123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- /* calibrate.c: default delay calibration
- *
- * Excised from init/main.c
- * Copyright (C) 1991, 1992 Linus Torvalds
- */
- #include <linux/jiffies.h>
- #include <linux/delay.h>
- #include <linux/init.h>
- #include <linux/timex.h>
- #include <linux/smp.h>
- #include <linux/percpu.h>
- unsigned long lpj_fine;
- unsigned long preset_lpj;
- static int __init lpj_setup(char *str)
- {
- preset_lpj = simple_strtoul(str,NULL,0);
- return 1;
- }
- __setup("lpj=", lpj_setup);
- #ifdef ARCH_HAS_READ_CURRENT_TIMER
- /* This routine uses the read_current_timer() routine and gets the
- * loops per jiffy directly, instead of guessing it using delay().
- * Also, this code tries to handle non-maskable asynchronous events
- * (like SMIs)
- */
- #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
- #define MAX_DIRECT_CALIBRATION_RETRIES 5
- static unsigned long calibrate_delay_direct(void)
- {
- unsigned long pre_start, start, post_start;
- unsigned long pre_end, end, post_end;
- unsigned long start_jiffies;
- unsigned long timer_rate_min, timer_rate_max;
- unsigned long good_timer_sum = 0;
- unsigned long good_timer_count = 0;
- unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
- int max = -1; /* index of measured_times with max/min values or not set */
- int min = -1;
- int i;
- if (read_current_timer(&pre_start) < 0 )
- return 0;
- /*
- * A simple loop like
- * while ( jiffies < start_jiffies+1)
- * start = read_current_timer();
- * will not do. As we don't really know whether jiffy switch
- * happened first or timer_value was read first. And some asynchronous
- * event can happen between these two events introducing errors in lpj.
- *
- * So, we do
- * 1. pre_start <- When we are sure that jiffy switch hasn't happened
- * 2. check jiffy switch
- * 3. start <- timer value before or after jiffy switch
- * 4. post_start <- When we are sure that jiffy switch has happened
- *
- * Note, we don't know anything about order of 2 and 3.
- * Now, by looking at post_start and pre_start difference, we can
- * check whether any asynchronous event happened or not
- */
- for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
- pre_start = 0;
- read_current_timer(&start);
- start_jiffies = jiffies;
- while (time_before_eq(jiffies, start_jiffies + 1)) {
- pre_start = start;
- read_current_timer(&start);
- }
- read_current_timer(&post_start);
- pre_end = 0;
- end = post_start;
- while (time_before_eq(jiffies, start_jiffies + 1 +
- DELAY_CALIBRATION_TICKS)) {
- pre_end = end;
- read_current_timer(&end);
- }
- read_current_timer(&post_end);
- timer_rate_max = (post_end - pre_start) /
- DELAY_CALIBRATION_TICKS;
- timer_rate_min = (pre_end - post_start) /
- DELAY_CALIBRATION_TICKS;
- /*
- * If the upper limit and lower limit of the timer_rate is
- * >= 12.5% apart, redo calibration.
- */
- if (start >= post_end)
- printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
- "timer_rate as we had a TSC wrap around"
- " start=%lu >=post_end=%lu\n",
- start, post_end);
- if (start < post_end && pre_start != 0 && pre_end != 0 &&
- (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
- good_timer_count++;
- good_timer_sum += timer_rate_max;
- measured_times[i] = timer_rate_max;
- if (max < 0 || timer_rate_max > measured_times[max])
- max = i;
- if (min < 0 || timer_rate_max < measured_times[min])
- min = i;
- } else
- measured_times[i] = 0;
- }
- /*
- * Find the maximum & minimum - if they differ too much throw out the
- * one with the largest difference from the mean and try again...
