inode.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include <linux/uio.h>
  30. #include "ext3.h"
  31. #include "xattr.h"
  32. #include "acl.h"
  33. static int ext3_writepage_trans_blocks(struct inode *inode);
  34. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  35. /*
  36. * Test whether an inode is a fast symlink.
  37. */
  38. static int ext3_inode_is_fast_symlink(struct inode *inode)
  39. {
  40. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  41. (inode->i_sb->s_blocksize >> 9) : 0;
  42. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  43. }
  44. /*
  45. * The ext3 forget function must perform a revoke if we are freeing data
  46. * which has been journaled. Metadata (eg. indirect blocks) must be
  47. * revoked in all cases.
  48. *
  49. * "bh" may be NULL: a metadata block may have been freed from memory
  50. * but there may still be a record of it in the journal, and that record
  51. * still needs to be revoked.
  52. */
  53. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  54. struct buffer_head *bh, ext3_fsblk_t blocknr)
  55. {
  56. int err;
  57. might_sleep();
  58. trace_ext3_forget(inode, is_metadata, blocknr);
  59. BUFFER_TRACE(bh, "enter");
  60. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  61. "data mode %lx\n",
  62. bh, is_metadata, inode->i_mode,
  63. test_opt(inode->i_sb, DATA_FLAGS));
  64. /* Never use the revoke function if we are doing full data
  65. * journaling: there is no need to, and a V1 superblock won't
  66. * support it. Otherwise, only skip the revoke on un-journaled
  67. * data blocks. */
  68. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  69. (!is_metadata && !ext3_should_journal_data(inode))) {
  70. if (bh) {
  71. BUFFER_TRACE(bh, "call journal_forget");
  72. return ext3_journal_forget(handle, bh);
  73. }
  74. return 0;
  75. }
  76. /*
  77. * data!=journal && (is_metadata || should_journal_data(inode))
  78. */
  79. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  80. err = ext3_journal_revoke(handle, blocknr, bh);
  81. if (err)
  82. ext3_abort(inode->i_sb, __func__,
  83. "error %d when attempting revoke", err);
  84. BUFFER_TRACE(bh, "exit");
  85. return err;
  86. }
  87. /*
  88. * Work out how many blocks we need to proceed with the next chunk of a
  89. * truncate transaction.
  90. */
  91. static unsigned long blocks_for_truncate(struct inode *inode)
  92. {
  93. unsigned long needed;
  94. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  95. /* Give ourselves just enough room to cope with inodes in which
  96. * i_blocks is corrupt: we've seen disk corruptions in the past
  97. * which resulted in random data in an inode which looked enough
  98. * like a regular file for ext3 to try to delete it. Things
  99. * will go a bit crazy if that happens, but at least we should
  100. * try not to panic the whole kernel. */
  101. if (needed < 2)
  102. needed = 2;
  103. /* But we need to bound the transaction so we don't overflow the
  104. * journal. */
  105. if (needed > EXT3_MAX_TRANS_DATA)
  106. needed = EXT3_MAX_TRANS_DATA;
  107. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  108. }
  109. /*
  110. * Truncate transactions can be complex and absolutely huge. So we need to
  111. * be able to restart the transaction at a conventient checkpoint to make
  112. * sure we don't overflow the journal.
  113. *
  114. * start_transaction gets us a new handle for a truncate transaction,
  115. * and extend_transaction tries to extend the existing one a bit. If
  116. * extend fails, we need to propagate the failure up and restart the
  117. * transaction in the top-level truncate loop. --sct
  118. */
  119. static handle_t *start_transaction(struct inode *inode)
  120. {
  121. handle_t *result;
  122. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  123. if (!IS_ERR(result))
  124. return result;
  125. ext3_std_error(inode->i_sb, PTR_ERR(result));
  126. return result;
  127. }
  128. /*
  129. * Try to extend this transaction for the purposes of truncation.
  130. *
  131. * Returns 0 if we managed to create more room. If we can't create more
  132. * room, and the transaction must be restarted we return 1.
  133. */
  134. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  135. {
  136. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  137. return 0;
  138. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  139. return 0;
  140. return 1;
  141. }
  142. /*
  143. * Restart the transaction associated with *handle. This does a commit,
  144. * so before we call here everything must be consistently dirtied against
  145. * this transaction.
  146. */
  147. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  148. {
  149. int ret;
  150. jbd_debug(2, "restarting handle %p\n", handle);
  151. /*
  152. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  153. * At this moment, get_block can be called only for blocks inside
  154. * i_size since page cache has been already dropped and writes are
  155. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  156. */
  157. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  158. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  159. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  160. return ret;
  161. }
  162. /*
  163. * Called at inode eviction from icache
  164. */
  165. void ext3_evict_inode (struct inode *inode)
  166. {
  167. struct ext3_inode_info *ei = EXT3_I(inode);
  168. struct ext3_block_alloc_info *rsv;
  169. handle_t *handle;
  170. int want_delete = 0;
  171. trace_ext3_evict_inode(inode);
  172. if (!inode->i_nlink && !is_bad_inode(inode)) {
  173. dquot_initialize(inode);
  174. want_delete = 1;
  175. }
  176. /*
  177. * When journalling data dirty buffers are tracked only in the journal.
  178. * So although mm thinks everything is clean and ready for reaping the
  179. * inode might still have some pages to write in the running
  180. * transaction or waiting to be checkpointed. Thus calling
  181. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  182. * these buffers can cause data loss. Also even if we did not discard
  183. * these buffers, we would have no way to find them after the inode
  184. * is reaped and thus user could see stale data if he tries to read
  185. * them before the transaction is checkpointed. So be careful and
  186. * force everything to disk here... We use ei->i_datasync_tid to
  187. * store the newest transaction containing inode's data.
  188. *
  189. * Note that directories do not have this problem because they don't
  190. * use page cache.
  191. *
  192. * The s_journal check handles the case when ext3_get_journal() fails
  193. * and puts the journal inode.
  194. */
  195. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  196. EXT3_SB(inode->i_sb)->s_journal &&
  197. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  198. inode->i_ino != EXT3_JOURNAL_INO) {
  199. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  200. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  201. log_start_commit(journal, commit_tid);
  202. log_wait_commit(journal, commit_tid);
  203. filemap_write_and_wait(&inode->i_data);
  204. }
  205. truncate_inode_pages_final(&inode->i_data);
  206. ext3_discard_reservation(inode);
  207. rsv = ei->i_block_alloc_info;
  208. ei->i_block_alloc_info = NULL;
  209. if (unlikely(rsv))
  210. kfree(rsv);
  211. if (!want_delete)
  212. goto no_delete;
  213. handle = start_transaction(inode);
  214. if (IS_ERR(handle)) {
  215. /*
  216. * If we're going to skip the normal cleanup, we still need to
  217. * make sure that the in-core orphan linked list is properly
  218. * cleaned up.
  219. */
  220. ext3_orphan_del(NULL, inode);
  221. goto no_delete;
  222. }
  223. if (IS_SYNC(inode))
  224. handle->h_sync = 1;
  225. inode->i_size = 0;
  226. if (inode->i_blocks)
  227. ext3_truncate(inode);
  228. /*
  229. * Kill off the orphan record created when the inode lost the last
  230. * link. Note that ext3_orphan_del() has to be able to cope with the
  231. * deletion of a non-existent orphan - ext3_truncate() could
  232. * have removed the record.
  233. */
  234. ext3_orphan_del(handle, inode);
  235. ei->i_dtime = get_seconds();
  236. /*
  237. * One subtle ordering requirement: if anything has gone wrong
  238. * (transaction abort, IO errors, whatever), then we can still
  239. * do these next steps (the fs will already have been marked as
  240. * having errors), but we can't free the inode if the mark_dirty
  241. * fails.
  242. */
  243. if (ext3_mark_inode_dirty(handle, inode)) {
  244. /* If that failed, just dquot_drop() and be done with that */
  245. dquot_drop(inode);
  246. clear_inode(inode);
  247. } else {
  248. ext3_xattr_delete_inode(handle, inode);
  249. dquot_free_inode(inode);
  250. dquot_drop(inode);
  251. clear_inode(inode);
  252. ext3_free_inode(handle, inode);
  253. }
  254. ext3_journal_stop(handle);
  255. return;
  256. no_delete:
  257. clear_inode(inode);
  258. dquot_drop(inode);
  259. }
  260. typedef struct {
  261. __le32 *p;
  262. __le32 key;
  263. struct buffer_head *bh;
  264. } Indirect;
  265. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  266. {
  267. p->key = *(p->p = v);
  268. p->bh = bh;
  269. }
  270. static int verify_chain(Indirect *from, Indirect *to)
  271. {
  272. while (from <= to && from->key == *from->p)
  273. from++;
  274. return (from > to);
  275. }
  276. /**
  277. * ext3_block_to_path - parse the block number into array of offsets
  278. * @inode: inode in question (we are only interested in its superblock)
  279. * @i_block: block number to be parsed
  280. * @offsets: array to store the offsets in
  281. * @boundary: set this non-zero if the referred-to block is likely to be
  282. * followed (on disk) by an indirect block.
  283. *
  284. * To store the locations of file's data ext3 uses a data structure common
  285. * for UNIX filesystems - tree of pointers anchored in the inode, with
  286. * data blocks at leaves and indirect blocks in intermediate nodes.
  287. * This function translates the block number into path in that tree -
  288. * return value is the path length and @offsets[n] is the offset of
  289. * pointer to (n+1)th node in the nth one. If @block is out of range
  290. * (negative or too large) warning is printed and zero returned.
  291. *
  292. * Note: function doesn't find node addresses, so no IO is needed. All
  293. * we need to know is the capacity of indirect blocks (taken from the
  294. * inode->i_sb).
  295. */
  296. /*
  297. * Portability note: the last comparison (check that we fit into triple
  298. * indirect block) is spelled differently, because otherwise on an
  299. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  300. * if our filesystem had 8Kb blocks. We might use long long, but that would
  301. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  302. * i_block would have to be negative in the very beginning, so we would not
  303. * get there at all.
  304. */
  305. static int ext3_block_to_path(struct inode *inode,
  306. long i_block, int offsets[4], int *boundary)
  307. {
  308. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  309. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  310. const long direct_blocks = EXT3_NDIR_BLOCKS,
  311. indirect_blocks = ptrs,
  312. double_blocks = (1 << (ptrs_bits * 2));
  313. int n = 0;
  314. int final = 0;
  315. if (i_block < 0) {
  316. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  317. } else if (i_block < direct_blocks) {
  318. offsets[n++] = i_block;
  319. final = direct_blocks;
  320. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  321. offsets[n++] = EXT3_IND_BLOCK;
  322. offsets[n++] = i_block;
  323. final = ptrs;
  324. } else if ((i_block -= indirect_blocks) < double_blocks) {
  325. offsets[n++] = EXT3_DIND_BLOCK;
  326. offsets[n++] = i_block >> ptrs_bits;
  327. offsets[n++] = i_block & (ptrs - 1);
  328. final = ptrs;
  329. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  330. offsets[n++] = EXT3_TIND_BLOCK;
  331. offsets[n++] = i_block >> (ptrs_bits * 2);
  332. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  333. offsets[n++] = i_block & (ptrs - 1);
  334. final = ptrs;
  335. } else {
  336. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  337. }
  338. if (boundary)
  339. *boundary = final - 1 - (i_block & (ptrs - 1));
  340. return n;
  341. }
  342. /**
  343. * ext3_get_branch - read the chain of indirect blocks leading to data
  344. * @inode: inode in question
  345. * @depth: depth of the chain (1 - direct pointer, etc.)
  346. * @offsets: offsets of pointers in inode/indirect blocks
  347. * @chain: place to store the result
  348. * @err: here we store the error value
  349. *
  350. * Function fills the array of triples <key, p, bh> and returns %NULL
  351. * if everything went OK or the pointer to the last filled triple
  352. * (incomplete one) otherwise. Upon the return chain[i].key contains
  353. * the number of (i+1)-th block in the chain (as it is stored in memory,
  354. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  355. * number (it points into struct inode for i==0 and into the bh->b_data
  356. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  357. * block for i>0 and NULL for i==0. In other words, it holds the block
  358. * numbers of the chain, addresses they were taken from (and where we can
  359. * verify that chain did not change) and buffer_heads hosting these
  360. * numbers.
  361. *
  362. * Function stops when it stumbles upon zero pointer (absent block)
  363. * (pointer to last triple returned, *@err == 0)
  364. * or when it gets an IO error reading an indirect block
  365. * (ditto, *@err == -EIO)
  366. * or when it notices that chain had been changed while it was reading
  367. * (ditto, *@err == -EAGAIN)
  368. * or when it reads all @depth-1 indirect blocks successfully and finds
  369. * the whole chain, all way to the data (returns %NULL, *err == 0).
  370. */
  371. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  372. Indirect chain[4], int *err)
  373. {
  374. struct super_block *sb = inode->i_sb;
  375. Indirect *p = chain;
  376. struct buffer_head *bh;
  377. *err = 0;
  378. /* i_data is not going away, no lock needed */
  379. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  380. if (!p->key)
  381. goto no_block;
  382. while (--depth) {
  383. bh = sb_bread(sb, le32_to_cpu(p->key));
  384. if (!bh)
  385. goto failure;
  386. /* Reader: pointers */
  387. if (!verify_chain(chain, p))
  388. goto changed;
  389. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  390. /* Reader: end */
  391. if (!p->key)
  392. goto no_block;
  393. }
  394. return NULL;
  395. changed:
  396. brelse(bh);
  397. *err = -EAGAIN;
  398. goto no_block;
  399. failure:
  400. *err = -EIO;
  401. no_block:
  402. return p;
  403. }
  404. /**
  405. * ext3_find_near - find a place for allocation with sufficient locality
  406. * @inode: owner
  407. * @ind: descriptor of indirect block.
