123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548 |
- /*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
- /*
- * This file implements functions needed to recover from unclean un-mounts.
- * When UBIFS is mounted, it checks a flag on the master node to determine if
- * an un-mount was completed successfully. If not, the process of mounting
- * incorporates additional checking and fixing of on-flash data structures.
- * UBIFS always cleans away all remnants of an unclean un-mount, so that
- * errors do not accumulate. However UBIFS defers recovery if it is mounted
- * read-only, and the flash is not modified in that case.
- *
- * The general UBIFS approach to the recovery is that it recovers from
- * corruptions which could be caused by power cuts, but it refuses to recover
- * from corruption caused by other reasons. And UBIFS tries to distinguish
- * between these 2 reasons of corruptions and silently recover in the former
- * case and loudly complain in the latter case.
- *
- * UBIFS writes only to erased LEBs, so it writes only to the flash space
- * containing only 0xFFs. UBIFS also always writes strictly from the beginning
- * of the LEB to the end. And UBIFS assumes that the underlying flash media
- * writes in @c->max_write_size bytes at a time.
- *
- * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
- * I/O unit corresponding to offset X to contain corrupted data, all the
- * following min. I/O units have to contain empty space (all 0xFFs). If this is
- * not true, the corruption cannot be the result of a power cut, and UBIFS
- * refuses to mount.
- */
- #include <linux/crc32.h>
- #include <linux/slab.h>
- #include "ubifs.h"
- /**
- * is_empty - determine whether a buffer is empty (contains all 0xff).
- * @buf: buffer to clean
- * @len: length of buffer
- *
- * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
- * %0 is returned.
- */
- static int is_empty(void *buf, int len)
- {
- uint8_t *p = buf;
- int i;
- for (i = 0; i < len; i++)
- if (*p++ != 0xff)
- return 0;
- return 1;
- }
- /**
- * first_non_ff - find offset of the first non-0xff byte.
- * @buf: buffer to search in
- * @len: length of buffer
- *
- * This function returns offset of the first non-0xff byte in @buf or %-1 if
- * the buffer contains only 0xff bytes.
- */
- static int first_non_ff(void *buf, int len)
- {
- uint8_t *p = buf;
- int i;
- for (i = 0; i < len; i++)
- if (*p++ != 0xff)
- return i;
- return -1;
- }
- /**
- * get_master_node - get the last valid master node allowing for corruption.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @pbuf: buffer containing the LEB read, is returned here
- * @mst: master node, if found, is returned here
- * @cor: corruption, if found, is returned here
- *
- * This function allocates a buffer, reads the LEB into it, and finds and
- * returns the last valid master node allowing for one area of corruption.
- * The corrupt area, if there is one, must be consistent with the assumption
- * that it is the result of an unclean unmount while the master node was being
- * written. Under those circumstances, it is valid to use the previously written
- * master node.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
- struct ubifs_mst_node **mst, void **cor)
- {
- const int sz = c->mst_node_alsz;
- int err, offs, len;
- void *sbuf, *buf;
- sbuf = vmalloc(c->leb_size);
- if (!sbuf)
- return -ENOMEM;
- err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
- if (err && err != -EBADMSG)
- goto out_free;
- /* Find the first position that is definitely not a node */
- offs = 0;
- buf = sbuf;
- len = c->leb_size;
- while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
- struct ubifs_ch *ch = buf;
- if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
- break;
- offs += sz;
- buf += sz;
- len -= sz;
- }
- /* See if there was a valid master node before that */
- if (offs) {
- int ret;
- offs -= sz;
- buf -= sz;
- len += sz;
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret != SCANNED_A_NODE && offs) {
- /* Could have been corruption so check one place back */
- offs -= sz;
- buf -= sz;
- len += sz;
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret != SCANNED_A_NODE)
- /*
- * We accept only one area of corruption because
- * we are assuming that it was caused while
- * trying to write a master node.
- */
- goto out_err;
- }
- if (ret == SCANNED_A_NODE) {
- struct ubifs_ch *ch = buf;
- if (ch->node_type != UBIFS_MST_NODE)
- goto out_err;
- dbg_rcvry("found a master node at %d:%d", lnum, offs);
- *mst = buf;
- offs += sz;
- buf += sz;
- len -= sz;
- }
- }
- /* Check for corruption */
- if (offs < c->leb_size) {
- if (!is_empty(buf, min_t(int, len, sz))) {
- *cor = buf;
- dbg_rcvry("found corruption at %d:%d", lnum, offs);
- }
- offs += sz;
- buf += sz;
- len -= sz;
- }
- /* Check remaining empty space */
- if (offs < c->leb_size)
- if (!is_empty(buf, len))
- goto out_err;
- *pbuf = sbuf;
- return 0;
- out_err:
- err = -EINVAL;
- out_free:
- vfree(sbuf);
- *mst = NULL;
- *cor = NULL;
- return err;
- }
- /**
- * write_rcvrd_mst_node - write recovered master node.
