io.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. * Copyright (C) 2006, 2007 University of Szeged, Hungary
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program; if not, write to the Free Software Foundation, Inc., 51
  18. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Authors: Artem Bityutskiy (Битюцкий Артём)
  21. * Adrian Hunter
  22. * Zoltan Sogor
  23. */
  24. /*
  25. * This file implements UBIFS I/O subsystem which provides various I/O-related
  26. * helper functions (reading/writing/checking/validating nodes) and implements
  27. * write-buffering support. Write buffers help to save space which otherwise
  28. * would have been wasted for padding to the nearest minimal I/O unit boundary.
  29. * Instead, data first goes to the write-buffer and is flushed when the
  30. * buffer is full or when it is not used for some time (by timer). This is
  31. * similar to the mechanism is used by JFFS2.
  32. *
  33. * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  34. * write size (@c->max_write_size). The latter is the maximum amount of bytes
  35. * the underlying flash is able to program at a time, and writing in
  36. * @c->max_write_size units should presumably be faster. Obviously,
  37. * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  38. * @c->max_write_size bytes in size for maximum performance. However, when a
  39. * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  40. * boundary) which contains data is written, not the whole write-buffer,
  41. * because this is more space-efficient.
  42. *
  43. * This optimization adds few complications to the code. Indeed, on the one
  44. * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  45. * also means aligning writes at the @c->max_write_size bytes offsets. On the
  46. * other hand, we do not want to waste space when synchronizing the write
  47. * buffer, so during synchronization we writes in smaller chunks. And this makes
  48. * the next write offset to be not aligned to @c->max_write_size bytes. So the
  49. * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  50. * to @c->max_write_size bytes again. We do this by temporarily shrinking
  51. * write-buffer size (@wbuf->size).
  52. *
  53. * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  54. * mutexes defined inside these objects. Since sometimes upper-level code
  55. * has to lock the write-buffer (e.g. journal space reservation code), many
  56. * functions related to write-buffers have "nolock" suffix which means that the
  57. * caller has to lock the write-buffer before calling this function.
  58. *
  59. * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  60. * aligned, UBIFS starts the next node from the aligned address, and the padded
  61. * bytes may contain any rubbish. In other words, UBIFS does not put padding
  62. * bytes in those small gaps. Common headers of nodes store real node lengths,
  63. * not aligned lengths. Indexing nodes also store real lengths in branches.
  64. *
  65. * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  66. * uses padding nodes or padding bytes, if the padding node does not fit.
  67. *
  68. * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  69. * they are read from the flash media.
  70. */
  71. #include <linux/crc32.h>
  72. #include <linux/slab.h>
  73. #include "ubifs.h"
  74. /**
  75. * ubifs_ro_mode - switch UBIFS to read read-only mode.
  76. * @c: UBIFS file-system description object
  77. * @err: error code which is the reason of switching to R/O mode
  78. */
  79. void ubifs_ro_mode(struct ubifs_info *c, int err)
  80. {
  81. if (!c->ro_error) {
  82. c->ro_error = 1;
  83. c->no_chk_data_crc = 0;
  84. c->vfs_sb->s_flags |= MS_RDONLY;
  85. ubifs_warn(c, "switched to read-only mode, error %d", err);
  86. dump_stack();
  87. }
  88. }
  89. /*
  90. * Below are simple wrappers over UBI I/O functions which include some
  91. * additional checks and UBIFS debugging stuff. See corresponding UBI function
  92. * for more information.
  93. */
  94. int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
  95. int len, int even_ebadmsg)
  96. {
  97. int err;
  98. err = ubi_read(c->ubi, lnum, buf, offs, len);
  99. /*
  100. * In case of %-EBADMSG print the error message only if the
  101. * @even_ebadmsg is true.