  408. *
  409. * This function returns the preferred place for block allocation.
  410. * It is used when heuristic for sequential allocation fails.
  411. * Rules are:
  412. * + if there is a block to the left of our position - allocate near it.
  413. * + if pointer will live in indirect block - allocate near that block.
  414. * + if pointer will live in inode - allocate in the same
  415. * cylinder group.
  416. *
  417. * In the latter case we colour the starting block by the callers PID to
  418. * prevent it from clashing with concurrent allocations for a different inode
  419. * in the same block group. The PID is used here so that functionally related
  420. * files will be close-by on-disk.
  421. *
  422. * Caller must make sure that @ind is valid and will stay that way.
  423. */
  424. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  425. {
  426. struct ext3_inode_info *ei = EXT3_I(inode);
  427. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  428. __le32 *p;
  429. ext3_fsblk_t bg_start;
  430. ext3_grpblk_t colour;
  431. /* Try to find previous block */
  432. for (p = ind->p - 1; p >= start; p--) {
  433. if (*p)
  434. return le32_to_cpu(*p);
  435. }
  436. /* No such thing, so let's try location of indirect block */
  437. if (ind->bh)
  438. return ind->bh->b_blocknr;
  439. /*
  440. * It is going to be referred to from the inode itself? OK, just put it
  441. * into the same cylinder group then.
  442. */
  443. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  444. colour = (current->pid % 16) *
  445. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  446. return bg_start + colour;
  447. }
  448. /**
  449. * ext3_find_goal - find a preferred place for allocation.
  450. * @inode: owner
  451. * @block: block we want
  452. * @partial: pointer to the last triple within a chain
  453. *
  454. * Normally this function find the preferred place for block allocation,
  455. * returns it.
  456. */
  457. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  458. Indirect *partial)
  459. {
  460. struct ext3_block_alloc_info *block_i;
  461. block_i = EXT3_I(inode)->i_block_alloc_info;
  462. /*
  463. * try the heuristic for sequential allocation,
  464. * failing that at least try to get decent locality.
  465. */
  466. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  467. && (block_i->last_alloc_physical_block != 0)) {
  468. return block_i->last_alloc_physical_block + 1;
  469. }
  470. return ext3_find_near(inode, partial);
  471. }
  472. /**
  473. * ext3_blks_to_allocate - Look up the block map and count the number
  474. * of direct blocks need to be allocated for the given branch.
  475. *
  476. * @branch: chain of indirect blocks
  477. * @k: number of blocks need for indirect blocks
  478. * @blks: number of data blocks to be mapped.
  479. * @blocks_to_boundary: the offset in the indirect block
  480. *
  481. * return the total number of blocks to be allocate, including the
  482. * direct and indirect blocks.
  483. */
  484. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  485. int blocks_to_boundary)
  486. {
  487. unsigned long count = 0;
  488. /*
  489. * Simple case, [t,d]Indirect block(s) has not allocated yet
  490. * then it's clear blocks on that path have not allocated
  491. */
  492. if (k > 0) {
  493. /* right now we don't handle cross boundary allocation */
  494. if (blks < blocks_to_boundary + 1)
  495. count += blks;
  496. else
  497. count += blocks_to_boundary + 1;
  498. return count;
  499. }
  500. count++;
  501. while (count < blks && count <= blocks_to_boundary &&
  502. le32_to_cpu(*(branch[0].p + count)) == 0) {
  503. count++;
  504. }
  505. return count;
  506. }
  507. /**
  508. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  509. * @handle: handle for this transaction
  510. * @inode: owner
  511. * @goal: preferred place for allocation
  512. * @indirect_blks: the number of blocks need to allocate for indirect
  513. * blocks
  514. * @blks: number of blocks need to allocated for direct blocks
  515. * @new_blocks: on return it will store the new block numbers for
  516. * the indirect blocks(if needed) and the first direct block,
  517. * @err: here we store the error value
  518. *
  519. * return the number of direct blocks allocated
  520. */
  521. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  522. ext3_fsblk_t goal, int indirect_blks, int blks,
  523. ext3_fsblk_t new_blocks[4], int *err)
  524. {
  525. int target, i;
  526. unsigned long count = 0;
  527. int index = 0;
  528. ext3_fsblk_t current_block = 0;
  529. int ret = 0;
  530. /*
  531. * Here we try to allocate the requested multiple blocks at once,
  532. * on a best-effort basis.
  533. * To build a branch, we should allocate blocks for
  534. * the indirect blocks(if not allocated yet), and at least
  535. * the first direct block of this branch. That's the
  536. * minimum number of blocks need to allocate(required)
  537. */
  538. target = blks + indirect_blks;
  539. while (1) {
  540. count = target;
  541. /* allocating blocks for indirect blocks and direct blocks */
  542. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  543. if (*err)
  544. goto failed_out;
  545. target -= count;
  546. /* allocate blocks for indirect blocks */
  547. while (index < indirect_blks && count) {
  548. new_blocks[index++] = current_block++;
  549. count--;
  550. }
  551. if (count > 0)
  552. break;
  553. }
  554. /* save the new block number for the first direct block */
  555. new_blocks[index] = current_block;
  556. /* total number of blocks allocated for direct blocks */
  557. ret = count;
  558. *err = 0;
  559. return ret;
  560. failed_out:
  561. for (i = 0; i <index; i++)
  562. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  563. return ret;
  564. }
  565. /**
  566. * ext3_alloc_branch - allocate and set up a chain of blocks.
  567. * @handle: handle for this transaction
  568. * @inode: owner
  569. * @indirect_blks: number of allocated indirect blocks
  570. * @blks: number of allocated direct blocks
  571. * @goal: preferred place for allocation
  572. * @offsets: offsets (in the blocks) to store the pointers to next.
  573. * @branch: place to store the chain in.
  574. *
  575. * This function allocates blocks, zeroes out all but the last one,
  576. * links them into chain and (if we are synchronous) writes them to disk.
  577. * In other words, it prepares a branch that can be spliced onto the
  578. * inode. It stores the information about that chain in the branch[], in
  579. * the same format as ext3_get_branch() would do. We are calling it after
  580. * we had read the existing part of chain and partial points to the last
  581. * triple of that (one with zero ->key). Upon the exit we have the same
  582. * picture as after the successful ext3_get_block(), except that in one
  583. * place chain is disconnected - *branch->p is still zero (we did not
  584. * set the last link), but branch->key contains the number that should
  585. * be placed into *branch->p to fill that gap.
  586. *
  587. * If allocation fails we free all blocks we've allocated (and forget
  588. * their buffer_heads) and return the error value the from failed
  589. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  590. * as described above and return 0.
  591. */
  592. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  593. int indirect_blks, int *blks, ext3_fsblk_t goal,
  594. int *offsets, Indirect *branch)
  595. {
  596. int blocksize = inode->i_sb->s_blocksize;
  597. int i, n = 0;
  598. int err = 0;
  599. struct buffer_head *bh;
  600. int num;
  601. ext3_fsblk_t new_blocks[4];
  602. ext3_fsblk_t current_block;
  603. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  604. *blks, new_blocks, &err);
  605. if (err)
  606. return err;
  607. branch[0].key = cpu_to_le32(new_blocks[0]);
  608. /*
  609. * metadata blocks and data blocks are allocated.
  610. */
  611. for (n = 1; n <= indirect_blks; n++) {
  612. /*
  613. * Get buffer_head for parent block, zero it out
  614. * and set the pointer to new one, then send
  615. * parent to disk.
  616. */
  617. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  618. if (unlikely(!bh)) {
  619. err = -ENOMEM;
  620. goto failed;
  621. }
  622. branch[n].bh = bh;
  623. lock_buffer(bh);
  624. BUFFER_TRACE(bh, "call get_create_access");
  625. err = ext3_journal_get_create_access(handle, bh);
  626. if (err) {
  627. unlock_buffer(bh);
  628. brelse(bh);
  629. goto failed;
  630. }
  631. memset(bh->b_data, 0, blocksize);
  632. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  633. branch[n].key = cpu_to_le32(new_blocks[n]);
  634. *branch[n].p = branch[n].key;
  635. if ( n == indirect_blks) {
  636. current_block = new_blocks[n];
  637. /*
  638. * End of chain, update the last new metablock of
  639. * the chain to point to the new allocated
  640. * data blocks numbers
  641. */
  642. for (i=1; i < num; i++)
  643. *(branch[n].p + i) = cpu_to_le32(++current_block);
  644. }
  645. BUFFER_TRACE(bh, "marking uptodate");
  646. set_buffer_uptodate(bh);
  647. unlock_buffer(bh);
  648. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  649. err = ext3_journal_dirty_metadata(handle, bh);
  650. if (err)
  651. goto failed;
  652. }
  653. *blks = num;
  654. return err;
  655. failed:
  656. /* Allocation failed, free what we already allocated */
  657. for (i = 1; i <= n ; i++) {
  658. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  659. ext3_journal_forget(handle, branch[i].bh);
  660. }
  661. for (i = 0; i < indirect_blks; i++)
  662. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  663. ext3_free_blocks(handle, inode, new_blocks[i], num);
  664. return err;
  665. }
  666. /**
  667. * ext3_splice_branch - splice the allocated branch onto inode.
  668. * @handle: handle for this transaction
  669. * @inode: owner
  670. * @block: (logical) number of block we are adding
  671. * @where: location of missing link
  672. * @num: number of indirect blocks we are adding
  673. * @blks: number of direct blocks we are adding
  674. *
  675. * This function fills the missing link and does all housekeeping needed in
  676. * inode (->i_blocks, etc.). In case of success we end up with the full
  677. * chain to new block and return 0.
  678. */
  679. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  680. long block, Indirect *where, int num, int blks)
  681. {
  682. int i;
  683. int err = 0;
  684. struct ext3_block_alloc_info *block_i;
  685. ext3_fsblk_t current_block;
  686. struct ext3_inode_info *ei = EXT3_I(inode);
  687. struct timespec now;
  688. block_i = ei->i_block_alloc_info;
  689. /*
  690. * If we're splicing into a [td]indirect block (as opposed to the
  691. * inode) then we need to get write access to the [td]indirect block
  692. * before the splice.
  693. */
  694. if (where->bh) {
  695. BUFFER_TRACE(where->bh, "get_write_access");
  696. err = ext3_journal_get_write_access(handle, where->bh);
  697. if (err)
  698. goto err_out;
  699. }
  700. /* That's it */
  701. *where->p = where->key;
  702. /*
  703. * Update the host buffer_head or inode to point to more just allocated
  704. * direct blocks blocks
  705. */
  706. if (num == 0 && blks > 1) {
  707. current_block = le32_to_cpu(where->key) + 1;
  708. for (i = 1; i < blks; i++)
  709. *(where->p + i ) = cpu_to_le32(current_block++);
  710. }
  711. /*
  712. * update the most recently allocated logical & physical block
  713. * in i_block_alloc_info, to assist find the proper goal block for next
  714. * allocation
  715. */
  716. if (block_i) {
  717. block_i->last_alloc_logical_block = block + blks - 1;
  718. block_i->last_alloc_physical_block =
  719. le32_to_cpu(where[num].key) + blks - 1;
  720. }
  721. /* We are done with atomic stuff, now do the rest of housekeeping */
  722. now = CURRENT_TIME_SEC;
  723. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  724. inode->i_ctime = now;
  725. ext3_mark_inode_dirty(handle, inode);
  726. }
  727. /* ext3_mark_inode_dirty already updated i_sync_tid */
  728. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  729. /* had we spliced it onto indirect block? */
  730. if (where->bh) {
  731. /*
  732. * If we spliced it onto an indirect block, we haven't
  733. * altered the inode. Note however that if it is being spliced
  734. * onto an indirect block at the very end of the file (the
  735. * file is growing) then we *will* alter the inode to reflect
  736. * the new i_size. But that is not done here - it is done in
  737. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  738. */
  739. jbd_debug(5, "splicing indirect only\n");
  740. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  741. err = ext3_journal_dirty_metadata(handle, where->bh);
  742. if (err)
  743. goto err_out;
  744. } else {
  745. /*
  746. * OK, we spliced it into the inode itself on a direct block.
  747. * Inode was dirtied above.
  748. */
  749. jbd_debug(5, "splicing direct\n");
  750. }
  751. return err;
  752. err_out:
  753. for (i = 1; i <= num; i++) {
  754. BUFFER_TRACE(where[i].bh, "call journal_forget");
  755. ext3_journal_forget(handle, where[i].bh);
  756. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  757. }
  758. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  759. return err;
  760. }
  761. /*
  762. * Allocation strategy is simple: if we have to allocate something, we will
  763. * have to go the whole way to leaf. So let's do it before attaching anything
  764. * to tree, set linkage between the newborn blocks, write them if sync is
  765. * required, recheck the path, free and repeat if check fails, otherwise
  766. * set the last missing link (that will protect us from any truncate-generated
  767. * removals - all blocks on the path are immune now) and possibly force the
  768. * write on the parent block.
  769. * That has a nice additional property: no special recovery from the failed
  770. * allocations is needed - we simply release blocks and do not touch anything
  771. * reachable from inode.
  772. *
  773. * `handle' can be NULL if create == 0.
  774. *
  775. * The BKL may not be held on entry here. Be sure to take it early.
  776. * return > 0, # of blocks mapped or allocated.
  777. * return = 0, if plain lookup failed.
  778. * return < 0, error case.
