6242. atomic_inc(&init_mm.mm_count);
  6243. enter_lazy_tlb(&init_mm, current);
  6244. /*
  6245. * During early bootup we pretend to be a normal task:
  6246. */
  6247. current->sched_class = &fair_sched_class;
  6248. /*
  6249. * Make us the idle thread. Technically, schedule() should not be
  6250. * called from this thread, however somewhere below it might be,
  6251. * but because we are the idle thread, we just pick up running again
  6252. * when this runqueue becomes "idle".
  6253. */
  6254. init_idle(current, smp_processor_id());
  6255. calc_load_update = jiffies + LOAD_FREQ;
  6256. #ifdef CONFIG_SMP
  6257. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6258. /* May be allocated at isolcpus cmdline parse time */
  6259. if (cpu_isolated_map == NULL)
  6260. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6261. idle_thread_set_boot_cpu();
  6262. set_cpu_rq_start_time();
  6263. #endif
  6264. init_sched_fair_class();
  6265. scheduler_running = 1;
  6266. }
  6267. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6268. static inline int preempt_count_equals(int preempt_offset)
  6269. {
  6270. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6271. return (nested == preempt_offset);
  6272. }
  6273. void __might_sleep(const char *file, int line, int preempt_offset)
  6274. {
  6275. /*
  6276. * Blocking primitives will set (and therefore destroy) current->state,
  6277. * since we will exit with TASK_RUNNING make sure we enter with it,
  6278. * otherwise we will destroy state.
  6279. */
  6280. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6281. "do not call blocking ops when !TASK_RUNNING; "
  6282. "state=%lx set at [<%p>] %pS\n",
  6283. current->state,
  6284. (void *)current->task_state_change,
  6285. (void *)current->task_state_change);
  6286. ___might_sleep(file, line, preempt_offset);
  6287. }
  6288. EXPORT_SYMBOL(__might_sleep);
  6289. void ___might_sleep(const char *file, int line, int preempt_offset)
  6290. {
  6291. static unsigned long prev_jiffy; /* ratelimiting */
  6292. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6293. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6294. !is_idle_task(current)) ||
  6295. system_state != SYSTEM_RUNNING || oops_in_progress)
  6296. return;
  6297. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6298. return;
  6299. prev_jiffy = jiffies;
  6300. printk(KERN_ERR
  6301. "BUG: sleeping function called from invalid context at %s:%d\n",
  6302. file, line);
  6303. printk(KERN_ERR
  6304. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6305. in_atomic(), irqs_disabled(),
  6306. current->pid, current->comm);
  6307. if (task_stack_end_corrupted(current))
  6308. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6309. debug_show_held_locks(current);
  6310. if (irqs_disabled())
  6311. print_irqtrace_events(current);
  6312. #ifdef CONFIG_DEBUG_PREEMPT
  6313. if (!preempt_count_equals(preempt_offset)) {
  6314. pr_err("Preemption disabled at:");
  6315. print_ip_sym(current->preempt_disable_ip);
  6316. pr_cont("\n");
  6317. }
  6318. #endif
  6319. dump_stack();
  6320. }
  6321. EXPORT_SYMBOL(___might_sleep);
  6322. #endif
  6323. #ifdef CONFIG_MAGIC_SYSRQ
  6324. void normalize_rt_tasks(void)
  6325. {
  6326. struct task_struct *g, *p;
  6327. struct sched_attr attr = {
  6328. .sched_policy = SCHED_NORMAL,
  6329. };
  6330. read_lock(&tasklist_lock);
  6331. for_each_process_thread(g, p) {
  6332. /*
  6333. * Only normalize user tasks:
  6334. */
  6335. if (p->flags & PF_KTHREAD)
  6336. continue;
  6337. p->se.exec_start = 0;
  6338. #ifdef CONFIG_SCHEDSTATS
  6339. p->se.statistics.wait_start = 0;
  6340. p->se.statistics.sleep_start = 0;
  6341. p->se.statistics.block_start = 0;
  6342. #endif
  6343. if (!dl_task(p) && !rt_task(p)) {
  6344. /*
  6345. * Renice negative nice level userspace
  6346. * tasks back to 0:
  6347. */
  6348. if (task_nice(p) < 0)
  6349. set_user_nice(p, 0);
  6350. continue;
  6351. }
  6352. __sched_setscheduler(p, &attr, false, false);
  6353. }
  6354. read_unlock(&tasklist_lock);
  6355. }
  6356. #endif /* CONFIG_MAGIC_SYSRQ */
  6357. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6358. /*
  6359. * These functions are only useful for the IA64 MCA handling, or kdb.