  102. */
  103. if (err && (err != -EBADMSG || even_ebadmsg)) {
  104. ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
  105. len, lnum, offs, err);
  106. dump_stack();
  107. }
  108. return err;
  109. }
  110. int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
  111. int len)
  112. {
  113. int err;
  114. ubifs_assert(!c->ro_media && !c->ro_mount);
  115. if (c->ro_error)
  116. return -EROFS;
  117. if (!dbg_is_tst_rcvry(c))
  118. err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
  119. else
  120. err = dbg_leb_write(c, lnum, buf, offs, len);
  121. if (err) {
  122. ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
  123. len, lnum, offs, err);
  124. ubifs_ro_mode(c, err);
  125. dump_stack();
  126. }
  127. return err;
  128. }
  129. int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
  130. {
  131. int err;
  132. ubifs_assert(!c->ro_media && !c->ro_mount);
  133. if (c->ro_error)
  134. return -EROFS;
  135. if (!dbg_is_tst_rcvry(c))
  136. err = ubi_leb_change(c->ubi, lnum, buf, len);
  137. else
  138. err = dbg_leb_change(c, lnum, buf, len);
  139. if (err) {
  140. ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
  141. len, lnum, err);
  142. ubifs_ro_mode(c, err);
  143. dump_stack();
  144. }
  145. return err;
  146. }
  147. int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
  148. {
  149. int err;
  150. ubifs_assert(!c->ro_media && !c->ro_mount);
  151. if (c->ro_error)
  152. return -EROFS;
  153. if (!dbg_is_tst_rcvry(c))
  154. err = ubi_leb_unmap(c->ubi, lnum);
  155. else
  156. err = dbg_leb_unmap(c, lnum);
  157. if (err) {
  158. ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
  159. ubifs_ro_mode(c, err);
  160. dump_stack();
  161. }
  162. return err;
  163. }
  164. int ubifs_leb_map(struct ubifs_info *c, int lnum)
  165. {
  166. int err;
  167. ubifs_assert(!c->ro_media && !c->ro_mount);
  168. if (c->ro_error)
  169. return -EROFS;
  170. if (!dbg_is_tst_rcvry(c))
  171. err = ubi_leb_map(c->ubi, lnum);
  172. else
  173. err = dbg_leb_map(c, lnum);
  174. if (err) {
  175. ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
  176. ubifs_ro_mode(c, err);
  177. dump_stack();
  178. }
  179. return err;
  180. }
  181. int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
  182. {
  183. int err;
  184. err = ubi_is_mapped(c->ubi, lnum);
  185. if (err < 0) {
  186. ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
  187. lnum, err);
  188. dump_stack();
  189. }
  190. return err;
  191. }
  192. /**
  193. * ubifs_check_node - check node.
  194. * @c: UBIFS file-system description object
  195. * @buf: node to check
  196. * @lnum: logical eraseblock number
  197. * @offs: offset within the logical eraseblock
  198. * @quiet: print no messages
  199. * @must_chk_crc: indicates whether to always check the CRC
  200. *
  201. * This function checks node magic number and CRC checksum. This function also
  202. * validates node length to prevent UBIFS from becoming crazy when an attacker
  203. * feeds it a file-system image with incorrect nodes. For example, too large
  204. * node length in the common header could cause UBIFS to read memory outside of
  205. * allocated buffer when checking the CRC checksum.
  206. *
  207. * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
  208. * true, which is controlled by corresponding UBIFS mount option. However, if
  209. * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
  210. * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
  211. * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
  212. * is checked. This is because during mounting or re-mounting from R/O mode to
  213. * R/W mode we may read journal nodes (when replying the journal or doing the
  214. * recovery) and the journal nodes may potentially be corrupted, so checking is
  215. * required.
  216. *
  217. * This function returns zero in case of success and %-EUCLEAN in case of bad
  218. * CRC or magic.
  219. */
  220. int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
  221. int offs, int quiet, int must_chk_crc)
  222. {
  223. int err = -EINVAL, type, node_len;
  224. uint32_t crc, node_crc, magic;
  225. const struct ubifs_ch *ch = buf;
  226. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  227. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  228. magic = le32_to_cpu(ch->magic);
  229. if (magic != UBIFS_NODE_MAGIC) {
  230. if (!quiet)
  231. ubifs_err(c, "bad magic %#08x, expected %#08x",
  232. magic, UBIFS_NODE_MAGIC);
  233. err = -EUCLEAN;
  234. goto out;
  235. }
  236. type = ch->node_type;
  237. if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
  238. if (!quiet)
  239. ubifs_err(c, "bad node type %d", type);
  240. goto out;
  241. }
  242. node_len = le32_to_cpu(ch->len);
  243. if (node_len + offs > c->leb_size)
  244. goto out_len;
  245. if (c->ranges[type].max_len == 0) {
  246. if (node_len != c->ranges[type].len)
  247. goto out_len;
  248. } else if (node_len < c->ranges[type].min_len ||
  249. node_len > c->ranges[type].max_len)
  250. goto out_len;
  251. if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
  252. !c->remounting_rw && c->no_chk_data_crc)
  253. return 0;
  254. crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
  255. node_crc = le32_to_cpu(ch->crc);
  256. if (crc != node_crc) {
  257. if (!quiet)
  258. ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
  259. crc, node_crc);
  260. err = -EUCLEAN;
  261. goto out;
  262. }
  263. return 0;
  264. out_len:
  265. if (!quiet)
  266. ubifs_err(c, "bad node length %d", node_len);
  267. out:
  268. if (!quiet) {
  269. ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
  270. ubifs_dump_node(c, buf);
  271. dump_stack();
  272. }
  273. return err;
  274. }
  275. /**
  276. * ubifs_pad - pad flash space.