  779. */
  780. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  781. sector_t iblock, unsigned long maxblocks,
  782. struct buffer_head *bh_result,
  783. int create)
  784. {
  785. int err = -EIO;
  786. int offsets[4];
  787. Indirect chain[4];
  788. Indirect *partial;
  789. ext3_fsblk_t goal;
  790. int indirect_blks;
  791. int blocks_to_boundary = 0;
  792. int depth;
  793. struct ext3_inode_info *ei = EXT3_I(inode);
  794. int count = 0;
  795. ext3_fsblk_t first_block = 0;
  796. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  797. J_ASSERT(handle != NULL || create == 0);
  798. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  799. if (depth == 0)
  800. goto out;
  801. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  802. /* Simplest case - block found, no allocation needed */
  803. if (!partial) {
  804. first_block = le32_to_cpu(chain[depth - 1].key);
  805. clear_buffer_new(bh_result);
  806. count++;
  807. /*map more blocks*/
  808. while (count < maxblocks && count <= blocks_to_boundary) {
  809. ext3_fsblk_t blk;
  810. if (!verify_chain(chain, chain + depth - 1)) {
  811. /*
  812. * Indirect block might be removed by
  813. * truncate while we were reading it.
  814. * Handling of that case: forget what we've
  815. * got now. Flag the err as EAGAIN, so it
  816. * will reread.
  817. */
  818. err = -EAGAIN;
  819. count = 0;
  820. break;
  821. }
  822. blk = le32_to_cpu(*(chain[depth-1].p + count));
  823. if (blk == first_block + count)
  824. count++;
  825. else
  826. break;
  827. }
  828. if (err != -EAGAIN)
  829. goto got_it;
  830. }
  831. /* Next simple case - plain lookup or failed read of indirect block */
  832. if (!create || err == -EIO)
  833. goto cleanup;
  834. /*
  835. * Block out ext3_truncate while we alter the tree
  836. */
  837. mutex_lock(&ei->truncate_mutex);
  838. /*
  839. * If the indirect block is missing while we are reading
  840. * the chain(ext3_get_branch() returns -EAGAIN err), or
  841. * if the chain has been changed after we grab the semaphore,
  842. * (either because another process truncated this branch, or
  843. * another get_block allocated this branch) re-grab the chain to see if
  844. * the request block has been allocated or not.
  845. *
  846. * Since we already block the truncate/other get_block
  847. * at this point, we will have the current copy of the chain when we
  848. * splice the branch into the tree.
  849. */
  850. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  851. while (partial > chain) {
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  856. if (!partial) {
  857. count++;
  858. mutex_unlock(&ei->truncate_mutex);
  859. if (err)
  860. goto cleanup;
  861. clear_buffer_new(bh_result);
  862. goto got_it;
  863. }
  864. }
  865. /*
  866. * Okay, we need to do block allocation. Lazily initialize the block
  867. * allocation info here if necessary
  868. */
  869. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  870. ext3_init_block_alloc_info(inode);
  871. goal = ext3_find_goal(inode, iblock, partial);
  872. /* the number of blocks need to allocate for [d,t]indirect blocks */
  873. indirect_blks = (chain + depth) - partial - 1;
  874. /*
  875. * Next look up the indirect map to count the totoal number of
  876. * direct blocks to allocate for this branch.
  877. */
  878. count = ext3_blks_to_allocate(partial, indirect_blks,
  879. maxblocks, blocks_to_boundary);
  880. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  881. offsets + (partial - chain), partial);
  882. /*
  883. * The ext3_splice_branch call will free and forget any buffers
  884. * on the new chain if there is a failure, but that risks using
  885. * up transaction credits, especially for bitmaps where the
  886. * credits cannot be returned. Can we handle this somehow? We
  887. * may need to return -EAGAIN upwards in the worst case. --sct
  888. */
  889. if (!err)
  890. err = ext3_splice_branch(handle, inode, iblock,
  891. partial, indirect_blks, count);
  892. mutex_unlock(&ei->truncate_mutex);
  893. if (err)
  894. goto cleanup;
  895. set_buffer_new(bh_result);
  896. got_it:
  897. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  898. if (count > blocks_to_boundary)
  899. set_buffer_boundary(bh_result);
  900. err = count;
  901. /* Clean up and exit */
  902. partial = chain + depth - 1; /* the whole chain */
  903. cleanup:
  904. while (partial > chain) {
  905. BUFFER_TRACE(partial->bh, "call brelse");
  906. brelse(partial->bh);
  907. partial--;
  908. }
  909. BUFFER_TRACE(bh_result, "returned");
  910. out:
  911. trace_ext3_get_blocks_exit(inode, iblock,
  912. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  913. count, err);
  914. return err;
  915. }
  916. /* Maximum number of blocks we map for direct IO at once. */
  917. #define DIO_MAX_BLOCKS 4096
  918. /*
  919. * Number of credits we need for writing DIO_MAX_BLOCKS:
  920. * We need sb + group descriptor + bitmap + inode -> 4
  921. * For B blocks with A block pointers per block we need:
  922. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  923. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  924. */
  925. #define DIO_CREDITS 25
  926. static int ext3_get_block(struct inode *inode, sector_t iblock,
  927. struct buffer_head *bh_result, int create)
  928. {
  929. handle_t *handle = ext3_journal_current_handle();
  930. int ret = 0, started = 0;
  931. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  932. if (create && !handle) { /* Direct IO write... */
  933. if (max_blocks > DIO_MAX_BLOCKS)
  934. max_blocks = DIO_MAX_BLOCKS;
  935. handle = ext3_journal_start(inode, DIO_CREDITS +
  936. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  937. if (IS_ERR(handle)) {
  938. ret = PTR_ERR(handle);
  939. goto out;
  940. }
  941. started = 1;
  942. }
  943. ret = ext3_get_blocks_handle(handle, inode, iblock,
  944. max_blocks, bh_result, create);
  945. if (ret > 0) {
  946. bh_result->b_size = (ret << inode->i_blkbits);
  947. ret = 0;
  948. }
  949. if (started)
  950. ext3_journal_stop(handle);
  951. out:
  952. return ret;
  953. }
  954. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  955. u64 start, u64 len)
  956. {
  957. return generic_block_fiemap(inode, fieinfo, start, len,
  958. ext3_get_block);
  959. }
  960. /*
  961. * `handle' can be NULL if create is zero
  962. */
  963. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  964. long block, int create, int *errp)
  965. {
  966. struct buffer_head dummy;
  967. int fatal = 0, err;
  968. J_ASSERT(handle != NULL || create == 0);
  969. dummy.b_state = 0;
  970. dummy.b_blocknr = -1000;
  971. buffer_trace_init(&dummy.b_history);
  972. err = ext3_get_blocks_handle(handle, inode, block, 1,
  973. &dummy, create);
  974. /*
  975. * ext3_get_blocks_handle() returns number of blocks
  976. * mapped. 0 in case of a HOLE.
  977. */
  978. if (err > 0) {
  979. WARN_ON(err > 1);
  980. err = 0;
  981. }
  982. *errp = err;
  983. if (!err && buffer_mapped(&dummy)) {
  984. struct buffer_head *bh;
  985. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  986. if (unlikely(!bh)) {
  987. *errp = -ENOMEM;
  988. goto err;
  989. }
  990. if (buffer_new(&dummy)) {
  991. J_ASSERT(create != 0);
  992. J_ASSERT(handle != NULL);
  993. /*
  994. * Now that we do not always journal data, we should
  995. * keep in mind whether this should always journal the
  996. * new buffer as metadata. For now, regular file
  997. * writes use ext3_get_block instead, so it's not a
  998. * problem.
  999. */
  1000. lock_buffer(bh);
  1001. BUFFER_TRACE(bh, "call get_create_access");
  1002. fatal = ext3_journal_get_create_access(handle, bh);
  1003. if (!fatal && !buffer_uptodate(bh)) {
  1004. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1005. set_buffer_uptodate(bh);
  1006. }
  1007. unlock_buffer(bh);
  1008. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1009. err = ext3_journal_dirty_metadata(handle, bh);
  1010. if (!fatal)
  1011. fatal = err;
  1012. } else {
  1013. BUFFER_TRACE(bh, "not a new buffer");
  1014. }
  1015. if (fatal) {
  1016. *errp = fatal;
  1017. brelse(bh);
  1018. bh = NULL;
  1019. }
  1020. return bh;
  1021. }
  1022. err:
  1023. return NULL;
  1024. }
  1025. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1026. int block, int create, int *err)
  1027. {
  1028. struct buffer_head * bh;
  1029. bh = ext3_getblk(handle, inode, block, create, err);
  1030. if (!bh)
  1031. return bh;
  1032. if (bh_uptodate_or_lock(bh))
  1033. return bh;
  1034. get_bh(bh);
  1035. bh->b_end_io = end_buffer_read_sync;
  1036. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1037. wait_on_buffer(bh);
  1038. if (buffer_uptodate(bh))
  1039. return bh;
  1040. put_bh(bh);
  1041. *err = -EIO;
  1042. return NULL;
  1043. }
  1044. static int walk_page_buffers( handle_t *handle,
  1045. struct buffer_head *head,
  1046. unsigned from,
  1047. unsigned to,
  1048. int *partial,
  1049. int (*fn)( handle_t *handle,
  1050. struct buffer_head *bh))
  1051. {
  1052. struct buffer_head *bh;
  1053. unsigned block_start, block_end;
  1054. unsigned blocksize = head->b_size;
  1055. int err, ret = 0;
  1056. struct buffer_head *next;
  1057. for ( bh = head, block_start = 0;
  1058. ret == 0 && (bh != head || !block_start);
  1059. block_start = block_end, bh = next)
  1060. {
  1061. next = bh->b_this_page;
  1062. block_end = block_start + blocksize;
  1063. if (block_end <= from || block_start >= to) {
  1064. if (partial && !buffer_uptodate(bh))
  1065. *partial = 1;
  1066. continue;
  1067. }
  1068. err = (*fn)(handle, bh);
  1069. if (!ret)
  1070. ret = err;
  1071. }
  1072. return ret;
  1073. }
  1074. /*
  1075. * To preserve ordering, it is essential that the hole instantiation and
  1076. * the data write be encapsulated in a single transaction. We cannot
  1077. * close off a transaction and start a new one between the ext3_get_block()
  1078. * and the commit_write(). So doing the journal_start at the start of
  1079. * prepare_write() is the right place.
  1080. *
  1081. * Also, this function can nest inside ext3_writepage() ->
  1082. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1083. * has generated enough buffer credits to do the whole page. So we won't
  1084. * block on the journal in that case, which is good, because the caller may
  1085. * be PF_MEMALLOC.
  1086. *
  1087. * By accident, ext3 can be reentered when a transaction is open via
  1088. * quota file writes. If we were to commit the transaction while thus
  1089. * reentered, there can be a deadlock - we would be holding a quota
  1090. * lock, and the commit would never complete if another thread had a
  1091. * transaction open and was blocking on the quota lock - a ranking
  1092. * violation.
  1093. *
  1094. * So what we do is to rely on the fact that journal_stop/journal_start
  1095. * will _not_ run commit under these circumstances because handle->h_ref
  1096. * is elevated. We'll still have enough credits for the tiny quotafile
  1097. * write.
  1098. */
  1099. static int do_journal_get_write_access(handle_t *handle,
  1100. struct buffer_head *bh)
  1101. {
  1102. int dirty = buffer_dirty(bh);
  1103. int ret;
  1104. if (!buffer_mapped(bh) || buffer_freed(bh))
  1105. return 0;
  1106. /*
  1107. * __block_prepare_write() could have dirtied some buffers. Clean
  1108. * the dirty bit as jbd2_journal_get_write_access() could complain
  1109. * otherwise about fs integrity issues. Setting of the dirty bit
  1110. * by __block_prepare_write() isn't a real problem here as we clear
  1111. * the bit before releasing a page lock and thus writeback cannot
  1112. * ever write the buffer.
  1113. */
  1114. if (dirty)
  1115. clear_buffer_dirty(bh);
  1116. ret = ext3_journal_get_write_access(handle, bh);
  1117. if (!ret && dirty)
  1118. ret = ext3_journal_dirty_metadata(handle, bh);
  1119. return ret;
  1120. }
  1121. /*
  1122. * Truncate blocks that were not used by write. We have to truncate the
  1123. * pagecache as well so that corresponding buffers get properly unmapped.
  1124. */
  1125. static void ext3_truncate_failed_write(struct inode *inode)
  1126. {
  1127. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1128. ext3_truncate(inode);
  1129. }
  1130. /*
  1131. * Truncate blocks that were not used by direct IO write. We have to zero out
  1132. * the last file block as well because direct IO might have written to it.
  1133. */
  1134. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1135. {
  1136. ext3_block_truncate_page(inode, inode->i_size);
  1137. ext3_truncate(inode);
  1138. }
  1139. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1140. loff_t pos, unsigned len, unsigned flags,
  1141. struct page **pagep, void **fsdata)
  1142. {
  1143. struct inode *inode = mapping->host;
  1144. int ret;
  1145. handle_t *handle;
  1146. int retries = 0;
  1147. struct page *page;
  1148. pgoff_t index;
  1149. unsigned from, to;
  1150. /* Reserve one block more for addition to orphan list in case
  1151. * we allocate blocks but write fails for some reason */
  1152. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1153. trace_ext3_write_begin(inode, pos, len, flags);
  1154. index = pos >> PAGE_CACHE_SHIFT;
  1155. from = pos & (PAGE_CACHE_SIZE - 1);
  1156. to = from + len;
  1157. retry:
  1158. page = grab_cache_page_write_begin(mapping, index, flags);
  1159. if (!page)
  1160. return -ENOMEM;
  1161. *pagep = page;
  1162. handle = ext3_journal_start(inode, needed_blocks);
  1163. if (IS_ERR(handle)) {
  1164. unlock_page(page);
  1165. page_cache_release(page);
  1166. ret = PTR_ERR(handle);
  1167. goto out;
  1168. }
  1169. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1170. if (ret)
  1171. goto write_begin_failed;
  1172. if (ext3_should_journal_data(inode)) {
  1173. ret = walk_page_buffers(handle, page_buffers(page),
  1174. from, to, NULL, do_journal_get_write_access);
  1175. }
  1176. write_begin_failed:
  1177. if (ret) {
  1178. /*
  1179. * block_write_begin may have instantiated a few blocks
  1180. * outside i_size. Trim these off again. Don't need
  1181. * i_size_read because we hold i_mutex.