- */
- while (good_timer_count > 1) {
- unsigned long estimate;
- unsigned long maxdiff;
- /* compute the estimate */
- estimate = (good_timer_sum/good_timer_count);
- maxdiff = estimate >> 3;
- /* if range is within 12% let's take it */
- if ((measured_times[max] - measured_times[min]) < maxdiff)
- return estimate;
- /* ok - drop the worse value and try again... */
- good_timer_sum = 0;
- good_timer_count = 0;
- if ((measured_times[max] - estimate) <
- (estimate - measured_times[min])) {
- printk(KERN_NOTICE "calibrate_delay_direct() dropping "
- "min bogoMips estimate %d = %lu\n",
- min, measured_times[min]);
- measured_times[min] = 0;
- min = max;
- } else {
- printk(KERN_NOTICE "calibrate_delay_direct() dropping "
- "max bogoMips estimate %d = %lu\n",
- max, measured_times[max]);
- measured_times[max] = 0;
- max = min;
- }
- for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
- if (measured_times[i] == 0)
- continue;
- good_timer_count++;
- good_timer_sum += measured_times[i];
- if (measured_times[i] < measured_times[min])
- min = i;
- if (measured_times[i] > measured_times[max])
- max = i;
- }
- }
- printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
- "estimate for loops_per_jiffy.\nProbably due to long platform "
- "interrupts. Consider using \"lpj=\" boot option.\n");
- return 0;
- }
- #else
- static unsigned long calibrate_delay_direct(void)
- {
- return 0;
- }
- #endif
- /*
- * This is the number of bits of precision for the loops_per_jiffy. Each
- * time we refine our estimate after the first takes 1.5/HZ seconds, so try
- * to start with a good estimate.
- * For the boot cpu we can skip the delay calibration and assign it a value
- * calculated based on the timer frequency.
- * For the rest of the CPUs we cannot assume that the timer frequency is same as
- * the cpu frequency, hence do the calibration for those.
- */
- #define LPS_PREC 8
- static unsigned long calibrate_delay_converge(void)
- {
- /* First stage - slowly accelerate to find initial bounds */
- unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
- int trials = 0, band = 0, trial_in_band = 0;
- lpj = (1<<12);
- /* wait for "start of" clock tick */
- ticks = jiffies;
- while (ticks == jiffies)
- ; /* nothing */
- /* Go .. */
- ticks = jiffies;
- do {
- if (++trial_in_band == (1<<band)) {
- ++band;
- trial_in_band = 0;
- }
- __delay(lpj * band);
- trials += band;
- } while (ticks == jiffies);
- /*
- * We overshot, so retreat to a clear underestimate. Then estimate
- * the largest likely undershoot. This defines our chop bounds.
- */
- trials -= band;
- loopadd_base = lpj * band;
- lpj_base = lpj * trials;
- recalibrate:
- lpj = lpj_base;
- loopadd = loopadd_base;
- /*
- * Do a binary approximation to get lpj set to
- * equal one clock (up to LPS_PREC bits)
- */
- chop_limit = lpj >> LPS_PREC;
- while (loopadd > chop_limit) {
- lpj += loopadd;
- ticks = jiffies;
- while (ticks == jiffies)
- ; /* nothing */
- ticks = jiffies;
- __delay(lpj);
- if (jiffies != ticks) /* longer than 1 tick */
- lpj -= loopadd;
- loopadd >>= 1;
- }
- /*
- * If we incremented every single time possible, presume we've
- * massively underestimated initially, and retry with a higher
- * start, and larger range. (Only seen on x86_64, due to SMIs)
- */
- if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
- lpj_base = lpj;
- loopadd_base <<= 2;
- goto recalibrate;
- }
- return lpj;
- }
- static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
- /*
- * Check if cpu calibration delay is already known. For example,
- * some processors with multi-core sockets may have all cores
- * with the same calibration delay.
- *
- * Architectures should override this function if a faster calibration
- * method is available.
- */
- unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
- {
- return 0;
- }
- /*
- * Indicate the cpu delay calibration is done. This can be used by
- * architectures to stop accepting delay timer registrations after this point.
- */
- void __attribute__((weak)) calibration_delay_done(void)
- {
- }
- void calibrate_delay(void)
- {
- unsigned long lpj;
- static bool printed;
- int this_cpu = smp_processor_id();
- if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
- lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
- if (!printed)
- pr_info("Calibrating delay loop (skipped) "
- "already calibrated this CPU");
- } else if (preset_lpj) {
- lpj = preset_lpj;
- if (!printed)
- pr_info("Calibrating delay loop (skipped) "
- "preset value.. ");
- } else if ((!printed) && lpj_fine) {
- lpj = lpj_fine;
- pr_info("Calibrating delay loop (skipped), "
- "value calculated using timer frequency.. ");
- } else if ((lpj = calibrate_delay_is_known())) {
- ;
- } else if ((lpj = calibrate_delay_direct()) != 0) {
- if (!printed)
- pr_info("Calibrating delay using timer "
- "specific routine.. ");
- } else {
- if (!printed)
- pr_info("Calibrating delay loop... ");
- lpj = calibrate_delay_converge();
- }
- per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
- if (!printed)
- pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
- lpj/(500000/HZ),
- (lpj/(5000/HZ)) % 100, lpj);
- loops_per_jiffy = lpj;
- printed = true;
- calibration_delay_done();
- }
|