- * @c: UBIFS file-system description object
- * @mst: master node
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- static int write_rcvrd_mst_node(struct ubifs_info *c,
- struct ubifs_mst_node *mst)
- {
- int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
- __le32 save_flags;
- dbg_rcvry("recovery");
- save_flags = mst->flags;
- mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
- ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
- err = ubifs_leb_change(c, lnum, mst, sz);
- if (err)
- goto out;
- err = ubifs_leb_change(c, lnum + 1, mst, sz);
- if (err)
- goto out;
- out:
- mst->flags = save_flags;
- return err;
- }
- /**
- * ubifs_recover_master_node - recover the master node.
- * @c: UBIFS file-system description object
- *
- * This function recovers the master node from corruption that may occur due to
- * an unclean unmount.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- int ubifs_recover_master_node(struct ubifs_info *c)
- {
- void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
- struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
- const int sz = c->mst_node_alsz;
- int err, offs1, offs2;
- dbg_rcvry("recovery");
- err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
- if (err)
- goto out_free;
- err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
- if (err)
- goto out_free;
- if (mst1) {
- offs1 = (void *)mst1 - buf1;
- if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
- (offs1 == 0 && !cor1)) {
- /*
- * mst1 was written by recovery at offset 0 with no
- * corruption.
- */
- dbg_rcvry("recovery recovery");
- mst = mst1;
- } else if (mst2) {
- offs2 = (void *)mst2 - buf2;
- if (offs1 == offs2) {
- /* Same offset, so must be the same */
- if (memcmp((void *)mst1 + UBIFS_CH_SZ,
- (void *)mst2 + UBIFS_CH_SZ,
- UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
- goto out_err;
- mst = mst1;
- } else if (offs2 + sz == offs1) {
- /* 1st LEB was written, 2nd was not */
- if (cor1)
- goto out_err;
- mst = mst1;
- } else if (offs1 == 0 &&
- c->leb_size - offs2 - sz < sz) {
- /* 1st LEB was unmapped and written, 2nd not */
- if (cor1)
- goto out_err;
- mst = mst1;
- } else
- goto out_err;
- } else {
- /*
- * 2nd LEB was unmapped and about to be written, so
- * there must be only one master node in the first LEB
- * and no corruption.
- */
- if (offs1 != 0 || cor1)
- goto out_err;
- mst = mst1;
- }
- } else {
- if (!mst2)
- goto out_err;
- /*
- * 1st LEB was unmapped and about to be written, so there must
- * be no room left in 2nd LEB.
- */
- offs2 = (void *)mst2 - buf2;
- if (offs2 + sz + sz <= c->leb_size)
- goto out_err;
- mst = mst2;
- }
- ubifs_msg(c, "recovered master node from LEB %d",
- (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
- memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
- if (c->ro_mount) {
- /* Read-only mode. Keep a copy for switching to rw mode */
- c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
- if (!c->rcvrd_mst_node) {
- err = -ENOMEM;
- goto out_free;
- }
- memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
- /*
- * We had to recover the master node, which means there was an
- * unclean reboot. However, it is possible that the master node
- * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
- * E.g., consider the following chain of events:
- *
- * 1. UBIFS was cleanly unmounted, so the master node is clean
- * 2. UBIFS is being mounted R/W and starts changing the master
- * node in the first (%UBIFS_MST_LNUM). A power cut happens,
- * so this LEB ends up with some amount of garbage at the
- * end.
- * 3. UBIFS is being mounted R/O. We reach this place and
- * recover the master node from the second LEB
- * (%UBIFS_MST_LNUM + 1). But we cannot update the media
- * because we are being mounted R/O. We have to defer the
- * operation.
- * 4. However, this master node (@c->mst_node) is marked as
- * clean (since the step 1). And if we just return, the
- * mount code will be confused and won't recover the master
- * node when it is re-mounter R/W later.
- *
- * Thus, to force the recovery by marking the master node as
- * dirty.
- */
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- } else {
- /* Write the recovered master node */
- c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
- err = write_rcvrd_mst_node(c, c->mst_node);
- if (err)
- goto out_free;
- }
- vfree(buf2);
- vfree(buf1);
- return 0;
- out_err:
- err = -EINVAL;
- out_free:
- ubifs_err(c, "failed to recover master node");
- if (mst1) {
- ubifs_err(c, "dumping first master node");
- ubifs_dump_node(c, mst1);
- }
- if (mst2) {
- ubifs_err(c, "dumping second master node");
- ubifs_dump_node(c, mst2);
- }
- vfree(buf2);
- vfree(buf1);
- return err;
- }
- /**
- * ubifs_write_rcvrd_mst_node - write the recovered master node.
- * @c: UBIFS file-system description object
- *
- * This function writes the master node that was recovered during mounting in
- * read-only mode and must now be written because we are remounting rw.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
- {
- int err;
- if (!c->rcvrd_mst_node)
- return 0;
- c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
- if (err)
- return err;
- kfree(c->rcvrd_mst_node);
- c->rcvrd_mst_node = NULL;
- return 0;
- }
- /**
- * is_last_write - determine if an offset was in the last write to a LEB.