  1182. *
  1183. * Add inode to orphan list in case we crash before truncate
  1184. * finishes. Do this only if ext3_can_truncate() agrees so
  1185. * that orphan processing code is happy.
  1186. */
  1187. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1188. ext3_orphan_add(handle, inode);
  1189. ext3_journal_stop(handle);
  1190. unlock_page(page);
  1191. page_cache_release(page);
  1192. if (pos + len > inode->i_size)
  1193. ext3_truncate_failed_write(inode);
  1194. }
  1195. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1196. goto retry;
  1197. out:
  1198. return ret;
  1199. }
  1200. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1201. {
  1202. int err = journal_dirty_data(handle, bh);
  1203. if (err)
  1204. ext3_journal_abort_handle(__func__, __func__,
  1205. bh, handle, err);
  1206. return err;
  1207. }
  1208. /* For ordered writepage and write_end functions */
  1209. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1210. {
  1211. /*
  1212. * Write could have mapped the buffer but it didn't copy the data in
  1213. * yet. So avoid filing such buffer into a transaction.
  1214. */
  1215. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1216. return ext3_journal_dirty_data(handle, bh);
  1217. return 0;
  1218. }
  1219. /* For write_end() in data=journal mode */
  1220. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1221. {
  1222. if (!buffer_mapped(bh) || buffer_freed(bh))
  1223. return 0;
  1224. set_buffer_uptodate(bh);
  1225. return ext3_journal_dirty_metadata(handle, bh);
  1226. }
  1227. /*
  1228. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1229. * for the whole page but later we failed to copy the data in. Update inode
  1230. * size according to what we managed to copy. The rest is going to be
  1231. * truncated in write_end function.
  1232. */
  1233. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1234. {
  1235. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1236. if (pos + copied > inode->i_size)
  1237. i_size_write(inode, pos + copied);
  1238. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1239. EXT3_I(inode)->i_disksize = pos + copied;
  1240. mark_inode_dirty(inode);
  1241. }
  1242. }
  1243. /*
  1244. * We need to pick up the new inode size which generic_commit_write gave us
  1245. * `file' can be NULL - eg, when called from page_symlink().
  1246. *
  1247. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1248. * buffers are managed internally.
  1249. */
  1250. static int ext3_ordered_write_end(struct file *file,
  1251. struct address_space *mapping,
  1252. loff_t pos, unsigned len, unsigned copied,
  1253. struct page *page, void *fsdata)
  1254. {
  1255. handle_t *handle = ext3_journal_current_handle();
  1256. struct inode *inode = file->f_mapping->host;
  1257. unsigned from, to;
  1258. int ret = 0, ret2;
  1259. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1260. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1261. from = pos & (PAGE_CACHE_SIZE - 1);
  1262. to = from + copied;
  1263. ret = walk_page_buffers(handle, page_buffers(page),
  1264. from, to, NULL, journal_dirty_data_fn);
  1265. if (ret == 0)
  1266. update_file_sizes(inode, pos, copied);
  1267. /*
  1268. * There may be allocated blocks outside of i_size because
  1269. * we failed to copy some data. Prepare for truncate.
  1270. */
  1271. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1272. ext3_orphan_add(handle, inode);
  1273. ret2 = ext3_journal_stop(handle);
  1274. if (!ret)
  1275. ret = ret2;
  1276. unlock_page(page);
  1277. page_cache_release(page);
  1278. if (pos + len > inode->i_size)
  1279. ext3_truncate_failed_write(inode);
  1280. return ret ? ret : copied;
  1281. }
  1282. static int ext3_writeback_write_end(struct file *file,
  1283. struct address_space *mapping,
  1284. loff_t pos, unsigned len, unsigned copied,
  1285. struct page *page, void *fsdata)
  1286. {
  1287. handle_t *handle = ext3_journal_current_handle();
  1288. struct inode *inode = file->f_mapping->host;
  1289. int ret;
  1290. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1291. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1292. update_file_sizes(inode, pos, copied);
  1293. /*
  1294. * There may be allocated blocks outside of i_size because
  1295. * we failed to copy some data. Prepare for truncate.
  1296. */
  1297. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1298. ext3_orphan_add(handle, inode);
  1299. ret = ext3_journal_stop(handle);
  1300. unlock_page(page);
  1301. page_cache_release(page);
  1302. if (pos + len > inode->i_size)
  1303. ext3_truncate_failed_write(inode);
  1304. return ret ? ret : copied;
  1305. }
  1306. static int ext3_journalled_write_end(struct file *file,
  1307. struct address_space *mapping,
  1308. loff_t pos, unsigned len, unsigned copied,
  1309. struct page *page, void *fsdata)
  1310. {
  1311. handle_t *handle = ext3_journal_current_handle();
  1312. struct inode *inode = mapping->host;
  1313. struct ext3_inode_info *ei = EXT3_I(inode);
  1314. int ret = 0, ret2;
  1315. int partial = 0;
  1316. unsigned from, to;
  1317. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1318. from = pos & (PAGE_CACHE_SIZE - 1);
  1319. to = from + len;
  1320. if (copied < len) {
  1321. if (!PageUptodate(page))
  1322. copied = 0;
  1323. page_zero_new_buffers(page, from + copied, to);
  1324. to = from + copied;
  1325. }
  1326. ret = walk_page_buffers(handle, page_buffers(page), from,
  1327. to, &partial, write_end_fn);
  1328. if (!partial)
  1329. SetPageUptodate(page);
  1330. if (pos + copied > inode->i_size)
  1331. i_size_write(inode, pos + copied);
  1332. /*
  1333. * There may be allocated blocks outside of i_size because
  1334. * we failed to copy some data. Prepare for truncate.
  1335. */
  1336. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1337. ext3_orphan_add(handle, inode);
  1338. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1339. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1340. if (inode->i_size > ei->i_disksize) {
  1341. ei->i_disksize = inode->i_size;
  1342. ret2 = ext3_mark_inode_dirty(handle, inode);
  1343. if (!ret)
  1344. ret = ret2;
  1345. }
  1346. ret2 = ext3_journal_stop(handle);
  1347. if (!ret)
  1348. ret = ret2;
  1349. unlock_page(page);
  1350. page_cache_release(page);
  1351. if (pos + len > inode->i_size)
  1352. ext3_truncate_failed_write(inode);
  1353. return ret ? ret : copied;
  1354. }
  1355. /*
  1356. * bmap() is special. It gets used by applications such as lilo and by
  1357. * the swapper to find the on-disk block of a specific piece of data.
  1358. *
  1359. * Naturally, this is dangerous if the block concerned is still in the
  1360. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1361. * filesystem and enables swap, then they may get a nasty shock when the
  1362. * data getting swapped to that swapfile suddenly gets overwritten by
  1363. * the original zero's written out previously to the journal and
  1364. * awaiting writeback in the kernel's buffer cache.
  1365. *
  1366. * So, if we see any bmap calls here on a modified, data-journaled file,
  1367. * take extra steps to flush any blocks which might be in the cache.
  1368. */
  1369. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1370. {
  1371. struct inode *inode = mapping->host;
  1372. journal_t *journal;
  1373. int err;
  1374. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1375. /*
  1376. * This is a REALLY heavyweight approach, but the use of
  1377. * bmap on dirty files is expected to be extremely rare:
  1378. * only if we run lilo or swapon on a freshly made file
  1379. * do we expect this to happen.
  1380. *
  1381. * (bmap requires CAP_SYS_RAWIO so this does not
  1382. * represent an unprivileged user DOS attack --- we'd be
  1383. * in trouble if mortal users could trigger this path at
  1384. * will.)
  1385. *
  1386. * NB. EXT3_STATE_JDATA is not set on files other than
  1387. * regular files. If somebody wants to bmap a directory
  1388. * or symlink and gets confused because the buffer
  1389. * hasn't yet been flushed to disk, they deserve
  1390. * everything they get.
  1391. */
  1392. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1393. journal = EXT3_JOURNAL(inode);
  1394. journal_lock_updates(journal);
  1395. err = journal_flush(journal);
  1396. journal_unlock_updates(journal);
  1397. if (err)
  1398. return 0;
  1399. }
  1400. return generic_block_bmap(mapping,block,ext3_get_block);
  1401. }
  1402. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1403. {
  1404. get_bh(bh);
  1405. return 0;
  1406. }
  1407. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1408. {
  1409. put_bh(bh);
  1410. return 0;
  1411. }
  1412. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1413. {
  1414. return !buffer_mapped(bh);
  1415. }
  1416. /*
  1417. * Note that whenever we need to map blocks we start a transaction even if
  1418. * we're not journalling data. This is to preserve ordering: any hole
  1419. * instantiation within __block_write_full_page -> ext3_get_block() should be
  1420. * journalled along with the data so we don't crash and then get metadata which
  1421. * refers to old data.
  1422. *
  1423. * In all journalling modes block_write_full_page() will start the I/O.
  1424. *
  1425. * We don't honour synchronous mounts for writepage(). That would be
  1426. * disastrous. Any write() or metadata operation will sync the fs for
  1427. * us.
  1428. */
  1429. static int ext3_ordered_writepage(struct page *page,
  1430. struct writeback_control *wbc)
  1431. {
  1432. struct inode *inode = page->mapping->host;
  1433. struct buffer_head *page_bufs;
  1434. handle_t *handle = NULL;
  1435. int ret = 0;
  1436. int err;
  1437. J_ASSERT(PageLocked(page));
  1438. /*
  1439. * We don't want to warn for emergency remount. The condition is
  1440. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1441. * avoid slow-downs.
  1442. */
  1443. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1444. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1445. /*
  1446. * We give up here if we're reentered, because it might be for a
  1447. * different filesystem.
  1448. */
  1449. if (ext3_journal_current_handle())
  1450. goto out_fail;
  1451. trace_ext3_ordered_writepage(page);
  1452. if (!page_has_buffers(page)) {
  1453. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1454. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1455. page_bufs = page_buffers(page);
  1456. } else {
  1457. page_bufs = page_buffers(page);
  1458. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1459. NULL, buffer_unmapped)) {
  1460. /* Provide NULL get_block() to catch bugs if buffers
  1461. * weren't really mapped */
  1462. return block_write_full_page(page, NULL, wbc);
  1463. }
  1464. }
  1465. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1466. if (IS_ERR(handle)) {
  1467. ret = PTR_ERR(handle);
  1468. goto out_fail;
  1469. }
  1470. walk_page_buffers(handle, page_bufs, 0,
  1471. PAGE_CACHE_SIZE, NULL, bget_one);
  1472. ret = block_write_full_page(page, ext3_get_block, wbc);
  1473. /*
  1474. * The page can become unlocked at any point now, and
  1475. * truncate can then come in and change things. So we
  1476. * can't touch *page from now on. But *page_bufs is
  1477. * safe due to elevated refcount.
  1478. */
  1479. /*
  1480. * And attach them to the current transaction. But only if
  1481. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1482. * and generally junk.
  1483. */
  1484. if (ret == 0)
  1485. ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1486. NULL, journal_dirty_data_fn);
  1487. walk_page_buffers(handle, page_bufs, 0,
  1488. PAGE_CACHE_SIZE, NULL, bput_one);
  1489. err = ext3_journal_stop(handle);
  1490. if (!ret)
  1491. ret = err;
  1492. return ret;
  1493. out_fail:
  1494. redirty_page_for_writepage(wbc, page);
  1495. unlock_page(page);
  1496. return ret;
  1497. }
  1498. static int ext3_writeback_writepage(struct page *page,
  1499. struct writeback_control *wbc)
  1500. {
  1501. struct inode *inode = page->mapping->host;
  1502. handle_t *handle = NULL;
  1503. int ret = 0;
  1504. int err;
  1505. J_ASSERT(PageLocked(page));
  1506. /*
  1507. * We don't want to warn for emergency remount. The condition is
  1508. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1509. * avoid slow-downs.
  1510. */
  1511. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1512. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1513. if (ext3_journal_current_handle())
  1514. goto out_fail;
  1515. trace_ext3_writeback_writepage(page);
  1516. if (page_has_buffers(page)) {
  1517. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1518. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1519. /* Provide NULL get_block() to catch bugs if buffers
  1520. * weren't really mapped */
  1521. return block_write_full_page(page, NULL, wbc);
  1522. }
  1523. }
  1524. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1525. if (IS_ERR(handle)) {
  1526. ret = PTR_ERR(handle);
  1527. goto out_fail;
  1528. }
  1529. ret = block_write_full_page(page, ext3_get_block, wbc);
  1530. err = ext3_journal_stop(handle);
  1531. if (!ret)
  1532. ret = err;
  1533. return ret;
  1534. out_fail:
  1535. redirty_page_for_writepage(wbc, page);
  1536. unlock_page(page);
  1537. return ret;
  1538. }
  1539. static int ext3_journalled_writepage(struct page *page,
  1540. struct writeback_control *wbc)
  1541. {
  1542. struct inode *inode = page->mapping->host;
  1543. handle_t *handle = NULL;
  1544. int ret = 0;
  1545. int err;
  1546. J_ASSERT(PageLocked(page));
  1547. /*
  1548. * We don't want to warn for emergency remount. The condition is
  1549. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1550. * avoid slow-downs.