  277. * @c: UBIFS file-system description object
  278. * @buf: buffer to put padding to
  279. * @pad: how many bytes to pad
  280. *
  281. * The flash media obliges us to write only in chunks of %c->min_io_size and
  282. * when we have to write less data we add padding node to the write-buffer and
  283. * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
  284. * media is being scanned. If the amount of wasted space is not enough to fit a
  285. * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
  286. * pattern (%UBIFS_PADDING_BYTE).
  287. *
  288. * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
  289. * used.
  290. */
  291. void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
  292. {
  293. uint32_t crc;
  294. ubifs_assert(pad >= 0 && !(pad & 7));
  295. if (pad >= UBIFS_PAD_NODE_SZ) {
  296. struct ubifs_ch *ch = buf;
  297. struct ubifs_pad_node *pad_node = buf;
  298. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  299. ch->node_type = UBIFS_PAD_NODE;
  300. ch->group_type = UBIFS_NO_NODE_GROUP;
  301. ch->padding[0] = ch->padding[1] = 0;
  302. ch->sqnum = 0;
  303. ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
  304. pad -= UBIFS_PAD_NODE_SZ;
  305. pad_node->pad_len = cpu_to_le32(pad);
  306. crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
  307. ch->crc = cpu_to_le32(crc);
  308. memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
  309. } else if (pad > 0)
  310. /* Too little space, padding node won't fit */
  311. memset(buf, UBIFS_PADDING_BYTE, pad);
  312. }
  313. /**
  314. * next_sqnum - get next sequence number.
  315. * @c: UBIFS file-system description object
  316. */
  317. static unsigned long long next_sqnum(struct ubifs_info *c)
  318. {
  319. unsigned long long sqnum;
  320. spin_lock(&c->cnt_lock);
  321. sqnum = ++c->max_sqnum;
  322. spin_unlock(&c->cnt_lock);
  323. if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
  324. if (sqnum >= SQNUM_WATERMARK) {
  325. ubifs_err(c, "sequence number overflow %llu, end of life",
  326. sqnum);
  327. ubifs_ro_mode(c, -EINVAL);
  328. }
  329. ubifs_warn(c, "running out of sequence numbers, end of life soon");
  330. }
  331. return sqnum;
  332. }
  333. /**
  334. * ubifs_prepare_node - prepare node to be written to flash.
  335. * @c: UBIFS file-system description object
  336. * @node: the node to pad
  337. * @len: node length
  338. * @pad: if the buffer has to be padded
  339. *
  340. * This function prepares node at @node to be written to the media - it
  341. * calculates node CRC, fills the common header, and adds proper padding up to
  342. * the next minimum I/O unit if @pad is not zero.
  343. */
  344. void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
  345. {
  346. uint32_t crc;
  347. struct ubifs_ch *ch = node;
  348. unsigned long long sqnum = next_sqnum(c);
  349. ubifs_assert(len >= UBIFS_CH_SZ);
  350. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  351. ch->len = cpu_to_le32(len);
  352. ch->group_type = UBIFS_NO_NODE_GROUP;
  353. ch->sqnum = cpu_to_le64(sqnum);
  354. ch->padding[0] = ch->padding[1] = 0;
  355. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  356. ch->crc = cpu_to_le32(crc);
  357. if (pad) {
  358. len = ALIGN(len, 8);
  359. pad = ALIGN(len, c->min_io_size) - len;
  360. ubifs_pad(c, node + len, pad);
  361. }
  362. }
  363. /**
  364. * ubifs_prep_grp_node - prepare node of a group to be written to flash.
  365. * @c: UBIFS file-system description object
  366. * @node: the node to pad
  367. * @len: node length
  368. * @last: indicates the last node of the group
  369. *
  370. * This function prepares node at @node to be written to the media - it
  371. * calculates node CRC and fills the common header.
  372. */
  373. void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
  374. {
  375. uint32_t crc;
  376. struct ubifs_ch *ch = node;
  377. unsigned long long sqnum = next_sqnum(c);
  378. ubifs_assert(len >= UBIFS_CH_SZ);
  379. ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
  380. ch->len = cpu_to_le32(len);
  381. if (last)
  382. ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
  383. else
  384. ch->group_type = UBIFS_IN_NODE_GROUP;
  385. ch->sqnum = cpu_to_le64(sqnum);
  386. ch->padding[0] = ch->padding[1] = 0;
  387. crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
  388. ch->crc = cpu_to_le32(crc);
  389. }
  390. /**
  391. * wbuf_timer_callback - write-buffer timer callback function.