- * @c: UBIFS file-system description object
- * @buf: buffer to check
- * @offs: offset to check
- *
- * This function returns %1 if @offs was in the last write to the LEB whose data
- * is in @buf, otherwise %0 is returned. The determination is made by checking
- * for subsequent empty space starting from the next @c->max_write_size
- * boundary.
- */
- static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
- {
- int empty_offs, check_len;
- uint8_t *p;
- /*
- * Round up to the next @c->max_write_size boundary i.e. @offs is in
- * the last wbuf written. After that should be empty space.
- */
- empty_offs = ALIGN(offs + 1, c->max_write_size);
- check_len = c->leb_size - empty_offs;
- p = buf + empty_offs - offs;
- return is_empty(p, check_len);
- }
- /**
- * clean_buf - clean the data from an LEB sitting in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer to clean
- * @lnum: LEB number to clean
- * @offs: offset from which to clean
- * @len: length of buffer
- *
- * This function pads up to the next min_io_size boundary (if there is one) and
- * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
- * @c->min_io_size boundary.
- */
- static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
- int *offs, int *len)
- {
- int empty_offs, pad_len;
- lnum = lnum;
- dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
- ubifs_assert(!(*offs & 7));
- empty_offs = ALIGN(*offs, c->min_io_size);
- pad_len = empty_offs - *offs;
- ubifs_pad(c, *buf, pad_len);
- *offs += pad_len;
- *buf += pad_len;
- *len -= pad_len;
- memset(*buf, 0xff, c->leb_size - empty_offs);
- }
- /**
- * no_more_nodes - determine if there are no more nodes in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer to check
- * @len: length of buffer
- * @lnum: LEB number of the LEB from which @buf was read
- * @offs: offset from which @buf was read
- *
- * This function ensures that the corrupted node at @offs is the last thing
- * written to a LEB. This function returns %1 if more data is not found and
- * %0 if more data is found.
- */
- static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
- int lnum, int offs)
- {
- struct ubifs_ch *ch = buf;
- int skip, dlen = le32_to_cpu(ch->len);
- /* Check for empty space after the corrupt node's common header */
- skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
- if (is_empty(buf + skip, len - skip))
- return 1;
- /*
- * The area after the common header size is not empty, so the common
- * header must be intact. Check it.
- */
- if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
- dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
- return 0;
- }
- /* Now we know the corrupt node's length we can skip over it */
- skip = ALIGN(offs + dlen, c->max_write_size) - offs;
- /* After which there should be empty space */
- if (is_empty(buf + skip, len - skip))
- return 1;
- dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
- return 0;
- }
- /**
- * fix_unclean_leb - fix an unclean LEB.
- * @c: UBIFS file-system description object
- * @sleb: scanned LEB information
- * @start: offset where scan started
- */
- static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- int start)
- {
- int lnum = sleb->lnum, endpt = start;
- /* Get the end offset of the last node we are keeping */
- if (!list_empty(&sleb->nodes)) {
- struct ubifs_scan_node *snod;
- snod = list_entry(sleb->nodes.prev,
- struct ubifs_scan_node, list);
- endpt = snod->offs + snod->len;
- }
- if (c->ro_mount && !c->remounting_rw) {
- /* Add to recovery list */
- struct ubifs_unclean_leb *ucleb;
- dbg_rcvry("need to fix LEB %d start %d endpt %d",
- lnum, start, sleb->endpt);
- ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
- if (!ucleb)
- return -ENOMEM;
- ucleb->lnum = lnum;
- ucleb->endpt = endpt;
- list_add_tail(&ucleb->list, &c->unclean_leb_list);
- } else {
- /* Write the fixed LEB back to flash */
- int err;
- dbg_rcvry("fixing LEB %d start %d endpt %d",
- lnum, start, sleb->endpt);
- if (endpt == 0) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- } else {
- int len = ALIGN(endpt, c->min_io_size);
- if (start) {
- err = ubifs_leb_read(c, lnum, sleb->buf, 0,
- start, 1);
- if (err)
- return err;
- }
- /* Pad to min_io_size */
- if (len > endpt) {
- int pad_len = len - ALIGN(endpt, 8);
- if (pad_len > 0) {
- void *buf = sleb->buf + len - pad_len;
- ubifs_pad(c, buf, pad_len);
- }
- }
- err = ubifs_leb_change(c, lnum, sleb->buf, len);
- if (err)
- return err;
- }
- }
- return 0;
- }
- /**
- * drop_last_group - drop the last group of nodes.
- * @sleb: scanned LEB information
- * @offs: offset of dropped nodes is returned here
- *
- * This is a helper function for 'ubifs_recover_leb()' which drops the last
- * group of nodes of the scanned LEB.
- */
- static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
- {
- while (!list_empty(&sleb->nodes)) {
- struct ubifs_scan_node *snod;
- struct ubifs_ch *ch;
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
- list);
- ch = snod->node;
- if (ch->group_type != UBIFS_IN_NODE_GROUP)
- break;
- dbg_rcvry("dropping grouped node at %d:%d",
- sleb->lnum, snod->offs);
- *offs = snod->offs;
- list_del(&snod->list);
- kfree(snod);
- sleb->nodes_cnt -= 1;
- }
- }
- /**
- * drop_last_node - drop the last node.