  1551. */
  1552. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1553. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1554. trace_ext3_journalled_writepage(page);
  1555. if (!page_has_buffers(page) || PageChecked(page)) {
  1556. if (ext3_journal_current_handle())
  1557. goto no_write;
  1558. handle = ext3_journal_start(inode,
  1559. ext3_writepage_trans_blocks(inode));
  1560. if (IS_ERR(handle)) {
  1561. ret = PTR_ERR(handle);
  1562. goto no_write;
  1563. }
  1564. /*
  1565. * It's mmapped pagecache. Add buffers and journal it. There
  1566. * doesn't seem much point in redirtying the page here.
  1567. */
  1568. ClearPageChecked(page);
  1569. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1570. ext3_get_block);
  1571. if (ret != 0) {
  1572. ext3_journal_stop(handle);
  1573. goto out_unlock;
  1574. }
  1575. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1576. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1577. err = walk_page_buffers(handle, page_buffers(page), 0,
  1578. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1579. if (ret == 0)
  1580. ret = err;
  1581. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1582. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1583. handle->h_transaction->t_tid);
  1584. unlock_page(page);
  1585. err = ext3_journal_stop(handle);
  1586. if (!ret)
  1587. ret = err;
  1588. } else {
  1589. /*
  1590. * It is a page full of checkpoint-mode buffers. Go and write
  1591. * them. They should have been already mapped when they went
  1592. * to the journal so provide NULL get_block function to catch
  1593. * errors.
  1594. */
  1595. ret = block_write_full_page(page, NULL, wbc);
  1596. }
  1597. out:
  1598. return ret;
  1599. no_write:
  1600. redirty_page_for_writepage(wbc, page);
  1601. out_unlock:
  1602. unlock_page(page);
  1603. goto out;
  1604. }
  1605. static int ext3_readpage(struct file *file, struct page *page)
  1606. {
  1607. trace_ext3_readpage(page);
  1608. return mpage_readpage(page, ext3_get_block);
  1609. }
  1610. static int
  1611. ext3_readpages(struct file *file, struct address_space *mapping,
  1612. struct list_head *pages, unsigned nr_pages)
  1613. {
  1614. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1615. }
  1616. static void ext3_invalidatepage(struct page *page, unsigned int offset,
  1617. unsigned int length)
  1618. {
  1619. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1620. trace_ext3_invalidatepage(page, offset, length);
  1621. /*
  1622. * If it's a full truncate we just forget about the pending dirtying
  1623. */
  1624. if (offset == 0 && length == PAGE_CACHE_SIZE)
  1625. ClearPageChecked(page);
  1626. journal_invalidatepage(journal, page, offset, length);
  1627. }
  1628. static int ext3_releasepage(struct page *page, gfp_t wait)
  1629. {
  1630. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1631. trace_ext3_releasepage(page);
  1632. WARN_ON(PageChecked(page));
  1633. if (!page_has_buffers(page))
  1634. return 0;
  1635. return journal_try_to_free_buffers(journal, page, wait);
  1636. }
  1637. /*
  1638. * If the O_DIRECT write will extend the file then add this inode to the
  1639. * orphan list. So recovery will truncate it back to the original size
  1640. * if the machine crashes during the write.
  1641. *
  1642. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1643. * crashes then stale disk data _may_ be exposed inside the file. But current
  1644. * VFS code falls back into buffered path in that case so we are safe.
  1645. */
  1646. static ssize_t ext3_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
  1647. loff_t offset)
  1648. {
  1649. struct file *file = iocb->ki_filp;
  1650. struct inode *inode = file->f_mapping->host;
  1651. struct ext3_inode_info *ei = EXT3_I(inode);
  1652. handle_t *handle;
  1653. ssize_t ret;
  1654. int orphan = 0;
  1655. size_t count = iov_iter_count(iter);
  1656. int retries = 0;
  1657. trace_ext3_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
  1658. if (iov_iter_rw(iter) == WRITE) {
  1659. loff_t final_size = offset + count;
  1660. if (final_size > inode->i_size) {
  1661. /* Credits for sb + inode write */
  1662. handle = ext3_journal_start(inode, 2);
  1663. if (IS_ERR(handle)) {
  1664. ret = PTR_ERR(handle);
  1665. goto out;
  1666. }
  1667. ret = ext3_orphan_add(handle, inode);
  1668. if (ret) {
  1669. ext3_journal_stop(handle);
  1670. goto out;
  1671. }
  1672. orphan = 1;
  1673. ei->i_disksize = inode->i_size;
  1674. ext3_journal_stop(handle);
  1675. }
  1676. }
  1677. retry:
  1678. ret = blockdev_direct_IO(iocb, inode, iter, offset, ext3_get_block);
  1679. /*
  1680. * In case of error extending write may have instantiated a few
  1681. * blocks outside i_size. Trim these off again.
  1682. */
  1683. if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
  1684. loff_t isize = i_size_read(inode);
  1685. loff_t end = offset + count;
  1686. if (end > isize)
  1687. ext3_truncate_failed_direct_write(inode);
  1688. }
  1689. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1690. goto retry;
  1691. if (orphan) {
  1692. int err;
  1693. /* Credits for sb + inode write */
  1694. handle = ext3_journal_start(inode, 2);
  1695. if (IS_ERR(handle)) {
  1696. /* This is really bad luck. We've written the data
  1697. * but cannot extend i_size. Truncate allocated blocks
  1698. * and pretend the write failed... */
  1699. ext3_truncate_failed_direct_write(inode);
  1700. ret = PTR_ERR(handle);
  1701. if (inode->i_nlink)
  1702. ext3_orphan_del(NULL, inode);
  1703. goto out;
  1704. }
  1705. if (inode->i_nlink)
  1706. ext3_orphan_del(handle, inode);
  1707. if (ret > 0) {
  1708. loff_t end = offset + ret;
  1709. if (end > inode->i_size) {
  1710. ei->i_disksize = end;
  1711. i_size_write(inode, end);
  1712. /*
  1713. * We're going to return a positive `ret'
  1714. * here due to non-zero-length I/O, so there's
  1715. * no way of reporting error returns from
  1716. * ext3_mark_inode_dirty() to userspace. So
  1717. * ignore it.
  1718. */
  1719. ext3_mark_inode_dirty(handle, inode);
  1720. }
  1721. }
  1722. err = ext3_journal_stop(handle);
  1723. if (ret == 0)
  1724. ret = err;
  1725. }
  1726. out:
  1727. trace_ext3_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
  1728. return ret;
  1729. }
  1730. /*
  1731. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1732. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1733. * much here because ->set_page_dirty is called under VFS locks. The page is
  1734. * not necessarily locked.
  1735. *
  1736. * We cannot just dirty the page and leave attached buffers clean, because the
  1737. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1738. * or jbddirty because all the journalling code will explode.
  1739. *
  1740. * So what we do is to mark the page "pending dirty" and next time writepage
  1741. * is called, propagate that into the buffers appropriately.
  1742. */
  1743. static int ext3_journalled_set_page_dirty(struct page *page)
  1744. {
  1745. SetPageChecked(page);
  1746. return __set_page_dirty_nobuffers(page);
  1747. }
  1748. static const struct address_space_operations ext3_ordered_aops = {
  1749. .readpage = ext3_readpage,
  1750. .readpages = ext3_readpages,
  1751. .writepage = ext3_ordered_writepage,
  1752. .write_begin = ext3_write_begin,
  1753. .write_end = ext3_ordered_write_end,
  1754. .bmap = ext3_bmap,
  1755. .invalidatepage = ext3_invalidatepage,
  1756. .releasepage = ext3_releasepage,
  1757. .direct_IO = ext3_direct_IO,
  1758. .migratepage = buffer_migrate_page,
  1759. .is_partially_uptodate = block_is_partially_uptodate,
  1760. .is_dirty_writeback = buffer_check_dirty_writeback,
  1761. .error_remove_page = generic_error_remove_page,
  1762. };
  1763. static const struct address_space_operations ext3_writeback_aops = {
  1764. .readpage = ext3_readpage,
  1765. .readpages = ext3_readpages,
  1766. .writepage = ext3_writeback_writepage,
  1767. .write_begin = ext3_write_begin,
  1768. .write_end = ext3_writeback_write_end,
  1769. .bmap = ext3_bmap,
  1770. .invalidatepage = ext3_invalidatepage,
  1771. .releasepage = ext3_releasepage,
  1772. .direct_IO = ext3_direct_IO,
  1773. .migratepage = buffer_migrate_page,
  1774. .is_partially_uptodate = block_is_partially_uptodate,
  1775. .error_remove_page = generic_error_remove_page,
  1776. };
  1777. static const struct address_space_operations ext3_journalled_aops = {
  1778. .readpage = ext3_readpage,
  1779. .readpages = ext3_readpages,
  1780. .writepage = ext3_journalled_writepage,
  1781. .write_begin = ext3_write_begin,
  1782. .write_end = ext3_journalled_write_end,
  1783. .set_page_dirty = ext3_journalled_set_page_dirty,
  1784. .bmap = ext3_bmap,
  1785. .invalidatepage = ext3_invalidatepage,
  1786. .releasepage = ext3_releasepage,
  1787. .is_partially_uptodate = block_is_partially_uptodate,
  1788. .error_remove_page = generic_error_remove_page,
  1789. };
  1790. void ext3_set_aops(struct inode *inode)
  1791. {
  1792. if (ext3_should_order_data(inode))
  1793. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1794. else if (ext3_should_writeback_data(inode))
  1795. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1796. else
  1797. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1798. }
  1799. /*
  1800. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1801. * up to the end of the block which corresponds to `from'.
  1802. * This required during truncate. We need to physically zero the tail end
  1803. * of that block so it doesn't yield old data if the file is later grown.
  1804. */
  1805. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1806. {
  1807. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1808. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1809. unsigned blocksize, iblock, length, pos;
  1810. struct page *page;
  1811. handle_t *handle = NULL;
  1812. struct buffer_head *bh;
  1813. int err = 0;
  1814. /* Truncated on block boundary - nothing to do */
  1815. blocksize = inode->i_sb->s_blocksize;
  1816. if ((from & (blocksize - 1)) == 0)
  1817. return 0;
  1818. page = grab_cache_page(inode->i_mapping, index);
  1819. if (!page)
  1820. return -ENOMEM;
  1821. length = blocksize - (offset & (blocksize - 1));
  1822. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1823. if (!page_has_buffers(page))
  1824. create_empty_buffers(page, blocksize, 0);
  1825. /* Find the buffer that contains "offset" */
  1826. bh = page_buffers(page);
  1827. pos = blocksize;
  1828. while (offset >= pos) {
  1829. bh = bh->b_this_page;
  1830. iblock++;
  1831. pos += blocksize;
  1832. }
  1833. err = 0;
  1834. if (buffer_freed(bh)) {
  1835. BUFFER_TRACE(bh, "freed: skip");
  1836. goto unlock;
  1837. }
  1838. if (!buffer_mapped(bh)) {
  1839. BUFFER_TRACE(bh, "unmapped");
  1840. ext3_get_block(inode, iblock, bh, 0);
  1841. /* unmapped? It's a hole - nothing to do */
  1842. if (!buffer_mapped(bh)) {
  1843. BUFFER_TRACE(bh, "still unmapped");
  1844. goto unlock;
  1845. }
  1846. }
  1847. /* Ok, it's mapped. Make sure it's up-to-date */
  1848. if (PageUptodate(page))
  1849. set_buffer_uptodate(bh);
  1850. if (!bh_uptodate_or_lock(bh)) {
  1851. err = bh_submit_read(bh);
  1852. /* Uhhuh. Read error. Complain and punt. */
  1853. if (err)
  1854. goto unlock;
  1855. }
  1856. /* data=writeback mode doesn't need transaction to zero-out data */
  1857. if (!ext3_should_writeback_data(inode)) {
  1858. /* We journal at most one block */
  1859. handle = ext3_journal_start(inode, 1);
  1860. if (IS_ERR(handle)) {
  1861. clear_highpage(page);
  1862. flush_dcache_page(page);
  1863. err = PTR_ERR(handle);
  1864. goto unlock;
  1865. }
  1866. }
  1867. if (ext3_should_journal_data(inode)) {
  1868. BUFFER_TRACE(bh, "get write access");
  1869. err = ext3_journal_get_write_access(handle, bh);
  1870. if (err)
  1871. goto stop;
  1872. }
  1873. zero_user(page, offset, length);
  1874. BUFFER_TRACE(bh, "zeroed end of block");
  1875. err = 0;
  1876. if (ext3_should_journal_data(inode)) {
  1877. err = ext3_journal_dirty_metadata(handle, bh);
  1878. } else {
  1879. if (ext3_should_order_data(inode))
  1880. err = ext3_journal_dirty_data(handle, bh);
  1881. mark_buffer_dirty(bh);
  1882. }
  1883. stop:
  1884. if (handle)
  1885. ext3_journal_stop(handle);
  1886. unlock:
  1887. unlock_page(page);
  1888. page_cache_release(page);
  1889. return err;
  1890. }
  1891. /*
  1892. * Probably it should be a library function... search for first non-zero word
  1893. * or memcmp with zero_page, whatever is better for particular architecture.
  1894. * Linus?