  392. * @timer: timer data (write-buffer descriptor)
  393. *
  394. * This function is called when the write-buffer timer expires.
  395. */
  396. static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
  397. {
  398. struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
  399. dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
  400. wbuf->need_sync = 1;
  401. wbuf->c->need_wbuf_sync = 1;
  402. ubifs_wake_up_bgt(wbuf->c);
  403. return HRTIMER_NORESTART;
  404. }
  405. /**
  406. * new_wbuf_timer - start new write-buffer timer.
  407. * @wbuf: write-buffer descriptor
  408. */
  409. static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  410. {
  411. ubifs_assert(!hrtimer_active(&wbuf->timer));
  412. if (wbuf->no_timer)
  413. return;
  414. dbg_io("set timer for jhead %s, %llu-%llu millisecs",
  415. dbg_jhead(wbuf->jhead),
  416. div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
  417. div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
  418. USEC_PER_SEC));
  419. hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
  420. HRTIMER_MODE_REL);
  421. }
  422. /**
  423. * cancel_wbuf_timer - cancel write-buffer timer.
  424. * @wbuf: write-buffer descriptor
  425. */
  426. static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
  427. {
  428. if (wbuf->no_timer)
  429. return;
  430. wbuf->need_sync = 0;
  431. hrtimer_cancel(&wbuf->timer);
  432. }
  433. /**
  434. * ubifs_wbuf_sync_nolock - synchronize write-buffer.
  435. * @wbuf: write-buffer to synchronize
  436. *
  437. * This function synchronizes write-buffer @buf and returns zero in case of
  438. * success or a negative error code in case of failure.
  439. *
  440. * Note, although write-buffers are of @c->max_write_size, this function does
  441. * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
  442. * if the write-buffer is only partially filled with data, only the used part
  443. * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
  444. * This way we waste less space.
  445. */
  446. int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
  447. {
  448. struct ubifs_info *c = wbuf->c;
  449. int err, dirt, sync_len;
  450. cancel_wbuf_timer_nolock(wbuf);
  451. if (!wbuf->used || wbuf->lnum == -1)
  452. /* Write-buffer is empty or not seeked */
  453. return 0;
  454. dbg_io("LEB %d:%d, %d bytes, jhead %s",
  455. wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
  456. ubifs_assert(!(wbuf->avail & 7));
  457. ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
  458. ubifs_assert(wbuf->size >= c->min_io_size);
  459. ubifs_assert(wbuf->size <= c->max_write_size);
  460. ubifs_assert(wbuf->size % c->min_io_size == 0);
  461. ubifs_assert(!c->ro_media && !c->ro_mount);
  462. if (c->leb_size - wbuf->offs >= c->max_write_size)
  463. ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
  464. if (c->ro_error)
  465. return -EROFS;
  466. /*
  467. * Do not write whole write buffer but write only the minimum necessary
  468. * amount of min. I/O units.
  469. */
  470. sync_len = ALIGN(wbuf->used, c->min_io_size);
  471. dirt = sync_len - wbuf->used;
  472. if (dirt)
  473. ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
  474. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
  475. if (err)
  476. return err;
  477. spin_lock(&wbuf->lock);
  478. wbuf->offs += sync_len;
  479. /*
  480. * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
  481. * But our goal is to optimize writes and make sure we write in
  482. * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
  483. * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
  484. * sure that @wbuf->offs + @wbuf->size is aligned to
  485. * @c->max_write_size. This way we make sure that after next
  486. * write-buffer flush we are again at the optimal offset (aligned to
  487. * @c->max_write_size).
  488. */
  489. if (c->leb_size - wbuf->offs < c->max_write_size)
  490. wbuf->size = c->leb_size - wbuf->offs;
  491. else if (wbuf->offs & (c->max_write_size - 1))
  492. wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
  493. else
  494. wbuf->size = c->max_write_size;
  495. wbuf->avail = wbuf->size;
  496. wbuf->used = 0;
  497. wbuf->next_ino = 0;
  498. spin_unlock(&wbuf->lock);
  499. if (wbuf->sync_callback)
  500. err = wbuf->sync_callback(c, wbuf->lnum,
  501. c->leb_size - wbuf->offs, dirt);
  502. return err;
  503. }
  504. /**
  505. * ubifs_wbuf_seek_nolock - seek write-buffer.