- * @sleb: scanned LEB information
- * @offs: offset of dropped nodes is returned here
- *
- * This is a helper function for 'ubifs_recover_leb()' which drops the last
- * node of the scanned LEB.
- */
- static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
- {
- struct ubifs_scan_node *snod;
- if (!list_empty(&sleb->nodes)) {
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
- list);
- dbg_rcvry("dropping last node at %d:%d",
- sleb->lnum, snod->offs);
- *offs = snod->offs;
- list_del(&snod->list);
- kfree(snod);
- sleb->nodes_cnt -= 1;
- }
- }
- /**
- * ubifs_recover_leb - scan and recover a LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @offs: offset
- * @sbuf: LEB-sized buffer to use
- * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
- * belong to any journal head)
- *
- * This function does a scan of a LEB, but caters for errors that might have
- * been caused by the unclean unmount from which we are attempting to recover.
- * Returns the scanned information on success and a negative error code on
- * failure.
- */
- struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int jhead)
- {
- int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
- int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
- struct ubifs_scan_leb *sleb;
- void *buf = sbuf + offs;
- dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
- sleb = ubifs_start_scan(c, lnum, offs, sbuf);
- if (IS_ERR(sleb))
- return sleb;
- ubifs_assert(len >= 8);
- while (len >= 8) {
- dbg_scan("look at LEB %d:%d (%d bytes left)",
- lnum, offs, len);
- cond_resched();
- /*
- * Scan quietly until there is an error from which we cannot
- * recover
- */
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret == SCANNED_A_NODE) {
- /* A valid node, and not a padding node */
- struct ubifs_ch *ch = buf;
- int node_len;
- err = ubifs_add_snod(c, sleb, buf, offs);
- if (err)
- goto error;
- node_len = ALIGN(le32_to_cpu(ch->len), 8);
- offs += node_len;
- buf += node_len;
- len -= node_len;
- } else if (ret > 0) {
- /* Padding bytes or a valid padding node */
- offs += ret;
- buf += ret;
- len -= ret;
- } else if (ret == SCANNED_EMPTY_SPACE ||
- ret == SCANNED_GARBAGE ||
- ret == SCANNED_A_BAD_PAD_NODE ||
- ret == SCANNED_A_CORRUPT_NODE) {
- dbg_rcvry("found corruption (%d) at %d:%d",
- ret, lnum, offs);
- break;
- } else {
- ubifs_err(c, "unexpected return value %d", ret);
- err = -EINVAL;
- goto error;
- }
- }
- if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
- if (!is_last_write(c, buf, offs))
- goto corrupted_rescan;
- } else if (ret == SCANNED_A_CORRUPT_NODE) {
- if (!no_more_nodes(c, buf, len, lnum, offs))
- goto corrupted_rescan;
- } else if (!is_empty(buf, len)) {
- if (!is_last_write(c, buf, offs)) {
- int corruption = first_non_ff(buf, len);
- /*
- * See header comment for this file for more
- * explanations about the reasons we have this check.
- */
- ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
- lnum, offs, corruption);
- /* Make sure we dump interesting non-0xFF data */
- offs += corruption;
- buf += corruption;
- goto corrupted;
- }
- }
- min_io_unit = round_down(offs, c->min_io_size);
- if (grouped)
- /*
- * If nodes are grouped, always drop the incomplete group at
- * the end.
- */
- drop_last_group(sleb, &offs);
- if (jhead == GCHD) {
- /*
- * If this LEB belongs to the GC head then while we are in the
- * middle of the same min. I/O unit keep dropping nodes. So
- * basically, what we want is to make sure that the last min.
- * I/O unit where we saw the corruption is dropped completely
- * with all the uncorrupted nodes which may possibly sit there.
- *
- * In other words, let's name the min. I/O unit where the
- * corruption starts B, and the previous min. I/O unit A. The
- * below code tries to deal with a situation when half of B
- * contains valid nodes or the end of a valid node, and the
- * second half of B contains corrupted data or garbage. This
- * means that UBIFS had been writing to B just before the power
- * cut happened. I do not know how realistic is this scenario
- * that half of the min. I/O unit had been written successfully
- * and the other half not, but this is possible in our 'failure
- * mode emulation' infrastructure at least.
- *
- * So what is the problem, why we need to drop those nodes? Why
- * can't we just clean-up the second half of B by putting a
- * padding node there? We can, and this works fine with one
- * exception which was reproduced with power cut emulation
- * testing and happens extremely rarely.
- *
- * Imagine the file-system is full, we run GC which starts
- * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
- * the current GC head LEB). The @c->gc_lnum is -1, which means
- * that GC will retain LEB X and will try to continue. Imagine
- * that LEB X is currently the dirtiest LEB, and the amount of
- * used space in LEB Y is exactly the same as amount of free
- * space in LEB X.
- *
- * And a power cut happens when nodes are moved from LEB X to
- * LEB Y. We are here trying to recover LEB Y which is the GC
- * head LEB. We find the min. I/O unit B as described above.