  6360. *
  6361. * They can only be called when the whole system has been
  6362. * stopped - every CPU needs to be quiescent, and no scheduling
  6363. * activity can take place. Using them for anything else would
  6364. * be a serious bug, and as a result, they aren't even visible
  6365. * under any other configuration.
  6366. */
  6367. /**
  6368. * curr_task - return the current task for a given cpu.
  6369. * @cpu: the processor in question.
  6370. *
  6371. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6372. *
  6373. * Return: The current task for @cpu.
  6374. */
  6375. struct task_struct *curr_task(int cpu)
  6376. {
  6377. return cpu_curr(cpu);
  6378. }
  6379. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6380. #ifdef CONFIG_IA64
  6381. /**
  6382. * set_curr_task - set the current task for a given cpu.
  6383. * @cpu: the processor in question.
  6384. * @p: the task pointer to set.
  6385. *
  6386. * Description: This function must only be used when non-maskable interrupts
  6387. * are serviced on a separate stack. It allows the architecture to switch the
  6388. * notion of the current task on a cpu in a non-blocking manner. This function
  6389. * must be called with all CPU's synchronized, and interrupts disabled, the
  6390. * and caller must save the original value of the current task (see
  6391. * curr_task() above) and restore that value before reenabling interrupts and
  6392. * re-starting the system.
  6393. *
  6394. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6395. */
  6396. void set_curr_task(int cpu, struct task_struct *p)
  6397. {
  6398. cpu_curr(cpu) = p;
  6399. }
  6400. #endif
  6401. #ifdef CONFIG_CGROUP_SCHED
  6402. /* task_group_lock serializes the addition/removal of task groups */
  6403. static DEFINE_SPINLOCK(task_group_lock);
  6404. static void free_sched_group(struct task_group *tg)
  6405. {
  6406. free_fair_sched_group(tg);
  6407. free_rt_sched_group(tg);
  6408. autogroup_free(tg);
  6409. kfree(tg);
  6410. }
  6411. /* allocate runqueue etc for a new task group */
  6412. struct task_group *sched_create_group(struct task_group *parent)
  6413. {
  6414. struct task_group *tg;
  6415. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6416. if (!tg)
  6417. return ERR_PTR(-ENOMEM);
  6418. if (!alloc_fair_sched_group(tg, parent))
  6419. goto err;
  6420. if (!alloc_rt_sched_group(tg, parent))
  6421. goto err;
  6422. return tg;
  6423. err:
  6424. free_sched_group(tg);
  6425. return ERR_PTR(-ENOMEM);
  6426. }
  6427. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6428. {
  6429. unsigned long flags;
  6430. spin_lock_irqsave(&task_group_lock, flags);
  6431. list_add_rcu(&tg->list, &task_groups);
  6432. WARN_ON(!parent); /* root should already exist */
  6433. tg->parent = parent;
  6434. INIT_LIST_HEAD(&tg->children);
  6435. list_add_rcu(&tg->siblings, &parent->children);
  6436. spin_unlock_irqrestore(&task_group_lock, flags);
  6437. }
  6438. /* rcu callback to free various structures associated with a task group */
  6439. static void free_sched_group_rcu(struct rcu_head *rhp)
  6440. {
  6441. /* now it should be safe to free those cfs_rqs */
  6442. free_sched_group(container_of(rhp, struct task_group, rcu));
  6443. }
  6444. /* Destroy runqueue etc associated with a task group */
  6445. void sched_destroy_group(struct task_group *tg)
  6446. {
  6447. /* wait for possible concurrent references to cfs_rqs complete */
  6448. call_rcu(&tg->rcu, free_sched_group_rcu);
  6449. }
  6450. void sched_offline_group(struct task_group *tg)
  6451. {
  6452. unsigned long flags;
  6453. int i;
  6454. /* end participation in shares distribution */
  6455. for_each_possible_cpu(i)
  6456. unregister_fair_sched_group(tg, i);
  6457. spin_lock_irqsave(&task_group_lock, flags);
  6458. list_del_rcu(&tg->list);
  6459. list_del_rcu(&tg->siblings);
  6460. spin_unlock_irqrestore(&task_group_lock, flags);
  6461. }
  6462. /* change task's runqueue when it moves between groups.