  1895. */
  1896. static inline int all_zeroes(__le32 *p, __le32 *q)
  1897. {
  1898. while (p < q)
  1899. if (*p++)
  1900. return 0;
  1901. return 1;
  1902. }
  1903. /**
  1904. * ext3_find_shared - find the indirect blocks for partial truncation.
  1905. * @inode: inode in question
  1906. * @depth: depth of the affected branch
  1907. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1908. * @chain: place to store the pointers to partial indirect blocks
  1909. * @top: place to the (detached) top of branch
  1910. *
  1911. * This is a helper function used by ext3_truncate().
  1912. *
  1913. * When we do truncate() we may have to clean the ends of several
  1914. * indirect blocks but leave the blocks themselves alive. Block is
  1915. * partially truncated if some data below the new i_size is referred
  1916. * from it (and it is on the path to the first completely truncated
  1917. * data block, indeed). We have to free the top of that path along
  1918. * with everything to the right of the path. Since no allocation
  1919. * past the truncation point is possible until ext3_truncate()
  1920. * finishes, we may safely do the latter, but top of branch may
  1921. * require special attention - pageout below the truncation point
  1922. * might try to populate it.
  1923. *
  1924. * We atomically detach the top of branch from the tree, store the
  1925. * block number of its root in *@top, pointers to buffer_heads of
  1926. * partially truncated blocks - in @chain[].bh and pointers to
  1927. * their last elements that should not be removed - in
  1928. * @chain[].p. Return value is the pointer to last filled element
  1929. * of @chain.
  1930. *
  1931. * The work left to caller to do the actual freeing of subtrees:
  1932. * a) free the subtree starting from *@top
  1933. * b) free the subtrees whose roots are stored in
  1934. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1935. * c) free the subtrees growing from the inode past the @chain[0].
  1936. * (no partially truncated stuff there). */
  1937. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1938. int offsets[4], Indirect chain[4], __le32 *top)
  1939. {
  1940. Indirect *partial, *p;
  1941. int k, err;
  1942. *top = 0;
  1943. /* Make k index the deepest non-null offset + 1 */
  1944. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1945. ;
  1946. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1947. /* Writer: pointers */
  1948. if (!partial)
  1949. partial = chain + k-1;
  1950. /*
  1951. * If the branch acquired continuation since we've looked at it -
  1952. * fine, it should all survive and (new) top doesn't belong to us.
  1953. */
  1954. if (!partial->key && *partial->p)
  1955. /* Writer: end */
  1956. goto no_top;
  1957. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1958. ;
  1959. /*
  1960. * OK, we've found the last block that must survive. The rest of our
  1961. * branch should be detached before unlocking. However, if that rest
  1962. * of branch is all ours and does not grow immediately from the inode
  1963. * it's easier to cheat and just decrement partial->p.
  1964. */
  1965. if (p == chain + k - 1 && p > chain) {
  1966. p->p--;
  1967. } else {
  1968. *top = *p->p;
  1969. /* Nope, don't do this in ext3. Must leave the tree intact */
  1970. #if 0
  1971. *p->p = 0;
  1972. #endif
  1973. }
  1974. /* Writer: end */
  1975. while(partial > p) {
  1976. brelse(partial->bh);
  1977. partial--;
  1978. }
  1979. no_top:
  1980. return partial;
  1981. }
  1982. /*
  1983. * Zero a number of block pointers in either an inode or an indirect block.
  1984. * If we restart the transaction we must again get write access to the
  1985. * indirect block for further modification.
  1986. *
  1987. * We release `count' blocks on disk, but (last - first) may be greater
  1988. * than `count' because there can be holes in there.
  1989. */
  1990. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1991. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1992. unsigned long count, __le32 *first, __le32 *last)
  1993. {
  1994. __le32 *p;
  1995. if (try_to_extend_transaction(handle, inode)) {
  1996. if (bh) {
  1997. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1998. if (ext3_journal_dirty_metadata(handle, bh))
  1999. return;
  2000. }
  2001. ext3_mark_inode_dirty(handle, inode);
  2002. truncate_restart_transaction(handle, inode);
  2003. if (bh) {
  2004. BUFFER_TRACE(bh, "retaking write access");
  2005. if (ext3_journal_get_write_access(handle, bh))
  2006. return;
  2007. }
  2008. }
  2009. /*
  2010. * Any buffers which are on the journal will be in memory. We find
  2011. * them on the hash table so journal_revoke() will run journal_forget()
  2012. * on them. We've already detached each block from the file, so
  2013. * bforget() in journal_forget() should be safe.
  2014. *
  2015. * AKPM: turn on bforget in journal_forget()!!!
  2016. */
  2017. for (p = first; p < last; p++) {
  2018. u32 nr = le32_to_cpu(*p);
  2019. if (nr) {
  2020. struct buffer_head *bh;
  2021. *p = 0;
  2022. bh = sb_find_get_block(inode->i_sb, nr);
  2023. ext3_forget(handle, 0, inode, bh, nr);
  2024. }
  2025. }
  2026. ext3_free_blocks(handle, inode, block_to_free, count);
  2027. }
  2028. /**
  2029. * ext3_free_data - free a list of data blocks
  2030. * @handle: handle for this transaction
  2031. * @inode: inode we are dealing with
  2032. * @this_bh: indirect buffer_head which contains *@first and *@last
  2033. * @first: array of block numbers
  2034. * @last: points immediately past the end of array
  2035. *
  2036. * We are freeing all blocks referred from that array (numbers are stored as
  2037. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2038. *
  2039. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2040. * blocks are contiguous then releasing them at one time will only affect one
  2041. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2042. * actually use a lot of journal space.
  2043. *
  2044. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2045. * block pointers.
  2046. */
  2047. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2048. struct buffer_head *this_bh,
  2049. __le32 *first, __le32 *last)
  2050. {
  2051. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2052. unsigned long count = 0; /* Number of blocks in the run */
  2053. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2054. corresponding to
  2055. block_to_free */
  2056. ext3_fsblk_t nr; /* Current block # */
  2057. __le32 *p; /* Pointer into inode/ind
  2058. for current block */
  2059. int err;
  2060. if (this_bh) { /* For indirect block */
  2061. BUFFER_TRACE(this_bh, "get_write_access");
  2062. err = ext3_journal_get_write_access(handle, this_bh);
  2063. /* Important: if we can't update the indirect pointers
  2064. * to the blocks, we can't free them. */
  2065. if (err)
  2066. return;
  2067. }
  2068. for (p = first; p < last; p++) {
  2069. nr = le32_to_cpu(*p);
  2070. if (nr) {
  2071. /* accumulate blocks to free if they're contiguous */
  2072. if (count == 0) {
  2073. block_to_free = nr;
  2074. block_to_free_p = p;
  2075. count = 1;
  2076. } else if (nr == block_to_free + count) {
  2077. count++;
  2078. } else {
  2079. ext3_clear_blocks(handle, inode, this_bh,
  2080. block_to_free,
  2081. count, block_to_free_p, p);
  2082. block_to_free = nr;
  2083. block_to_free_p = p;
  2084. count = 1;
  2085. }
  2086. }
  2087. }
  2088. if (count > 0)
  2089. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2090. count, block_to_free_p, p);
  2091. if (this_bh) {
  2092. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2093. /*
  2094. * The buffer head should have an attached journal head at this
  2095. * point. However, if the data is corrupted and an indirect
  2096. * block pointed to itself, it would have been detached when
  2097. * the block was cleared. Check for this instead of OOPSing.
  2098. */
  2099. if (bh2jh(this_bh))
  2100. ext3_journal_dirty_metadata(handle, this_bh);
  2101. else
  2102. ext3_error(inode->i_sb, "ext3_free_data",
  2103. "circular indirect block detected, "
  2104. "inode=%lu, block=%llu",
  2105. inode->i_ino,
  2106. (unsigned long long)this_bh->b_blocknr);
  2107. }
  2108. }
  2109. /**
  2110. * ext3_free_branches - free an array of branches
  2111. * @handle: JBD handle for this transaction
  2112. * @inode: inode we are dealing with
  2113. * @parent_bh: the buffer_head which contains *@first and *@last
  2114. * @first: array of block numbers
  2115. * @last: pointer immediately past the end of array
  2116. * @depth: depth of the branches to free
  2117. *
  2118. * We are freeing all blocks referred from these branches (numbers are
  2119. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2120. * appropriately.
  2121. */
  2122. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2123. struct buffer_head *parent_bh,
  2124. __le32 *first, __le32 *last, int depth)
  2125. {
  2126. ext3_fsblk_t nr;
  2127. __le32 *p;
  2128. if (is_handle_aborted(handle))
  2129. return;
  2130. if (depth--) {
  2131. struct buffer_head *bh;
  2132. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2133. p = last;
  2134. while (--p >= first) {
  2135. nr = le32_to_cpu(*p);
  2136. if (!nr)
  2137. continue; /* A hole */
  2138. /* Go read the buffer for the next level down */
  2139. bh = sb_bread(inode->i_sb, nr);
  2140. /*
  2141. * A read failure? Report error and clear slot
  2142. * (should be rare).
  2143. */
  2144. if (!bh) {
  2145. ext3_error(inode->i_sb, "ext3_free_branches",
  2146. "Read failure, inode=%lu, block="E3FSBLK,
  2147. inode->i_ino, nr);
  2148. continue;
  2149. }
  2150. /* This zaps the entire block. Bottom up. */
  2151. BUFFER_TRACE(bh, "free child branches");
  2152. ext3_free_branches(handle, inode, bh,
  2153. (__le32*)bh->b_data,
  2154. (__le32*)bh->b_data + addr_per_block,
  2155. depth);
  2156. /*
  2157. * Everything below this this pointer has been
  2158. * released. Now let this top-of-subtree go.
  2159. *
  2160. * We want the freeing of this indirect block to be
  2161. * atomic in the journal with the updating of the
  2162. * bitmap block which owns it. So make some room in
  2163. * the journal.
  2164. *
  2165. * We zero the parent pointer *after* freeing its
  2166. * pointee in the bitmaps, so if extend_transaction()
  2167. * for some reason fails to put the bitmap changes and
  2168. * the release into the same transaction, recovery
  2169. * will merely complain about releasing a free block,
  2170. * rather than leaking blocks.
  2171. */
  2172. if (is_handle_aborted(handle))
  2173. return;
  2174. if (try_to_extend_transaction(handle, inode)) {
  2175. ext3_mark_inode_dirty(handle, inode);
  2176. truncate_restart_transaction(handle, inode);
  2177. }
  2178. /*
  2179. * We've probably journalled the indirect block several
  2180. * times during the truncate. But it's no longer
  2181. * needed and we now drop it from the transaction via
  2182. * journal_revoke().
  2183. *
  2184. * That's easy if it's exclusively part of this
  2185. * transaction. But if it's part of the committing
  2186. * transaction then journal_forget() will simply
  2187. * brelse() it. That means that if the underlying
  2188. * block is reallocated in ext3_get_block(),
  2189. * unmap_underlying_metadata() will find this block
  2190. * and will try to get rid of it. damn, damn. Thus
  2191. * we don't allow a block to be reallocated until
  2192. * a transaction freeing it has fully committed.
  2193. *
  2194. * We also have to make sure journal replay after a
  2195. * crash does not overwrite non-journaled data blocks
  2196. * with old metadata when the block got reallocated for
  2197. * data. Thus we have to store a revoke record for a
  2198. * block in the same transaction in which we free the
  2199. * block.
  2200. */
  2201. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2202. ext3_free_blocks(handle, inode, nr, 1);
  2203. if (parent_bh) {
  2204. /*
  2205. * The block which we have just freed is
  2206. * pointed to by an indirect block: journal it
  2207. */
  2208. BUFFER_TRACE(parent_bh, "get_write_access");
  2209. if (!ext3_journal_get_write_access(handle,
  2210. parent_bh)){
  2211. *p = 0;
  2212. BUFFER_TRACE(parent_bh,
  2213. "call ext3_journal_dirty_metadata");
  2214. ext3_journal_dirty_metadata(handle,
  2215. parent_bh);
  2216. }
  2217. }
  2218. }
  2219. } else {
  2220. /* We have reached the bottom of the tree. */
  2221. BUFFER_TRACE(parent_bh, "free data blocks");
  2222. ext3_free_data(handle, inode, parent_bh, first, last);
  2223. }
  2224. }
  2225. int ext3_can_truncate(struct inode *inode)
  2226. {
  2227. if (S_ISREG(inode->i_mode))
  2228. return 1;
  2229. if (S_ISDIR(inode->i_mode))
  2230. return 1;
  2231. if (S_ISLNK(inode->i_mode))
  2232. return !ext3_inode_is_fast_symlink(inode);
  2233. return 0;
  2234. }
  2235. /*
  2236. * ext3_truncate()
  2237. *
  2238. * We block out ext3_get_block() block instantiations across the entire
  2239. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2240. * simultaneously on behalf of the same inode.
  2241. *
  2242. * As we work through the truncate and commit bits of it to the journal there
  2243. * is one core, guiding principle: the file's tree must always be consistent on
  2244. * disk. We must be able to restart the truncate after a crash.
  2245. *
  2246. * The file's tree may be transiently inconsistent in memory (although it
  2247. * probably isn't), but whenever we close off and commit a journal transaction,
  2248. * the contents of (the filesystem + the journal) must be consistent and
  2249. * restartable. It's pretty simple, really: bottom up, right to left (although
  2250. * left-to-right works OK too).
  2251. *
  2252. * Note that at recovery time, journal replay occurs *before* the restart of
  2253. * truncate against the orphan inode list.