- * Then we clean-up LEB Y by padding min. I/O unit. And later
- * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
- * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
- * does not match because the amount of valid nodes there does
- * not fit the free space in LEB Y any more! And this is
- * because of the padding node which we added to LEB Y. The
- * user-visible effect of this which I once observed and
- * analysed is that we cannot mount the file-system with
- * -ENOSPC error.
- *
- * So obviously, to make sure that situation does not happen we
- * should free min. I/O unit B in LEB Y completely and the last
- * used min. I/O unit in LEB Y should be A. This is basically
- * what the below code tries to do.
- */
- while (offs > min_io_unit)
- drop_last_node(sleb, &offs);
- }
- buf = sbuf + offs;
- len = c->leb_size - offs;
- clean_buf(c, &buf, lnum, &offs, &len);
- ubifs_end_scan(c, sleb, lnum, offs);
- err = fix_unclean_leb(c, sleb, start);
- if (err)
- goto error;
- return sleb;
- corrupted_rescan:
- /* Re-scan the corrupted data with verbose messages */
- ubifs_err(c, "corruption %d", ret);
- ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- corrupted:
- ubifs_scanned_corruption(c, lnum, offs, buf);
- err = -EUCLEAN;
- error:
- ubifs_err(c, "LEB %d scanning failed", lnum);
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
- }
- /**
- * get_cs_sqnum - get commit start sequence number.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of commit start node
- * @offs: offset of commit start node
- * @cs_sqnum: commit start sequence number is returned here
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
- unsigned long long *cs_sqnum)
- {
- struct ubifs_cs_node *cs_node = NULL;
- int err, ret;
- dbg_rcvry("at %d:%d", lnum, offs);
- cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
- if (!cs_node)
- return -ENOMEM;
- if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
- goto out_err;
- err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
- UBIFS_CS_NODE_SZ, 0);
- if (err && err != -EBADMSG)
- goto out_free;
- ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
- if (ret != SCANNED_A_NODE) {
- ubifs_err(c, "Not a valid node");
- goto out_err;
- }
- if (cs_node->ch.node_type != UBIFS_CS_NODE) {
- ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
- goto out_err;
- }
- if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
- ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
- (unsigned long long)le64_to_cpu(cs_node->cmt_no),
- c->cmt_no);
- goto out_err;
- }
- *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
- dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
- kfree(cs_node);
- return 0;
- out_err:
- err = -EINVAL;
- out_free:
- ubifs_err(c, "failed to get CS sqnum");
- kfree(cs_node);
- return err;
- }
- /**
- * ubifs_recover_log_leb - scan and recover a log LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @offs: offset
- * @sbuf: LEB-sized buffer to use
- *
- * This function does a scan of a LEB, but caters for errors that might have
- * been caused by unclean reboots from which we are attempting to recover
- * (assume that only the last log LEB can be corrupted by an unclean reboot).
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf)
- {
- struct ubifs_scan_leb *sleb;
- int next_lnum;
- dbg_rcvry("LEB %d", lnum);
- next_lnum = lnum + 1;
- if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
- next_lnum = UBIFS_LOG_LNUM;
- if (next_lnum != c->ltail_lnum) {
- /*
- * We can only recover at the end of the log, so check that the
- * next log LEB is empty or out of date.
- */
- sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
- if (IS_ERR(sleb))
- return sleb;
- if (sleb->nodes_cnt) {
- struct ubifs_scan_node *snod;
- unsigned long long cs_sqnum = c->cs_sqnum;
- snod = list_entry(sleb->nodes.next,
- struct ubifs_scan_node, list);
- if (cs_sqnum == 0) {
- int err;
- err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
- if (err) {
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
- }
- }
- if (snod->sqnum > cs_sqnum) {
- ubifs_err(c, "unrecoverable log corruption in LEB %d",
- lnum);
- ubifs_scan_destroy(sleb);
- return ERR_PTR(-EUCLEAN);
- }
- }
- ubifs_scan_destroy(sleb);
- }
- return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
- }
- /**
- * recover_head - recover a head.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of head to recover
- * @offs: offset of head to recover
- * @sbuf: LEB-sized buffer to use
- *
- * This function ensures that there is no data on the flash at a head location.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
- {
- int len = c->max_write_size, err;
- if (offs + len > c->leb_size)
- len = c->leb_size - offs;
- if (!len)
- return 0;
- /* Read at the head location and check it is empty flash */
- err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
- if (err || !is_empty(sbuf, len)) {
- dbg_rcvry("cleaning head at %d:%d", lnum, offs);
- if (offs == 0)
- return ubifs_leb_unmap(c, lnum);
- err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
- if (err)
- return err;
- return ubifs_leb_change(c, lnum, sbuf, offs);
- }
- return 0;
- }
- /**
- * ubifs_recover_inl_heads - recover index and LPT heads.
- * @c: UBIFS file-system description object
- * @sbuf: LEB-sized buffer to use
- *
- * This function ensures that there is no data on the flash at the index and
- * LPT head locations.