  506. * @wbuf: write-buffer
  507. * @lnum: logical eraseblock number to seek to
  508. * @offs: logical eraseblock offset to seek to
  509. *
  510. * This function targets the write-buffer to logical eraseblock @lnum:@offs.
  511. * The write-buffer has to be empty. Returns zero in case of success and a
  512. * negative error code in case of failure.
  513. */
  514. int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
  515. {
  516. const struct ubifs_info *c = wbuf->c;
  517. dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
  518. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
  519. ubifs_assert(offs >= 0 && offs <= c->leb_size);
  520. ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
  521. ubifs_assert(lnum != wbuf->lnum);
  522. ubifs_assert(wbuf->used == 0);
  523. spin_lock(&wbuf->lock);
  524. wbuf->lnum = lnum;
  525. wbuf->offs = offs;
  526. if (c->leb_size - wbuf->offs < c->max_write_size)
  527. wbuf->size = c->leb_size - wbuf->offs;
  528. else if (wbuf->offs & (c->max_write_size - 1))
  529. wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
  530. else
  531. wbuf->size = c->max_write_size;
  532. wbuf->avail = wbuf->size;
  533. wbuf->used = 0;
  534. spin_unlock(&wbuf->lock);
  535. return 0;
  536. }
  537. /**
  538. * ubifs_bg_wbufs_sync - synchronize write-buffers.
  539. * @c: UBIFS file-system description object
  540. *
  541. * This function is called by background thread to synchronize write-buffers.
  542. * Returns zero in case of success and a negative error code in case of
  543. * failure.
  544. */
  545. int ubifs_bg_wbufs_sync(struct ubifs_info *c)
  546. {
  547. int err, i;
  548. ubifs_assert(!c->ro_media && !c->ro_mount);
  549. if (!c->need_wbuf_sync)
  550. return 0;
  551. c->need_wbuf_sync = 0;
  552. if (c->ro_error) {
  553. err = -EROFS;
  554. goto out_timers;
  555. }
  556. dbg_io("synchronize");
  557. for (i = 0; i < c->jhead_cnt; i++) {
  558. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  559. cond_resched();
  560. /*
  561. * If the mutex is locked then wbuf is being changed, so
  562. * synchronization is not necessary.
  563. */
  564. if (mutex_is_locked(&wbuf->io_mutex))
  565. continue;
  566. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  567. if (!wbuf->need_sync) {
  568. mutex_unlock(&wbuf->io_mutex);
  569. continue;
  570. }
  571. err = ubifs_wbuf_sync_nolock(wbuf);
  572. mutex_unlock(&wbuf->io_mutex);
  573. if (err) {
  574. ubifs_err(c, "cannot sync write-buffer, error %d", err);
  575. ubifs_ro_mode(c, err);
  576. goto out_timers;
  577. }
  578. }
  579. return 0;
  580. out_timers:
  581. /* Cancel all timers to prevent repeated errors */
  582. for (i = 0; i < c->jhead_cnt; i++) {
  583. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  584. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  585. cancel_wbuf_timer_nolock(wbuf);
  586. mutex_unlock(&wbuf->io_mutex);
  587. }
  588. return err;
  589. }
  590. /**
  591. * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
  592. * @wbuf: write-buffer
  593. * @buf: node to write
  594. * @len: node length
  595. *
  596. * This function writes data to flash via write-buffer @wbuf. This means that
  597. * the last piece of the node won't reach the flash media immediately if it
  598. * does not take whole max. write unit (@c->max_write_size). Instead, the node
  599. * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
  600. * because more data are appended to the write-buffer).
  601. *
  602. * This function returns zero in case of success and a negative error code in
  603. * case of failure. If the node cannot be written because there is no more
  604. * space in this logical eraseblock, %-ENOSPC is returned.
  605. */
  606. int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
  607. {
  608. struct ubifs_info *c = wbuf->c;
  609. int err, written, n, aligned_len = ALIGN(len, 8);
  610. dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
  611. dbg_ntype(((struct ubifs_ch *)buf)->node_type),
  612. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
  613. ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
  614. ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
  615. ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
  616. ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
  617. ubifs_assert(wbuf->size >= c->min_io_size);
  618. ubifs_assert(wbuf->size <= c->max_write_size);
  619. ubifs_assert(wbuf->size % c->min_io_size == 0);
  620. ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
  621. ubifs_assert(!c->ro_media && !c->ro_mount);
  622. ubifs_assert(!c->space_fixup);
  623. if (c->leb_size - wbuf->offs >= c->max_write_size)
  624. ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
  625. if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
  626. err = -ENOSPC;
  627. goto out;
  628. }
  629. cancel_wbuf_timer_nolock(wbuf);
  630. if (c->ro_error)
  631. return -EROFS;
  632. if (aligned_len <= wbuf->avail) {
  633. /*
  634. * The node is not very large and fits entirely within
  635. * write-buffer.