  6463. * The caller of this function should have put the task in its new group
  6464. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6465. * reflect its new group.
  6466. */
  6467. void sched_move_task(struct task_struct *tsk)
  6468. {
  6469. struct task_group *tg;
  6470. int queued, running;
  6471. unsigned long flags;
  6472. struct rq *rq;
  6473. rq = task_rq_lock(tsk, &flags);
  6474. running = task_current(rq, tsk);
  6475. queued = task_on_rq_queued(tsk);
  6476. if (queued)
  6477. dequeue_task(rq, tsk, 0);
  6478. if (unlikely(running))
  6479. put_prev_task(rq, tsk);
  6480. /*
  6481. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6482. * which is pointless here. Thus, we pass "true" to task_css_check()
  6483. * to prevent lockdep warnings.
  6484. */
  6485. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6486. struct task_group, css);
  6487. tg = autogroup_task_group(tsk, tg);
  6488. tsk->sched_task_group = tg;
  6489. #ifdef CONFIG_FAIR_GROUP_SCHED
  6490. if (tsk->sched_class->task_move_group)
  6491. tsk->sched_class->task_move_group(tsk, queued);
  6492. else
  6493. #endif
  6494. set_task_rq(tsk, task_cpu(tsk));
  6495. if (unlikely(running))
  6496. tsk->sched_class->set_curr_task(rq);
  6497. if (queued)
  6498. enqueue_task(rq, tsk, 0);
  6499. task_rq_unlock(rq, tsk, &flags);
  6500. }
  6501. #endif /* CONFIG_CGROUP_SCHED */
  6502. #ifdef CONFIG_RT_GROUP_SCHED
  6503. /*
  6504. * Ensure that the real time constraints are schedulable.
  6505. */
  6506. static DEFINE_MUTEX(rt_constraints_mutex);
  6507. /* Must be called with tasklist_lock held */
  6508. static inline int tg_has_rt_tasks(struct task_group *tg)
  6509. {
  6510. struct task_struct *g, *p;
  6511. /*
  6512. * Autogroups do not have RT tasks; see autogroup_create().
  6513. */
  6514. if (task_group_is_autogroup(tg))
  6515. return 0;
  6516. for_each_process_thread(g, p) {
  6517. if (rt_task(p) && task_group(p) == tg)
  6518. return 1;
  6519. }
  6520. return 0;
  6521. }
  6522. struct rt_schedulable_data {
  6523. struct task_group *tg;
  6524. u64 rt_period;
  6525. u64 rt_runtime;
  6526. };
  6527. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6528. {
  6529. struct rt_schedulable_data *d = data;
  6530. struct task_group *child;
  6531. unsigned long total, sum = 0;
  6532. u64 period, runtime;
  6533. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6534. runtime = tg->rt_bandwidth.rt_runtime;
  6535. if (tg == d->tg) {
  6536. period = d->rt_period;
  6537. runtime = d->rt_runtime;
  6538. }
  6539. /*
  6540. * Cannot have more runtime than the period.
  6541. */
  6542. if (runtime > period && runtime != RUNTIME_INF)
  6543. return -EINVAL;
  6544. /*
  6545. * Ensure we don't starve existing RT tasks.
  6546. */
  6547. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6548. return -EBUSY;
  6549. total = to_ratio(period, runtime);
  6550. /*
  6551. * Nobody can have more than the global setting allows.
  6552. */
  6553. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6554. return -EINVAL;
  6555. /*
  6556. * The sum of our children's runtime should not exceed our own.