- *
- * This deals with the recovery of a half-completed journal commit. UBIFS is
- * careful never to overwrite the last version of the index or the LPT. Because
- * the index and LPT are wandering trees, data from a half-completed commit will
- * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
- * assumed to be empty and will be unmapped anyway before use, or in the index
- * and LPT heads.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
- {
- int err;
- ubifs_assert(!c->ro_mount || c->remounting_rw);
- dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
- err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
- if (err)
- return err;
- dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
- return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
- }
- /**
- * clean_an_unclean_leb - read and write a LEB to remove corruption.
- * @c: UBIFS file-system description object
- * @ucleb: unclean LEB information
- * @sbuf: LEB-sized buffer to use
- *
- * This function reads a LEB up to a point pre-determined by the mount recovery,
- * checks the nodes, and writes the result back to the flash, thereby cleaning
- * off any following corruption, or non-fatal ECC errors.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- static int clean_an_unclean_leb(struct ubifs_info *c,
- struct ubifs_unclean_leb *ucleb, void *sbuf)
- {
- int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
- void *buf = sbuf;
- dbg_rcvry("LEB %d len %d", lnum, len);
- if (len == 0) {
- /* Nothing to read, just unmap it */
- return ubifs_leb_unmap(c, lnum);
- }
- err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
- if (err && err != -EBADMSG)
- return err;
- while (len >= 8) {
- int ret;
- cond_resched();
- /* Scan quietly until there is an error */
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
- if (ret == SCANNED_A_NODE) {
- /* A valid node, and not a padding node */
- struct ubifs_ch *ch = buf;
- int node_len;
- node_len = ALIGN(le32_to_cpu(ch->len), 8);
- offs += node_len;
- buf += node_len;
- len -= node_len;
- continue;
- }
- if (ret > 0) {
- /* Padding bytes or a valid padding node */
- offs += ret;
- buf += ret;
- len -= ret;
- continue;
- }
- if (ret == SCANNED_EMPTY_SPACE) {
- ubifs_err(c, "unexpected empty space at %d:%d",
- lnum, offs);
- return -EUCLEAN;
- }
- if (quiet) {
- /* Redo the last scan but noisily */
- quiet = 0;
- continue;
- }
- ubifs_scanned_corruption(c, lnum, offs, buf);
- return -EUCLEAN;
- }
- /* Pad to min_io_size */
- len = ALIGN(ucleb->endpt, c->min_io_size);
- if (len > ucleb->endpt) {
- int pad_len = len - ALIGN(ucleb->endpt, 8);
- if (pad_len > 0) {
- buf = c->sbuf + len - pad_len;
- ubifs_pad(c, buf, pad_len);
- }
- }
- /* Write back the LEB atomically */
- err = ubifs_leb_change(c, lnum, sbuf, len);
- if (err)
- return err;
- dbg_rcvry("cleaned LEB %d", lnum);
- return 0;
- }
- /**
- * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
- * @c: UBIFS file-system description object
- * @sbuf: LEB-sized buffer to use
- *
- * This function cleans a LEB identified during recovery that needs to be
- * written but was not because UBIFS was mounted read-only. This happens when
- * remounting to read-write mode.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
- {
- dbg_rcvry("recovery");
- while (!list_empty(&c->unclean_leb_list)) {
- struct ubifs_unclean_leb *ucleb;
- int err;
- ucleb = list_entry(c->unclean_leb_list.next,
- struct ubifs_unclean_leb, list);
- err = clean_an_unclean_leb(c, ucleb, sbuf);
- if (err)
- return err;
- list_del(&ucleb->list);
- kfree(ucleb);
- }
- return 0;
- }
- /**
- * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
- * @c: UBIFS file-system description object
- *
- * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
- * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
- * zero in case of success and a negative error code in case of failure.
- */
- static int grab_empty_leb(struct ubifs_info *c)
- {
- int lnum, err;
- /*
- * Note, it is very important to first search for an empty LEB and then
- * run the commit, not vice-versa. The reason is that there might be
- * only one empty LEB at the moment, the one which has been the
- * @c->gc_lnum just before the power cut happened. During the regular
- * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
- * one but GC can grab it. But at this moment this single empty LEB is
- * not marked as taken, so if we run commit - what happens? Right, the
- * commit will grab it and write the index there. Remember that the
- * index always expands as long as there is free space, and it only
- * starts consolidating when we run out of space.
- *
- * IOW, if we run commit now, we might not be able to find a free LEB
- * after this.
- */
- lnum = ubifs_find_free_leb_for_idx(c);
- if (lnum < 0) {
- ubifs_err(c, "could not find an empty LEB");
- ubifs_dump_lprops(c);
- ubifs_dump_budg(c, &c->bi);
- return lnum;
- }
- /* Reset the index flag */
- err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_INDEX, 0);
- if (err)
- return err;
- c->gc_lnum = lnum;
- dbg_rcvry("found empty LEB %d, run commit", lnum);
- return ubifs_run_commit(c);
- }
- /**
- * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
- * @c: UBIFS file-system description object
- *
- * Out-of-place garbage collection requires always one empty LEB with which to
- * start garbage collection. The LEB number is recorded in c->gc_lnum and is
- * written to the master node on unmounting. In the case of an unclean unmount
- * the value of gc_lnum recorded in the master node is out of date and cannot
- * be used. Instead, recovery must allocate an empty LEB for this purpose.