  2254. *
  2255. * The committed inode has the new, desired i_size (which is the same as
  2256. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2257. * that this inode's truncate did not complete and it will again call
  2258. * ext3_truncate() to have another go. So there will be instantiated blocks
  2259. * to the right of the truncation point in a crashed ext3 filesystem. But
  2260. * that's fine - as long as they are linked from the inode, the post-crash
  2261. * ext3_truncate() run will find them and release them.
  2262. */
  2263. void ext3_truncate(struct inode *inode)
  2264. {
  2265. handle_t *handle;
  2266. struct ext3_inode_info *ei = EXT3_I(inode);
  2267. __le32 *i_data = ei->i_data;
  2268. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2269. int offsets[4];
  2270. Indirect chain[4];
  2271. Indirect *partial;
  2272. __le32 nr = 0;
  2273. int n;
  2274. long last_block;
  2275. unsigned blocksize = inode->i_sb->s_blocksize;
  2276. trace_ext3_truncate_enter(inode);
  2277. if (!ext3_can_truncate(inode))
  2278. goto out_notrans;
  2279. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2280. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2281. handle = start_transaction(inode);
  2282. if (IS_ERR(handle))
  2283. goto out_notrans;
  2284. last_block = (inode->i_size + blocksize-1)
  2285. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2286. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2287. if (n == 0)
  2288. goto out_stop; /* error */
  2289. /*
  2290. * OK. This truncate is going to happen. We add the inode to the
  2291. * orphan list, so that if this truncate spans multiple transactions,
  2292. * and we crash, we will resume the truncate when the filesystem
  2293. * recovers. It also marks the inode dirty, to catch the new size.
  2294. *
  2295. * Implication: the file must always be in a sane, consistent
  2296. * truncatable state while each transaction commits.
  2297. */
  2298. if (ext3_orphan_add(handle, inode))
  2299. goto out_stop;
  2300. /*
  2301. * The orphan list entry will now protect us from any crash which
  2302. * occurs before the truncate completes, so it is now safe to propagate
  2303. * the new, shorter inode size (held for now in i_size) into the
  2304. * on-disk inode. We do this via i_disksize, which is the value which
  2305. * ext3 *really* writes onto the disk inode.
  2306. */
  2307. ei->i_disksize = inode->i_size;
  2308. /*
  2309. * From here we block out all ext3_get_block() callers who want to
  2310. * modify the block allocation tree.
  2311. */
  2312. mutex_lock(&ei->truncate_mutex);
  2313. if (n == 1) { /* direct blocks */
  2314. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2315. i_data + EXT3_NDIR_BLOCKS);
  2316. goto do_indirects;
  2317. }
  2318. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2319. /* Kill the top of shared branch (not detached) */
  2320. if (nr) {
  2321. if (partial == chain) {
  2322. /* Shared branch grows from the inode */
  2323. ext3_free_branches(handle, inode, NULL,
  2324. &nr, &nr+1, (chain+n-1) - partial);
  2325. *partial->p = 0;
  2326. /*
  2327. * We mark the inode dirty prior to restart,
  2328. * and prior to stop. No need for it here.
  2329. */
  2330. } else {
  2331. /* Shared branch grows from an indirect block */
  2332. ext3_free_branches(handle, inode, partial->bh,
  2333. partial->p,
  2334. partial->p+1, (chain+n-1) - partial);
  2335. }
  2336. }
  2337. /* Clear the ends of indirect blocks on the shared branch */
  2338. while (partial > chain) {
  2339. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2340. (__le32*)partial->bh->b_data+addr_per_block,
  2341. (chain+n-1) - partial);
  2342. BUFFER_TRACE(partial->bh, "call brelse");
  2343. brelse (partial->bh);
  2344. partial--;
  2345. }
  2346. do_indirects:
  2347. /* Kill the remaining (whole) subtrees */
  2348. switch (offsets[0]) {
  2349. default:
  2350. nr = i_data[EXT3_IND_BLOCK];
  2351. if (nr) {
  2352. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2353. i_data[EXT3_IND_BLOCK] = 0;
  2354. }
  2355. case EXT3_IND_BLOCK:
  2356. nr = i_data[EXT3_DIND_BLOCK];
  2357. if (nr) {
  2358. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2359. i_data[EXT3_DIND_BLOCK] = 0;
  2360. }
  2361. case EXT3_DIND_BLOCK:
  2362. nr = i_data[EXT3_TIND_BLOCK];
  2363. if (nr) {
  2364. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2365. i_data[EXT3_TIND_BLOCK] = 0;
  2366. }
  2367. case EXT3_TIND_BLOCK:
  2368. ;
  2369. }
  2370. ext3_discard_reservation(inode);
  2371. mutex_unlock(&ei->truncate_mutex);
  2372. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2373. ext3_mark_inode_dirty(handle, inode);
  2374. /*
  2375. * In a multi-transaction truncate, we only make the final transaction
  2376. * synchronous
  2377. */
  2378. if (IS_SYNC(inode))
  2379. handle->h_sync = 1;
  2380. out_stop:
  2381. /*
  2382. * If this was a simple ftruncate(), and the file will remain alive
  2383. * then we need to clear up the orphan record which we created above.
  2384. * However, if this was a real unlink then we were called by
  2385. * ext3_evict_inode(), and we allow that function to clean up the
  2386. * orphan info for us.
  2387. */
  2388. if (inode->i_nlink)
  2389. ext3_orphan_del(handle, inode);
  2390. ext3_journal_stop(handle);
  2391. trace_ext3_truncate_exit(inode);
  2392. return;
  2393. out_notrans:
  2394. /*
  2395. * Delete the inode from orphan list so that it doesn't stay there
  2396. * forever and trigger assertion on umount.
  2397. */
  2398. if (inode->i_nlink)
  2399. ext3_orphan_del(NULL, inode);
  2400. trace_ext3_truncate_exit(inode);
  2401. }
  2402. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2403. unsigned long ino, struct ext3_iloc *iloc)
  2404. {
  2405. unsigned long block_group;
  2406. unsigned long offset;
  2407. ext3_fsblk_t block;
  2408. struct ext3_group_desc *gdp;
  2409. if (!ext3_valid_inum(sb, ino)) {
  2410. /*
  2411. * This error is already checked for in namei.c unless we are
  2412. * looking at an NFS filehandle, in which case no error
  2413. * report is needed
  2414. */
  2415. return 0;
  2416. }
  2417. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2418. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2419. if (!gdp)
  2420. return 0;
  2421. /*
  2422. * Figure out the offset within the block group inode table
  2423. */
  2424. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2425. EXT3_INODE_SIZE(sb);
  2426. block = le32_to_cpu(gdp->bg_inode_table) +
  2427. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2428. iloc->block_group = block_group;
  2429. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2430. return block;
  2431. }
  2432. /*
  2433. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2434. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2435. * data in memory that is needed to recreate the on-disk version of this
  2436. * inode.
  2437. */
  2438. static int __ext3_get_inode_loc(struct inode *inode,
  2439. struct ext3_iloc *iloc, int in_mem)
  2440. {
  2441. ext3_fsblk_t block;
  2442. struct buffer_head *bh;
  2443. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2444. if (!block)
  2445. return -EIO;
  2446. bh = sb_getblk(inode->i_sb, block);
  2447. if (unlikely(!bh)) {
  2448. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2449. "unable to read inode block - "
  2450. "inode=%lu, block="E3FSBLK,
  2451. inode->i_ino, block);
  2452. return -ENOMEM;
  2453. }
  2454. if (!buffer_uptodate(bh)) {
  2455. lock_buffer(bh);
  2456. /*
  2457. * If the buffer has the write error flag, we have failed
  2458. * to write out another inode in the same block. In this
  2459. * case, we don't have to read the block because we may
  2460. * read the old inode data successfully.
  2461. */
  2462. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2463. set_buffer_uptodate(bh);
  2464. if (buffer_uptodate(bh)) {
  2465. /* someone brought it uptodate while we waited */
  2466. unlock_buffer(bh);
  2467. goto has_buffer;
  2468. }
  2469. /*
  2470. * If we have all information of the inode in memory and this
  2471. * is the only valid inode in the block, we need not read the
  2472. * block.
  2473. */
  2474. if (in_mem) {
  2475. struct buffer_head *bitmap_bh;
  2476. struct ext3_group_desc *desc;
  2477. int inodes_per_buffer;
  2478. int inode_offset, i;
  2479. int block_group;
  2480. int start;
  2481. block_group = (inode->i_ino - 1) /
  2482. EXT3_INODES_PER_GROUP(inode->i_sb);
  2483. inodes_per_buffer = bh->b_size /
  2484. EXT3_INODE_SIZE(inode->i_sb);
  2485. inode_offset = ((inode->i_ino - 1) %
  2486. EXT3_INODES_PER_GROUP(inode->i_sb));
  2487. start = inode_offset & ~(inodes_per_buffer - 1);
  2488. /* Is the inode bitmap in cache? */
  2489. desc = ext3_get_group_desc(inode->i_sb,
  2490. block_group, NULL);
  2491. if (!desc)
  2492. goto make_io;
  2493. bitmap_bh = sb_getblk(inode->i_sb,
  2494. le32_to_cpu(desc->bg_inode_bitmap));
  2495. if (unlikely(!bitmap_bh))
  2496. goto make_io;
  2497. /*
  2498. * If the inode bitmap isn't in cache then the
  2499. * optimisation may end up performing two reads instead
  2500. * of one, so skip it.
  2501. */
  2502. if (!buffer_uptodate(bitmap_bh)) {
  2503. brelse(bitmap_bh);
  2504. goto make_io;
  2505. }
  2506. for (i = start; i < start + inodes_per_buffer; i++) {
  2507. if (i == inode_offset)
  2508. continue;
  2509. if (ext3_test_bit(i, bitmap_bh->b_data))
  2510. break;
  2511. }
  2512. brelse(bitmap_bh);
  2513. if (i == start + inodes_per_buffer) {
  2514. /* all other inodes are free, so skip I/O */
  2515. memset(bh->b_data, 0, bh->b_size);
  2516. set_buffer_uptodate(bh);
  2517. unlock_buffer(bh);
  2518. goto has_buffer;
  2519. }
  2520. }
  2521. make_io:
  2522. /*
  2523. * There are other valid inodes in the buffer, this inode
  2524. * has in-inode xattrs, or we don't have this inode in memory.
  2525. * Read the block from disk.
  2526. */
  2527. trace_ext3_load_inode(inode);
  2528. get_bh(bh);
  2529. bh->b_end_io = end_buffer_read_sync;
  2530. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2531. wait_on_buffer(bh);
  2532. if (!buffer_uptodate(bh)) {
  2533. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2534. "unable to read inode block - "
  2535. "inode=%lu, block="E3FSBLK,
  2536. inode->i_ino, block);
  2537. brelse(bh);
  2538. return -EIO;
  2539. }
  2540. }
  2541. has_buffer:
  2542. iloc->bh = bh;
  2543. return 0;
  2544. }
  2545. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2546. {
  2547. /* We have all inode data except xattrs in memory here. */
  2548. return __ext3_get_inode_loc(inode, iloc,
  2549. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2550. }
  2551. void ext3_set_inode_flags(struct inode *inode)
  2552. {
  2553. unsigned int flags = EXT3_I(inode)->i_flags;
  2554. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2555. if (flags & EXT3_SYNC_FL)
  2556. inode->i_flags |= S_SYNC;
  2557. if (flags & EXT3_APPEND_FL)
  2558. inode->i_flags |= S_APPEND;
  2559. if (flags & EXT3_IMMUTABLE_FL)
  2560. inode->i_flags |= S_IMMUTABLE;
  2561. if (flags & EXT3_NOATIME_FL)
  2562. inode->i_flags |= S_NOATIME;
  2563. if (flags & EXT3_DIRSYNC_FL)
  2564. inode->i_flags |= S_DIRSYNC;
  2565. }
  2566. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2567. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2568. {
  2569. unsigned int flags = ei->vfs_inode.i_flags;
  2570. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2571. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2572. if (flags & S_SYNC)
  2573. ei->i_flags |= EXT3_SYNC_FL;
  2574. if (flags & S_APPEND)
  2575. ei->i_flags |= EXT3_APPEND_FL;
  2576. if (flags & S_IMMUTABLE)
  2577. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2578. if (flags & S_NOATIME)
  2579. ei->i_flags |= EXT3_NOATIME_FL;
  2580. if (flags & S_DIRSYNC)
  2581. ei->i_flags |= EXT3_DIRSYNC_FL;
  2582. }
  2583. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2584. {
  2585. struct ext3_iloc iloc;
  2586. struct ext3_inode *raw_inode;
  2587. struct ext3_inode_info *ei;
  2588. struct buffer_head *bh;
  2589. struct inode *inode;
  2590. journal_t *journal = EXT3_SB(sb)->s_journal;
  2591. transaction_t *transaction;
  2592. long ret;
  2593. int block;
  2594. uid_t i_uid;
  2595. gid_t i_gid;
  2596. inode = iget_locked(sb, ino);
  2597. if (!inode)
  2598. return ERR_PTR(-ENOMEM);
  2599. if (!(inode->i_state & I_NEW))
  2600. return inode;
  2601. ei = EXT3_I(inode);
  2602. ei->i_block_alloc_info = NULL;
  2603. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2604. if (ret < 0)
  2605. goto bad_inode;
  2606. bh = iloc.bh;
  2607. raw_inode = ext3_raw_inode(&iloc);
  2608. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2609. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2610. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2611. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2612. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2613. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2614. }
  2615. i_uid_write(inode, i_uid);
  2616. i_gid_write(inode, i_gid);
  2617. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2618. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2619. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2620. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2621. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2622. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2623. ei->i_state_flags = 0;
  2624. ei->i_dir_start_lookup = 0;
  2625. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2626. /* We now have enough fields to check if the inode was active or not.