  6557. */
  6558. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6559. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6560. runtime = child->rt_bandwidth.rt_runtime;
  6561. if (child == d->tg) {
  6562. period = d->rt_period;
  6563. runtime = d->rt_runtime;
  6564. }
  6565. sum += to_ratio(period, runtime);
  6566. }
  6567. if (sum > total)
  6568. return -EINVAL;
  6569. return 0;
  6570. }
  6571. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6572. {
  6573. int ret;
  6574. struct rt_schedulable_data data = {
  6575. .tg = tg,
  6576. .rt_period = period,
  6577. .rt_runtime = runtime,
  6578. };
  6579. rcu_read_lock();
  6580. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6581. rcu_read_unlock();
  6582. return ret;
  6583. }
  6584. static int tg_set_rt_bandwidth(struct task_group *tg,
  6585. u64 rt_period, u64 rt_runtime)
  6586. {
  6587. int i, err = 0;
  6588. /*
  6589. * Disallowing the root group RT runtime is BAD, it would disallow the
  6590. * kernel creating (and or operating) RT threads.
  6591. */
  6592. if (tg == &root_task_group && rt_runtime == 0)
  6593. return -EINVAL;
  6594. /* No period doesn't make any sense. */
  6595. if (rt_period == 0)
  6596. return -EINVAL;
  6597. mutex_lock(&rt_constraints_mutex);
  6598. read_lock(&tasklist_lock);
  6599. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6600. if (err)
  6601. goto unlock;
  6602. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6603. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6604. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6605. for_each_possible_cpu(i) {
  6606. struct rt_rq *rt_rq = tg->rt_rq[i];
  6607. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6608. rt_rq->rt_runtime = rt_runtime;
  6609. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6610. }
  6611. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6612. unlock:
  6613. read_unlock(&tasklist_lock);
  6614. mutex_unlock(&rt_constraints_mutex);
  6615. return err;
  6616. }
  6617. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6618. {
  6619. u64 rt_runtime, rt_period;
  6620. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6621. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6622. if (rt_runtime_us < 0)
  6623. rt_runtime = RUNTIME_INF;
  6624. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6625. }
  6626. static long sched_group_rt_runtime(struct task_group *tg)
  6627. {
  6628. u64 rt_runtime_us;
  6629. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6630. return -1;
  6631. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6632. do_div(rt_runtime_us, NSEC_PER_USEC);
  6633. return rt_runtime_us;
  6634. }
  6635. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6636. {
  6637. u64 rt_runtime, rt_period;
  6638. rt_period = rt_period_us * NSEC_PER_USEC;
  6639. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6640. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6641. }
  6642. static long sched_group_rt_period(struct task_group *tg)
  6643. {
  6644. u64 rt_period_us;
  6645. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6646. do_div(rt_period_us, NSEC_PER_USEC);
  6647. return rt_period_us;
  6648. }
  6649. #endif /* CONFIG_RT_GROUP_SCHED */
  6650. #ifdef CONFIG_RT_GROUP_SCHED
  6651. static int sched_rt_global_constraints(void)
  6652. {
  6653. int ret = 0;
  6654. mutex_lock(&rt_constraints_mutex);
  6655. read_lock(&tasklist_lock);
  6656. ret = __rt_schedulable(NULL, 0, 0);
  6657. read_unlock(&tasklist_lock);
  6658. mutex_unlock(&rt_constraints_mutex);
  6659. return ret;
  6660. }
  6661. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6662. {
  6663. /* Don't accept realtime tasks when there is no way for them to run */
  6664. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6665. return 0;
  6666. return 1;
  6667. }
  6668. #else /* !CONFIG_RT_GROUP_SCHED */
  6669. static int sched_rt_global_constraints(void)
  6670. {
  6671. unsigned long flags;
  6672. int i, ret = 0;
  6673. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6674. for_each_possible_cpu(i) {
  6675. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6676. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6677. rt_rq->rt_runtime = global_rt_runtime();
  6678. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6679. }
  6680. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6681. return ret;
  6682. }
  6683. #endif /* CONFIG_RT_GROUP_SCHED */
  6684. static int sched_dl_global_validate(void)
  6685. {
  6686. u64 runtime = global_rt_runtime();
  6687. u64 period = global_rt_period();
  6688. u64 new_bw = to_ratio(period, runtime);
  6689. struct dl_bw *dl_b;
  6690. int cpu, ret = 0;
  6691. unsigned long flags;
  6692. /*
  6693. * Here we want to check the bandwidth not being set to some
  6694. * value smaller than the currently allocated bandwidth in
  6695. * any of the root_domains.