- * However, there may not be enough empty space, in which case it must be
- * possible to GC the dirtiest LEB into the GC head LEB.
- *
- * This function also runs the commit which causes the TNC updates from
- * size-recovery and orphans to be written to the flash. That is important to
- * ensure correct replay order for subsequent mounts.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
- int ubifs_rcvry_gc_commit(struct ubifs_info *c)
- {
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
- struct ubifs_lprops lp;
- int err;
- dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
- c->gc_lnum = -1;
- if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
- return grab_empty_leb(c);
- err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
- if (err) {
- if (err != -ENOSPC)
- return err;
- dbg_rcvry("could not find a dirty LEB");
- return grab_empty_leb(c);
- }
- ubifs_assert(!(lp.flags & LPROPS_INDEX));
- ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
- /*
- * We run the commit before garbage collection otherwise subsequent
- * mounts will see the GC and orphan deletion in a different order.
- */
- dbg_rcvry("committing");
- err = ubifs_run_commit(c);
- if (err)
- return err;
- dbg_rcvry("GC'ing LEB %d", lp.lnum);
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- err = ubifs_garbage_collect_leb(c, &lp);
- if (err >= 0) {
- int err2 = ubifs_wbuf_sync_nolock(wbuf);
- if (err2)
- err = err2;
- }
- mutex_unlock(&wbuf->io_mutex);
- if (err < 0) {
- ubifs_err(c, "GC failed, error %d", err);
- if (err == -EAGAIN)
- err = -EINVAL;
- return err;
- }
- ubifs_assert(err == LEB_RETAINED);
- if (err != LEB_RETAINED)
- return -EINVAL;
- err = ubifs_leb_unmap(c, c->gc_lnum);
- if (err)
- return err;
- dbg_rcvry("allocated LEB %d for GC", lp.lnum);
- return 0;
- }
- /**
- * struct size_entry - inode size information for recovery.
- * @rb: link in the RB-tree of sizes
- * @inum: inode number
- * @i_size: size on inode
- * @d_size: maximum size based on data nodes
- * @exists: indicates whether the inode exists
- * @inode: inode if pinned in memory awaiting rw mode to fix it
- */
- struct size_entry {
- struct rb_node rb;
- ino_t inum;
- loff_t i_size;
- loff_t d_size;
- int exists;
- struct inode *inode;
- };
- /**
- * add_ino - add an entry to the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- * @i_size: size on inode
- * @d_size: maximum size based on data nodes
- * @exists: indicates whether the inode exists
- */
- static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
- loff_t d_size, int exists)
- {
- struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
- struct size_entry *e;
- while (*p) {
- parent = *p;
- e = rb_entry(parent, struct size_entry, rb);
- if (inum < e->inum)
- p = &(*p)->rb_left;
- else
- p = &(*p)->rb_right;
- }
- e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
- if (!e)
- return -ENOMEM;
- e->inum = inum;
- e->i_size = i_size;
- e->d_size = d_size;
- e->exists = exists;
- rb_link_node(&e->rb, parent, p);
- rb_insert_color(&e->rb, &c->size_tree);
- return 0;
- }
- /**
- * find_ino - find an entry on the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- */
- static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
- {
- struct rb_node *p = c->size_tree.rb_node;
- struct size_entry *e;
- while (p) {
- e = rb_entry(p, struct size_entry, rb);
- if (inum < e->inum)
- p = p->rb_left;
- else if (inum > e->inum)
- p = p->rb_right;
- else
- return e;
- }
- return NULL;
- }
- /**
- * remove_ino - remove an entry from the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- */
- static void remove_ino(struct ubifs_info *c, ino_t inum)
- {
- struct size_entry *e = find_ino(c, inum);
- if (!e)
- return;
- rb_erase(&e->rb, &c->size_tree);
- kfree(e);
- }
- /**
- * ubifs_destroy_size_tree - free resources related to the size tree.
- * @c: UBIFS file-system description object
- */
- void ubifs_destroy_size_tree(struct ubifs_info *c)
- {
- struct size_entry *e, *n;
- rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
- if (e->inode)
- iput(e->inode);
- kfree(e);
- }
- c->size_tree = RB_ROOT;
- }
- /**
- * ubifs_recover_size_accum - accumulate inode sizes for recovery.
- * @c: UBIFS file-system description object
- * @key: node key
- * @deletion: node is for a deletion
- * @new_size: inode size
- *
- * This function has two purposes:
- * 1) to ensure there are no data nodes that fall outside the inode size
- * 2) to ensure there are no data nodes for inodes that do not exist
- * To accomplish those purposes, a rb-tree is constructed containing an entry
- * for each inode number in the journal that has not been deleted, and recording
- * the size from the inode node, the maximum size of any data node (also altered
- * by truncations) and a flag indicating a inode number for which no inode node
- * was present in the journal.