  636. */
  637. memcpy(wbuf->buf + wbuf->used, buf, len);
  638. if (aligned_len == wbuf->avail) {
  639. dbg_io("flush jhead %s wbuf to LEB %d:%d",
  640. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
  641. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
  642. wbuf->offs, wbuf->size);
  643. if (err)
  644. goto out;
  645. spin_lock(&wbuf->lock);
  646. wbuf->offs += wbuf->size;
  647. if (c->leb_size - wbuf->offs >= c->max_write_size)
  648. wbuf->size = c->max_write_size;
  649. else
  650. wbuf->size = c->leb_size - wbuf->offs;
  651. wbuf->avail = wbuf->size;
  652. wbuf->used = 0;
  653. wbuf->next_ino = 0;
  654. spin_unlock(&wbuf->lock);
  655. } else {
  656. spin_lock(&wbuf->lock);
  657. wbuf->avail -= aligned_len;
  658. wbuf->used += aligned_len;
  659. spin_unlock(&wbuf->lock);
  660. }
  661. goto exit;
  662. }
  663. written = 0;
  664. if (wbuf->used) {
  665. /*
  666. * The node is large enough and does not fit entirely within
  667. * current available space. We have to fill and flush
  668. * write-buffer and switch to the next max. write unit.
  669. */
  670. dbg_io("flush jhead %s wbuf to LEB %d:%d",
  671. dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
  672. memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
  673. err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
  674. wbuf->size);
  675. if (err)
  676. goto out;
  677. wbuf->offs += wbuf->size;
  678. len -= wbuf->avail;
  679. aligned_len -= wbuf->avail;
  680. written += wbuf->avail;
  681. } else if (wbuf->offs & (c->max_write_size - 1)) {
  682. /*
  683. * The write-buffer offset is not aligned to
  684. * @c->max_write_size and @wbuf->size is less than
  685. * @c->max_write_size. Write @wbuf->size bytes to make sure the
  686. * following writes are done in optimal @c->max_write_size
  687. * chunks.
  688. */
  689. dbg_io("write %d bytes to LEB %d:%d",
  690. wbuf->size, wbuf->lnum, wbuf->offs);
  691. err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
  692. wbuf->size);
  693. if (err)
  694. goto out;
  695. wbuf->offs += wbuf->size;
  696. len -= wbuf->size;
  697. aligned_len -= wbuf->size;
  698. written += wbuf->size;
  699. }
  700. /*
  701. * The remaining data may take more whole max. write units, so write the
  702. * remains multiple to max. write unit size directly to the flash media.
  703. * We align node length to 8-byte boundary because we anyway flash wbuf
  704. * if the remaining space is less than 8 bytes.
  705. */
  706. n = aligned_len >> c->max_write_shift;
  707. if (n) {
  708. n <<= c->max_write_shift;
  709. dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
  710. wbuf->offs);
  711. err = ubifs_leb_write(c, wbuf->lnum, buf + written,
  712. wbuf->offs, n);
  713. if (err)
  714. goto out;
  715. wbuf->offs += n;
  716. aligned_len -= n;
  717. len -= n;
  718. written += n;
  719. }
  720. spin_lock(&wbuf->lock);
  721. if (aligned_len)
  722. /*
  723. * And now we have what's left and what does not take whole
  724. * max. write unit, so write it to the write-buffer and we are
  725. * done.
  726. */
  727. memcpy(wbuf->buf, buf + written, len);
  728. if (c->leb_size - wbuf->offs >= c->max_write_size)
  729. wbuf->size = c->max_write_size;
  730. else
  731. wbuf->size = c->leb_size - wbuf->offs;
  732. wbuf->avail = wbuf->size - aligned_len;
  733. wbuf->used = aligned_len;
  734. wbuf->next_ino = 0;
  735. spin_unlock(&wbuf->lock);
  736. exit:
  737. if (wbuf->sync_callback) {
  738. int free = c->leb_size - wbuf->offs - wbuf->used;
  739. err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
  740. if (err)
  741. goto out;
  742. }
  743. if (wbuf->used)
  744. new_wbuf_timer_nolock(wbuf);
  745. return 0;
  746. out:
  747. ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
  748. len, wbuf->lnum, wbuf->offs, err);
  749. ubifs_dump_node(c, buf);
  750. dump_stack();
  751. ubifs_dump_leb(c, wbuf->lnum);
  752. return err;
  753. }
  754. /**
  755. * ubifs_write_node - write node to the media.