  6696. *
  6697. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6698. * cycling on root_domains... Discussion on different/better
  6699. * solutions is welcome!
  6700. */
  6701. for_each_possible_cpu(cpu) {
  6702. rcu_read_lock_sched();
  6703. dl_b = dl_bw_of(cpu);
  6704. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6705. if (new_bw < dl_b->total_bw)
  6706. ret = -EBUSY;
  6707. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6708. rcu_read_unlock_sched();
  6709. if (ret)
  6710. break;
  6711. }
  6712. return ret;
  6713. }
  6714. static void sched_dl_do_global(void)
  6715. {
  6716. u64 new_bw = -1;
  6717. struct dl_bw *dl_b;
  6718. int cpu;
  6719. unsigned long flags;
  6720. def_dl_bandwidth.dl_period = global_rt_period();
  6721. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6722. if (global_rt_runtime() != RUNTIME_INF)
  6723. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6724. /*
  6725. * FIXME: As above...
  6726. */
  6727. for_each_possible_cpu(cpu) {
  6728. rcu_read_lock_sched();
  6729. dl_b = dl_bw_of(cpu);
  6730. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6731. dl_b->bw = new_bw;
  6732. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6733. rcu_read_unlock_sched();
  6734. }
  6735. }
  6736. static int sched_rt_global_validate(void)
  6737. {
  6738. if (sysctl_sched_rt_period <= 0)
  6739. return -EINVAL;
  6740. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6741. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6742. return -EINVAL;
  6743. return 0;
  6744. }
  6745. static void sched_rt_do_global(void)
  6746. {
  6747. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6748. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6749. }
  6750. int sched_rt_handler(struct ctl_table *table, int write,
  6751. void __user *buffer, size_t *lenp,
  6752. loff_t *ppos)
  6753. {
  6754. int old_period, old_runtime;
  6755. static DEFINE_MUTEX(mutex);
  6756. int ret;
  6757. mutex_lock(&mutex);
  6758. old_period = sysctl_sched_rt_period;
  6759. old_runtime = sysctl_sched_rt_runtime;
  6760. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6761. if (!ret && write) {
  6762. ret = sched_rt_global_validate();
  6763. if (ret)
  6764. goto undo;
  6765. ret = sched_dl_global_validate();
  6766. if (ret)
  6767. goto undo;
  6768. ret = sched_rt_global_constraints();
  6769. if (ret)
  6770. goto undo;
  6771. sched_rt_do_global();
  6772. sched_dl_do_global();
  6773. }
  6774. if (0) {
  6775. undo:
  6776. sysctl_sched_rt_period = old_period;
  6777. sysctl_sched_rt_runtime = old_runtime;
  6778. }
  6779. mutex_unlock(&mutex);
  6780. return ret;
  6781. }
  6782. int sched_rr_handler(struct ctl_table *table, int write,
  6783. void __user *buffer, size_t *lenp,
  6784. loff_t *ppos)
  6785. {
  6786. int ret;
  6787. static DEFINE_MUTEX(mutex);
  6788. mutex_lock(&mutex);
  6789. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6790. /* make sure that internally we keep jiffies */
  6791. /* also, writing zero resets timeslice to default */
  6792. if (!ret && write) {
  6793. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6794. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6795. }
  6796. mutex_unlock(&mutex);
  6797. return ret;
  6798. }
  6799. #ifdef CONFIG_CGROUP_SCHED
  6800. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6801. {
  6802. return css ? container_of(css, struct task_group, css) : NULL;
  6803. }
  6804. static struct cgroup_subsys_state *
  6805. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6806. {
  6807. struct task_group *parent = css_tg(parent_css);
  6808. struct task_group *tg;
  6809. if (!parent) {