- *
- * Note that there is still the possibility that there are data nodes that have
- * been committed that are beyond the inode size, however the only way to find
- * them would be to scan the entire index. Alternatively, some provision could
- * be made to record the size of inodes at the start of commit, which would seem
- * very cumbersome for a scenario that is quite unlikely and the only negative
- * consequence of which is wasted space.
- *
- * This functions returns %0 on success and a negative error code on failure.
- */
- int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
- int deletion, loff_t new_size)
- {
- ino_t inum = key_inum(c, key);
- struct size_entry *e;
- int err;
- switch (key_type(c, key)) {
- case UBIFS_INO_KEY:
- if (deletion)
- remove_ino(c, inum);
- else {
- e = find_ino(c, inum);
- if (e) {
- e->i_size = new_size;
- e->exists = 1;
- } else {
- err = add_ino(c, inum, new_size, 0, 1);
- if (err)
- return err;
- }
- }
- break;
- case UBIFS_DATA_KEY:
- e = find_ino(c, inum);
- if (e) {
- if (new_size > e->d_size)
- e->d_size = new_size;
- } else {
- err = add_ino(c, inum, 0, new_size, 0);
- if (err)
- return err;
- }
- break;
- case UBIFS_TRUN_KEY:
- e = find_ino(c, inum);
- if (e)
- e->d_size = new_size;
- break;
- }
- return 0;
- }
- /**
- * fix_size_in_place - fix inode size in place on flash.
- * @c: UBIFS file-system description object
- * @e: inode size information for recovery
- */
- static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
- {
- struct ubifs_ino_node *ino = c->sbuf;
- unsigned char *p;
- union ubifs_key key;
- int err, lnum, offs, len;
- loff_t i_size;
- uint32_t crc;
- /* Locate the inode node LEB number and offset */
- ino_key_init(c, &key, e->inum);
- err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
- if (err)
- goto out;
- /*
- * If the size recorded on the inode node is greater than the size that
- * was calculated from nodes in the journal then don't change the inode.
- */
- i_size = le64_to_cpu(ino->size);
- if (i_size >= e->d_size)
- return 0;
- /* Read the LEB */
- err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
- if (err)
- goto out;
- /* Change the size field and recalculate the CRC */
- ino = c->sbuf + offs;
- ino->size = cpu_to_le64(e->d_size);
- len = le32_to_cpu(ino->ch.len);
- crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
- ino->ch.crc = cpu_to_le32(crc);
- /* Work out where data in the LEB ends and free space begins */
- p = c->sbuf;
- len = c->leb_size - 1;
- while (p[len] == 0xff)
- len -= 1;
- len = ALIGN(len + 1, c->min_io_size);
- /* Atomically write the fixed LEB back again */
- err = ubifs_leb_change(c, lnum, c->sbuf, len);
- if (err)
- goto out;
- dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
- (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
- return 0;
- out:
- ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
- (unsigned long)e->inum, e->i_size, e->d_size, err);
- return err;
- }
- /**
- * ubifs_recover_size - recover inode size.
- * @c: UBIFS file-system description object
- *
- * This function attempts to fix inode size discrepancies identified by the
- * 'ubifs_recover_size_accum()' function.
- *
- * This functions returns %0 on success and a negative error code on failure.
- */
- int ubifs_recover_size(struct ubifs_info *c)
- {
- struct rb_node *this = rb_first(&c->size_tree);
- while (this) {
- struct size_entry *e;
- int err;
- e = rb_entry(this, struct size_entry, rb);
- if (!e->exists) {
- union ubifs_key key;
- ino_key_init(c, &key, e->inum);
- err = ubifs_tnc_lookup(c, &key, c->sbuf);
- if (err && err != -ENOENT)
- return err;
- if (err == -ENOENT) {
- /* Remove data nodes that have no inode */
- dbg_rcvry("removing ino %lu",
- (unsigned long)e->inum);
- err = ubifs_tnc_remove_ino(c, e->inum);
- if (err)
- return err;
- } else {
- struct ubifs_ino_node *ino = c->sbuf;
- e->exists = 1;
- e->i_size = le64_to_cpu(ino->size);
- }
- }
- if (e->exists && e->i_size < e->d_size) {
- if (c->ro_mount) {
- /* Fix the inode size and pin it in memory */
- struct inode *inode;
- struct ubifs_inode *ui;
- ubifs_assert(!e->inode);
- inode = ubifs_iget(c->vfs_sb, e->inum);
- if (IS_ERR(inode))
- return PTR_ERR(inode);
- ui = ubifs_inode(inode);
- if (inode->i_size < e->d_size) {
- dbg_rcvry("ino %lu size %lld -> %lld",
- (unsigned long)e->inum,
- inode->i_size, e->d_size);
- inode->i_size = e->d_size;
- ui->ui_size = e->d_size;
- ui->synced_i_size = e->d_size;
- e->inode = inode;
- this = rb_next(this);
- continue;
- }
- iput(inode);
- } else {
- /* Fix the size in place */
- err = fix_size_in_place(c, e);
- if (err)
- return err;
- if (e->inode)
- iput(e->inode);
- }
- }
- this = rb_next(this);
- rb_erase(&e->rb, &c->size_tree);
- kfree(e);
- }
- return 0;
- }
|