  756. * @c: UBIFS file-system description object
  757. * @buf: the node to write
  758. * @len: node length
  759. * @lnum: logical eraseblock number
  760. * @offs: offset within the logical eraseblock
  761. *
  762. * This function automatically fills node magic number, assigns sequence
  763. * number, and calculates node CRC checksum. The length of the @buf buffer has
  764. * to be aligned to the minimal I/O unit size. This function automatically
  765. * appends padding node and padding bytes if needed. Returns zero in case of
  766. * success and a negative error code in case of failure.
  767. */
  768. int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
  769. int offs)
  770. {
  771. int err, buf_len = ALIGN(len, c->min_io_size);
  772. dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
  773. lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
  774. buf_len);
  775. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  776. ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
  777. ubifs_assert(!c->ro_media && !c->ro_mount);
  778. ubifs_assert(!c->space_fixup);
  779. if (c->ro_error)
  780. return -EROFS;
  781. ubifs_prepare_node(c, buf, len, 1);
  782. err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
  783. if (err)
  784. ubifs_dump_node(c, buf);
  785. return err;
  786. }
  787. /**
  788. * ubifs_read_node_wbuf - read node from the media or write-buffer.
  789. * @wbuf: wbuf to check for un-written data
  790. * @buf: buffer to read to
  791. * @type: node type
  792. * @len: node length
  793. * @lnum: logical eraseblock number
  794. * @offs: offset within the logical eraseblock
  795. *
  796. * This function reads a node of known type and length, checks it and stores
  797. * in @buf. If the node partially or fully sits in the write-buffer, this
  798. * function takes data from the buffer, otherwise it reads the flash media.
  799. * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
  800. * error code in case of failure.
  801. */
  802. int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
  803. int lnum, int offs)
  804. {
  805. const struct ubifs_info *c = wbuf->c;
  806. int err, rlen, overlap;
  807. struct ubifs_ch *ch = buf;
  808. dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
  809. dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
  810. ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  811. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  812. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  813. spin_lock(&wbuf->lock);
  814. overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
  815. if (!overlap) {
  816. /* We may safely unlock the write-buffer and read the data */
  817. spin_unlock(&wbuf->lock);
  818. return ubifs_read_node(c, buf, type, len, lnum, offs);
  819. }
  820. /* Don't read under wbuf */
  821. rlen = wbuf->offs - offs;
  822. if (rlen < 0)
  823. rlen = 0;
  824. /* Copy the rest from the write-buffer */
  825. memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
  826. spin_unlock(&wbuf->lock);
  827. if (rlen > 0) {
  828. /* Read everything that goes before write-buffer */
  829. err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
  830. if (err && err != -EBADMSG)
  831. return err;
  832. }
  833. if (type != ch->node_type) {
  834. ubifs_err(c, "bad node type (%d but expected %d)",
  835. ch->node_type, type);
  836. goto out;
  837. }
  838. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  839. if (err) {
  840. ubifs_err(c, "expected node type %d", type);
  841. return err;
  842. }
  843. rlen = le32_to_cpu(ch->len);
  844. if (rlen != len) {
  845. ubifs_err(c, "bad node length %d, expected %d", rlen, len);
  846. goto out;
  847. }
  848. return 0;
  849. out:
  850. ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
  851. ubifs_dump_node(c, buf);
  852. dump_stack();
  853. return -EINVAL;
  854. }
  855. /**
  856. * ubifs_read_node - read node.
  857. * @c: UBIFS file-system description object
  858. * @buf: buffer to read to
  859. * @type: node type
  860. * @len: node length (not aligned)
  861. * @lnum: logical eraseblock number
  862. * @offs: offset within the logical eraseblock
  863. *
  864. * This function reads a node of known type and and length, checks it and
  865. * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
  866. * and a negative error code in case of failure.
  867. */
  868. int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
  869. int lnum, int offs)
  870. {
  871. int err, l;
  872. struct ubifs_ch *ch = buf;
  873. dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
  874. ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
  875. ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
  876. ubifs_assert(!(offs & 7) && offs < c->leb_size);
  877. ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
  878. err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
  879. if (err && err != -EBADMSG)
  880. return err;
  881. if (type != ch->node_type) {
  882. ubifs_errc(c, "bad node type (%d but expected %d)",
  883. ch->node_type, type);
  884. goto out;
  885. }
  886. err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
  887. if (err) {
  888. ubifs_errc(c, "expected node type %d", type);
  889. return err;
  890. }
  891. l = le32_to_cpu(ch->len);
  892. if (l != len) {
  893. ubifs_errc(c, "bad node length %d, expected %d", l, len);
  894. goto out;
  895. }
  896. return 0;
  897. out:
  898. ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
  899. offs, ubi_is_mapped(c->ubi, lnum));
  900. if (!c->probing) {
  901. ubifs_dump_node(c, buf);
  902. dump_stack();
  903. }
  904. return -EINVAL;
  905. }
  906. /**
  907. * ubifs_wbuf_init - initialize write-buffer.