  6810. /* This is early initialization for the top cgroup */
  6811. return &root_task_group.css;
  6812. }
  6813. tg = sched_create_group(parent);
  6814. if (IS_ERR(tg))
  6815. return ERR_PTR(-ENOMEM);
  6816. return &tg->css;
  6817. }
  6818. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6819. {
  6820. struct task_group *tg = css_tg(css);
  6821. struct task_group *parent = css_tg(css->parent);
  6822. if (parent)
  6823. sched_online_group(tg, parent);
  6824. return 0;
  6825. }
  6826. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6827. {
  6828. struct task_group *tg = css_tg(css);
  6829. sched_destroy_group(tg);
  6830. }
  6831. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6832. {
  6833. struct task_group *tg = css_tg(css);
  6834. sched_offline_group(tg);
  6835. }
  6836. static void cpu_cgroup_fork(struct task_struct *task)
  6837. {
  6838. sched_move_task(task);
  6839. }
  6840. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6841. struct cgroup_taskset *tset)
  6842. {
  6843. struct task_struct *task;
  6844. cgroup_taskset_for_each(task, tset) {
  6845. #ifdef CONFIG_RT_GROUP_SCHED
  6846. if (!sched_rt_can_attach(css_tg(css), task))
  6847. return -EINVAL;
  6848. #else
  6849. /* We don't support RT-tasks being in separate groups */
  6850. if (task->sched_class != &fair_sched_class)
  6851. return -EINVAL;
  6852. #endif
  6853. }
  6854. return 0;
  6855. }
  6856. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6857. struct cgroup_taskset *tset)
  6858. {
  6859. struct task_struct *task;
  6860. cgroup_taskset_for_each(task, tset)
  6861. sched_move_task(task);
  6862. }
  6863. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6864. struct cgroup_subsys_state *old_css,
  6865. struct task_struct *task)
  6866. {
  6867. /*
  6868. * cgroup_exit() is called in the copy_process() failure path.
  6869. * Ignore this case since the task hasn't ran yet, this avoids
  6870. * trying to poke a half freed task state from generic code.
  6871. */
  6872. if (!(task->flags & PF_EXITING))
  6873. return;
  6874. sched_move_task(task);
  6875. }
  6876. #ifdef CONFIG_FAIR_GROUP_SCHED
  6877. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6878. struct cftype *cftype, u64 shareval)
  6879. {
  6880. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6881. }
  6882. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6883. struct cftype *cft)
  6884. {
  6885. struct task_group *tg = css_tg(css);
  6886. return (u64) scale_load_down(tg->shares);
  6887. }
  6888. #ifdef CONFIG_CFS_BANDWIDTH
  6889. static DEFINE_MUTEX(cfs_constraints_mutex);
  6890. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6891. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6892. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6893. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6894. {
  6895. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6896. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6897. if (tg == &root_task_group)
  6898. return -EINVAL;
  6899. /*
  6900. * Ensure we have at some amount of bandwidth every period. This is
  6901. * to prevent reaching a state of large arrears when throttled via
  6902. * entity_tick() resulting in prolonged exit starvation.
  6903. */
  6904. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6905. return -EINVAL;
  6906. /*
  6907. * Likewise, bound things on the otherside by preventing insane quota
  6908. * periods. This also allows us to normalize in computing quota
  6909. * feasibility.
  6910. */
  6911. if (period > max_cfs_quota_period)
  6912. return -EINVAL;
  6913. /*
  6914. * Prevent race between setting of cfs_rq->runtime_enabled and
  6915. * unthrottle_offline_cfs_rqs().
  6916. */
  6917. get_online_cpus();
  6918. mutex_lock(&cfs_constraints_mutex);
  6919. ret = __cfs_schedulable(tg, period, quota);
  6920. if (ret)
  6921. goto out_unlock;
  6922. runtime_enabled = quota != RUNTIME_INF;
  6923. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6924. /*
  6925. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6926. * before making related changes, and on->off must occur afterwards
  6927. */
  6928. if (runtime_enabled && !runtime_was_enabled)
  6929. cfs_bandwidth_usage_inc();
  6930. raw_spin_lock_irq(&cfs_b->lock);
  6931. cfs_b->period = ns_to_ktime(period);
  6932. cfs_b->quota = quota;
  6933. __refill_cfs_bandwidth_runtime(cfs_b);
  6934. /* restart the period timer (if active) to handle new period expiry */
  6935. if (runtime_enabled)
  6936. start_cfs_bandwidth(cfs_b);
  6937. raw_spin_unlock_irq(&cfs_b->lock);
  6938. for_each_online_cpu(i) {
  6939. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6940. struct rq *rq = cfs_rq->rq;
  6941. raw_spin_lock_irq(&rq->lock);
  6942. cfs_rq->runtime_enabled = runtime_enabled;
  6943. cfs_rq->runtime_remaining = 0;
  6944. if (cfs_rq->throttled)
  6945. unthrottle_cfs_rq(cfs_rq);
  6946. raw_spin_unlock_irq(&rq->lock);
  6947. }
  6948. if (runtime_was_enabled && !runtime_enabled)
  6949. cfs_bandwidth_usage_dec();
  6950. out_unlock:
  6951. mutex_unlock(&cfs_constraints_mutex);
  6952. put_online_cpus();
  6953. return ret;
  6954. }
  6955. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6956. {
  6957. u64 quota, period;
  6958. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6959. if (cfs_quota_us < 0)
  6960. quota = RUNTIME_INF;
  6961. else
  6962. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6963. return tg_set_cfs_bandwidth(tg, period, quota);
  6964. }
  6965. long tg_get_cfs_quota(struct task_group *tg)
  6966. {
  6967. u64 quota_us;
  6968. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6969. return -1;
  6970. quota_us = tg->cfs_bandwidth.quota;
  6971. do_div(quota_us, NSEC_PER_USEC);
  6972. return quota_us;
  6973. }
  6974. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6975. {
  6976. u64 quota, period;
  6977. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6978. quota = tg->cfs_bandwidth.quota;
  6979. return tg_set_cfs_bandwidth(tg, period, quota);
  6980. }
  6981. long tg_get_cfs_period(struct task_group *tg)
  6982. {
  6983. u64 cfs_period_us;
  6984. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6985. do_div(cfs_period_us, NSEC_PER_USEC);
  6986. return cfs_period_us;
  6987. }
  6988. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6989. struct cftype *cft)
  6990. {
  6991. return tg_get_cfs_quota(css_tg(css));
  6992. }
  6993. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6994. struct cftype *cftype, s64 cfs_quota_us)
  6995. {
  6996. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6997. }
  6998. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6999. struct cftype *cft)
  7000. {
  7001. return tg_get_cfs_period(css_tg(css));
  7002. }
  7003. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7004. struct cftype *cftype, u64 cfs_period_us)
  7005. {
  7006. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7007. }
  7008. struct cfs_schedulable_data {
  7009. struct task_group *tg;
  7010. u64 period, quota;
  7011. };
  7012. /*
  7013. * normalize group quota/period to be quota/max_period
  7014. * note: units are usecs
  7015. */
  7016. static u64 normalize_cfs_quota(struct task_group *tg,
  7017. struct cfs_schedulable_data *d)
  7018. {
  7019. u64 quota, period;
  7020. if (tg == d->tg) {
  7021. period = d->period;
  7022. quota = d->quota;
  7023. } else {
  7024. period = tg_get_cfs_period(tg);
  7025. quota = tg_get_cfs_quota(tg);
  7026. }
  7027. /* note: these should typically be equivalent */
  7028. if (quota == RUNTIME_INF || quota == -1)
  7029. return RUNTIME_INF;
  7030. return to_ratio(period, quota);
  7031. }
  7032. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7033. {