  908. * @c: UBIFS file-system description object
  909. * @wbuf: write-buffer to initialize
  910. *
  911. * This function initializes write-buffer. Returns zero in case of success
  912. * %-ENOMEM in case of failure.
  913. */
  914. int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
  915. {
  916. size_t size;
  917. wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
  918. if (!wbuf->buf)
  919. return -ENOMEM;
  920. size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
  921. wbuf->inodes = kmalloc(size, GFP_KERNEL);
  922. if (!wbuf->inodes) {
  923. kfree(wbuf->buf);
  924. wbuf->buf = NULL;
  925. return -ENOMEM;
  926. }
  927. wbuf->used = 0;
  928. wbuf->lnum = wbuf->offs = -1;
  929. /*
  930. * If the LEB starts at the max. write size aligned address, then
  931. * write-buffer size has to be set to @c->max_write_size. Otherwise,
  932. * set it to something smaller so that it ends at the closest max.
  933. * write size boundary.
  934. */
  935. size = c->max_write_size - (c->leb_start % c->max_write_size);
  936. wbuf->avail = wbuf->size = size;
  937. wbuf->sync_callback = NULL;
  938. mutex_init(&wbuf->io_mutex);
  939. spin_lock_init(&wbuf->lock);
  940. wbuf->c = c;
  941. wbuf->next_ino = 0;
  942. hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. wbuf->timer.function = wbuf_timer_callback_nolock;
  944. wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
  945. wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
  946. wbuf->delta *= 1000000000ULL;
  947. ubifs_assert(wbuf->delta <= ULONG_MAX);
  948. return 0;
  949. }
  950. /**
  951. * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
  952. * @wbuf: the write-buffer where to add
  953. * @inum: the inode number
  954. *
  955. * This function adds an inode number to the inode array of the write-buffer.
  956. */
  957. void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
  958. {
  959. if (!wbuf->buf)
  960. /* NOR flash or something similar */
  961. return;
  962. spin_lock(&wbuf->lock);
  963. if (wbuf->used)
  964. wbuf->inodes[wbuf->next_ino++] = inum;
  965. spin_unlock(&wbuf->lock);
  966. }
  967. /**
  968. * wbuf_has_ino - returns if the wbuf contains data from the inode.
  969. * @wbuf: the write-buffer
  970. * @inum: the inode number
  971. *
  972. * This function returns with %1 if the write-buffer contains some data from the
  973. * given inode otherwise it returns with %0.
  974. */
  975. static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
  976. {
  977. int i, ret = 0;
  978. spin_lock(&wbuf->lock);
  979. for (i = 0; i < wbuf->next_ino; i++)
  980. if (inum == wbuf->inodes[i]) {
  981. ret = 1;
  982. break;
  983. }
  984. spin_unlock(&wbuf->lock);
  985. return ret;
  986. }
  987. /**
  988. * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
  989. * @c: UBIFS file-system description object
  990. * @inode: inode to synchronize
  991. *
  992. * This function synchronizes write-buffers which contain nodes belonging to
  993. * @inode. Returns zero in case of success and a negative error code in case of
  994. * failure.
  995. */
  996. int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
  997. {
  998. int i, err = 0;
  999. for (i = 0; i < c->jhead_cnt; i++) {
  1000. struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
  1001. if (i == GCHD)
  1002. /*
  1003. * GC head is special, do not look at it. Even if the
  1004. * head contains something related to this inode, it is
  1005. * a _copy_ of corresponding on-flash node which sits
  1006. * somewhere else.
  1007. */
  1008. continue;
  1009. if (!wbuf_has_ino(wbuf, inode->i_ino))
  1010. continue;
  1011. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  1012. if (wbuf_has_ino(wbuf, inode->i_ino))
  1013. err = ubifs_wbuf_sync_nolock(wbuf);
  1014. mutex_unlock(&wbuf->io_mutex);
  1015. if (err) {
  1016. ubifs_ro_mode(c, err);
  1017. return err;
  1018. }
  1019. }
  1020. return 0;
  1021. }