  7034. struct cfs_schedulable_data *d = data;
  7035. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7036. s64 quota = 0, parent_quota = -1;
  7037. if (!tg->parent) {
  7038. quota = RUNTIME_INF;
  7039. } else {
  7040. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7041. quota = normalize_cfs_quota(tg, d);
  7042. parent_quota = parent_b->hierarchical_quota;
  7043. /*
  7044. * ensure max(child_quota) <= parent_quota, inherit when no
  7045. * limit is set
  7046. */
  7047. if (quota == RUNTIME_INF)
  7048. quota = parent_quota;
  7049. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7050. return -EINVAL;
  7051. }
  7052. cfs_b->hierarchical_quota = quota;
  7053. return 0;
  7054. }
  7055. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7056. {
  7057. int ret;
  7058. struct cfs_schedulable_data data = {
  7059. .tg = tg,
  7060. .period = period,
  7061. .quota = quota,
  7062. };
  7063. if (quota != RUNTIME_INF) {
  7064. do_div(data.period, NSEC_PER_USEC);
  7065. do_div(data.quota, NSEC_PER_USEC);
  7066. }
  7067. rcu_read_lock();
  7068. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7069. rcu_read_unlock();
  7070. return ret;
  7071. }
  7072. static int cpu_stats_show(struct seq_file *sf, void *v)
  7073. {
  7074. struct task_group *tg = css_tg(seq_css(sf));
  7075. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7076. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7077. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7078. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7079. return 0;
  7080. }
  7081. #endif /* CONFIG_CFS_BANDWIDTH */
  7082. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7083. #ifdef CONFIG_RT_GROUP_SCHED
  7084. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7085. struct cftype *cft, s64 val)
  7086. {
  7087. return sched_group_set_rt_runtime(css_tg(css), val);
  7088. }
  7089. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7090. struct cftype *cft)
  7091. {
  7092. return sched_group_rt_runtime(css_tg(css));
  7093. }
  7094. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7095. struct cftype *cftype, u64 rt_period_us)
  7096. {
  7097. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7098. }
  7099. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7100. struct cftype *cft)
  7101. {
  7102. return sched_group_rt_period(css_tg(css));
  7103. }
  7104. #endif /* CONFIG_RT_GROUP_SCHED */
  7105. static struct cftype cpu_files[] = {
  7106. #ifdef CONFIG_FAIR_GROUP_SCHED
  7107. {
  7108. .name = "shares",
  7109. .read_u64 = cpu_shares_read_u64,
  7110. .write_u64 = cpu_shares_write_u64,
  7111. },
  7112. #endif
  7113. #ifdef CONFIG_CFS_BANDWIDTH
  7114. {
  7115. .name = "cfs_quota_us",
  7116. .read_s64 = cpu_cfs_quota_read_s64,
  7117. .write_s64 = cpu_cfs_quota_write_s64,
  7118. },
  7119. {
  7120. .name = "cfs_period_us",
  7121. .read_u64 = cpu_cfs_period_read_u64,
  7122. .write_u64 = cpu_cfs_period_write_u64,
  7123. },
  7124. {
  7125. .name = "stat",
  7126. .seq_show = cpu_stats_show,
  7127. },
  7128. #endif
  7129. #ifdef CONFIG_RT_GROUP_SCHED
  7130. {
  7131. .name = "rt_runtime_us",
  7132. .read_s64 = cpu_rt_runtime_read,
  7133. .write_s64 = cpu_rt_runtime_write,
  7134. },
  7135. {
  7136. .name = "rt_period_us",
  7137. .read_u64 = cpu_rt_period_read_uint,
  7138. .write_u64 = cpu_rt_period_write_uint,
  7139. },
  7140. #endif
  7141. { } /* terminate */
  7142. };
  7143. struct cgroup_subsys cpu_cgrp_subsys = {
  7144. .css_alloc = cpu_cgroup_css_alloc,
  7145. .css_free = cpu_cgroup_css_free,
  7146. .css_online = cpu_cgroup_css_online,
  7147. .css_offline = cpu_cgroup_css_offline,
  7148. .fork = cpu_cgroup_fork,
  7149. .can_attach = cpu_cgroup_can_attach,
  7150. .attach = cpu_cgroup_attach,
  7151. .exit = cpu_cgroup_exit,
  7152. .legacy_cftypes = cpu_files,
  7153. .early_init = 1,
  7154. };
  7155. #endif /* CONFIG_CGROUP_SCHED */
  7156. void dump_cpu_task(int cpu)
  7157. {
  7158. pr_info("Task dump for CPU %d:\n", cpu);
  7159. sched_show_task(cpu_curr(cpu));
  7160. }