  2627. * This is needed because nfsd might try to access dead inodes
  2628. * the test is that same one that e2fsck uses
  2629. * NeilBrown 1999oct15
  2630. */
  2631. if (inode->i_nlink == 0) {
  2632. if (inode->i_mode == 0 ||
  2633. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2634. /* this inode is deleted */
  2635. brelse (bh);
  2636. ret = -ESTALE;
  2637. goto bad_inode;
  2638. }
  2639. /* The only unlinked inodes we let through here have
  2640. * valid i_mode and are being read by the orphan
  2641. * recovery code: that's fine, we're about to complete
  2642. * the process of deleting those. */
  2643. }
  2644. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2645. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2646. #ifdef EXT3_FRAGMENTS
  2647. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2648. ei->i_frag_no = raw_inode->i_frag;
  2649. ei->i_frag_size = raw_inode->i_fsize;
  2650. #endif
  2651. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2652. if (!S_ISREG(inode->i_mode)) {
  2653. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2654. } else {
  2655. inode->i_size |=
  2656. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2657. }
  2658. ei->i_disksize = inode->i_size;
  2659. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2660. ei->i_block_group = iloc.block_group;
  2661. /*
  2662. * NOTE! The in-memory inode i_data array is in little-endian order
  2663. * even on big-endian machines: we do NOT byteswap the block numbers!
  2664. */
  2665. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2666. ei->i_data[block] = raw_inode->i_block[block];
  2667. INIT_LIST_HEAD(&ei->i_orphan);
  2668. /*
  2669. * Set transaction id's of transactions that have to be committed
  2670. * to finish f[data]sync. We set them to currently running transaction
  2671. * as we cannot be sure that the inode or some of its metadata isn't
  2672. * part of the transaction - the inode could have been reclaimed and
  2673. * now it is reread from disk.
  2674. */
  2675. if (journal) {
  2676. tid_t tid;
  2677. spin_lock(&journal->j_state_lock);
  2678. if (journal->j_running_transaction)
  2679. transaction = journal->j_running_transaction;
  2680. else
  2681. transaction = journal->j_committing_transaction;
  2682. if (transaction)
  2683. tid = transaction->t_tid;
  2684. else
  2685. tid = journal->j_commit_sequence;
  2686. spin_unlock(&journal->j_state_lock);
  2687. atomic_set(&ei->i_sync_tid, tid);
  2688. atomic_set(&ei->i_datasync_tid, tid);
  2689. }
  2690. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2691. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2692. /*
  2693. * When mke2fs creates big inodes it does not zero out
  2694. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2695. * so ignore those first few inodes.
  2696. */
  2697. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2698. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2699. EXT3_INODE_SIZE(inode->i_sb)) {
  2700. brelse (bh);
  2701. ret = -EIO;
  2702. goto bad_inode;
  2703. }
  2704. if (ei->i_extra_isize == 0) {
  2705. /* The extra space is currently unused. Use it. */
  2706. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2707. EXT3_GOOD_OLD_INODE_SIZE;
  2708. } else {
  2709. __le32 *magic = (void *)raw_inode +
  2710. EXT3_GOOD_OLD_INODE_SIZE +
  2711. ei->i_extra_isize;
  2712. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2713. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2714. }
  2715. } else
  2716. ei->i_extra_isize = 0;
  2717. if (S_ISREG(inode->i_mode)) {
  2718. inode->i_op = &ext3_file_inode_operations;
  2719. inode->i_fop = &ext3_file_operations;
  2720. ext3_set_aops(inode);
  2721. } else if (S_ISDIR(inode->i_mode)) {
  2722. inode->i_op = &ext3_dir_inode_operations;
  2723. inode->i_fop = &ext3_dir_operations;
  2724. } else if (S_ISLNK(inode->i_mode)) {
  2725. if (ext3_inode_is_fast_symlink(inode)) {
  2726. inode->i_op = &ext3_fast_symlink_inode_operations;
  2727. nd_terminate_link(ei->i_data, inode->i_size,
  2728. sizeof(ei->i_data) - 1);
  2729. inode->i_link = (char *)ei->i_data;
  2730. } else {
  2731. inode->i_op = &ext3_symlink_inode_operations;
  2732. ext3_set_aops(inode);
  2733. }
  2734. } else {
  2735. inode->i_op = &ext3_special_inode_operations;
  2736. if (raw_inode->i_block[0])
  2737. init_special_inode(inode, inode->i_mode,
  2738. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2739. else
  2740. init_special_inode(inode, inode->i_mode,
  2741. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2742. }
  2743. brelse (iloc.bh);
  2744. ext3_set_inode_flags(inode);
  2745. unlock_new_inode(inode);
  2746. return inode;
  2747. bad_inode:
  2748. iget_failed(inode);
  2749. return ERR_PTR(ret);
  2750. }
  2751. /*
  2752. * Post the struct inode info into an on-disk inode location in the
  2753. * buffer-cache. This gobbles the caller's reference to the
  2754. * buffer_head in the inode location struct.
  2755. *
  2756. * The caller must have write access to iloc->bh.
  2757. */
  2758. static int ext3_do_update_inode(handle_t *handle,
  2759. struct inode *inode,
  2760. struct ext3_iloc *iloc)
  2761. {
  2762. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2763. struct ext3_inode_info *ei = EXT3_I(inode);
  2764. struct buffer_head *bh = iloc->bh;
  2765. int err = 0, rc, block;
  2766. int need_datasync = 0;
  2767. __le32 disksize;
  2768. uid_t i_uid;
  2769. gid_t i_gid;
  2770. again:
  2771. /* we can't allow multiple procs in here at once, its a bit racey */
  2772. lock_buffer(bh);
  2773. /* For fields not not tracking in the in-memory inode,
  2774. * initialise them to zero for new inodes. */
  2775. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2776. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2777. ext3_get_inode_flags(ei);
  2778. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2779. i_uid = i_uid_read(inode);
  2780. i_gid = i_gid_read(inode);
  2781. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2782. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  2783. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  2784. /*
  2785. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2786. * re-used with the upper 16 bits of the uid/gid intact
  2787. */
  2788. if(!ei->i_dtime) {
  2789. raw_inode->i_uid_high =
  2790. cpu_to_le16(high_16_bits(i_uid));
  2791. raw_inode->i_gid_high =
  2792. cpu_to_le16(high_16_bits(i_gid));
  2793. } else {
  2794. raw_inode->i_uid_high = 0;
  2795. raw_inode->i_gid_high = 0;
  2796. }
  2797. } else {
  2798. raw_inode->i_uid_low =
  2799. cpu_to_le16(fs_high2lowuid(i_uid));
  2800. raw_inode->i_gid_low =
  2801. cpu_to_le16(fs_high2lowgid(i_gid));
  2802. raw_inode->i_uid_high = 0;
  2803. raw_inode->i_gid_high = 0;
  2804. }
  2805. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2806. disksize = cpu_to_le32(ei->i_disksize);
  2807. if (disksize != raw_inode->i_size) {
  2808. need_datasync = 1;
  2809. raw_inode->i_size = disksize;
  2810. }
  2811. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2812. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2813. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2814. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2815. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2816. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2817. #ifdef EXT3_FRAGMENTS
  2818. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2819. raw_inode->i_frag = ei->i_frag_no;
  2820. raw_inode->i_fsize = ei->i_frag_size;
  2821. #endif
  2822. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2823. if (!S_ISREG(inode->i_mode)) {
  2824. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2825. } else {
  2826. disksize = cpu_to_le32(ei->i_disksize >> 32);
  2827. if (disksize != raw_inode->i_size_high) {
  2828. raw_inode->i_size_high = disksize;
  2829. need_datasync = 1;
  2830. }
  2831. if (ei->i_disksize > 0x7fffffffULL) {
  2832. struct super_block *sb = inode->i_sb;
  2833. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2834. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2835. EXT3_SB(sb)->s_es->s_rev_level ==
  2836. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2837. /* If this is the first large file
  2838. * created, add a flag to the superblock.
  2839. */
  2840. unlock_buffer(bh);
  2841. err = ext3_journal_get_write_access(handle,
  2842. EXT3_SB(sb)->s_sbh);
  2843. if (err)
  2844. goto out_brelse;
  2845. ext3_update_dynamic_rev(sb);
  2846. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2847. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2848. handle->h_sync = 1;
  2849. err = ext3_journal_dirty_metadata(handle,
  2850. EXT3_SB(sb)->s_sbh);
  2851. /* get our lock and start over */
  2852. goto again;
  2853. }
  2854. }
  2855. }
  2856. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2857. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2858. if (old_valid_dev(inode->i_rdev)) {
  2859. raw_inode->i_block[0] =
  2860. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2861. raw_inode->i_block[1] = 0;
  2862. } else {
  2863. raw_inode->i_block[0] = 0;
  2864. raw_inode->i_block[1] =
  2865. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2866. raw_inode->i_block[2] = 0;
  2867. }
  2868. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2869. raw_inode->i_block[block] = ei->i_data[block];
  2870. if (ei->i_extra_isize)
  2871. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2872. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2873. unlock_buffer(bh);
  2874. rc = ext3_journal_dirty_metadata(handle, bh);
  2875. if (!err)
  2876. err = rc;
  2877. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2878. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2879. if (need_datasync)
  2880. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  2881. out_brelse:
  2882. brelse (bh);
  2883. ext3_std_error(inode->i_sb, err);
  2884. return err;
  2885. }
  2886. /*
  2887. * ext3_write_inode()
  2888. *
  2889. * We are called from a few places:
  2890. *
  2891. * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
  2892. * Here, there will be no transaction running. We wait for any running
  2893. * transaction to commit.
  2894. *
  2895. * - Within flush work (for sys_sync(), kupdate and such).
  2896. * We wait on commit, if told to.
  2897. *
  2898. * - Within iput_final() -> write_inode_now()
  2899. * We wait on commit, if told to.
  2900. *
  2901. * In all cases it is actually safe for us to return without doing anything,
  2902. * because the inode has been copied into a raw inode buffer in
  2903. * ext3_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
  2904. * writeback.
  2905. *
  2906. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2907. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2908. * which we are interested.
  2909. *
  2910. * It would be a bug for them to not do this. The code:
  2911. *
  2912. * mark_inode_dirty(inode)
  2913. * stuff();
  2914. * inode->i_size = expr;
  2915. *
  2916. * is in error because write_inode() could occur while `stuff()' is running,
  2917. * and the new i_size will be lost. Plus the inode will no longer be on the
  2918. * superblock's dirty inode list.
  2919. */
  2920. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2921. {
  2922. if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
  2923. return 0;
  2924. if (ext3_journal_current_handle()) {
  2925. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2926. dump_stack();
  2927. return -EIO;
  2928. }
  2929. /*
  2930. * No need to force transaction in WB_SYNC_NONE mode. Also
  2931. * ext3_sync_fs() will force the commit after everything is
  2932. * written.
  2933. */
  2934. if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
  2935. return 0;
  2936. return ext3_force_commit(inode->i_sb);
  2937. }
  2938. /*
  2939. * ext3_setattr()
  2940. *
  2941. * Called from notify_change.
  2942. *
  2943. * We want to trap VFS attempts to truncate the file as soon as
  2944. * possible. In particular, we want to make sure that when the VFS
  2945. * shrinks i_size, we put the inode on the orphan list and modify
  2946. * i_disksize immediately, so that during the subsequent flushing of
  2947. * dirty pages and freeing of disk blocks, we can guarantee that any
  2948. * commit will leave the blocks being flushed in an unused state on
  2949. * disk. (On recovery, the inode will get truncated and the blocks will
  2950. * be freed, so we have a strong guarantee that no future commit will
  2951. * leave these blocks visible to the user.)
  2952. *
  2953. * Called with inode->sem down.
  2954. */
  2955. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2956. {
  2957. struct inode *inode = d_inode(dentry);
  2958. int error, rc = 0;
  2959. const unsigned int ia_valid = attr->ia_valid;
  2960. error = inode_change_ok(inode, attr);
  2961. if (error)
  2962. return error;
  2963. if (is_quota_modification(inode, attr))
  2964. dquot_initialize(inode);
  2965. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  2966. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  2967. handle_t *handle;
  2968. /* (user+group)*(old+new) structure, inode write (sb,
  2969. * inode block, ? - but truncate inode update has it) */
  2970. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2971. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2972. if (IS_ERR(handle)) {
  2973. error = PTR_ERR(handle);
  2974. goto err_out;
  2975. }
  2976. error = dquot_transfer(inode, attr);
  2977. if (error) {
  2978. ext3_journal_stop(handle);
  2979. return error;
  2980. }
  2981. /* Update corresponding info in inode so that everything is in
  2982. * one transaction */
  2983. if (attr->ia_valid & ATTR_UID)
  2984. inode->i_uid = attr->ia_uid;
  2985. if (attr->ia_valid & ATTR_GID)
  2986. inode->i_gid = attr->ia_gid;
  2987. error = ext3_mark_inode_dirty(handle, inode);
  2988. ext3_journal_stop(handle);
  2989. }
  2990. if (attr->ia_valid & ATTR_SIZE)
  2991. inode_dio_wait(inode);
  2992. if (S_ISREG(inode->i_mode) &&
  2993. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2994. handle_t *handle;
  2995. handle = ext3_journal_start(inode, 3);
  2996. if (IS_ERR(handle)) {
  2997. error = PTR_ERR(handle);
  2998. goto err_out;
  2999. }
  3000. error = ext3_orphan_add(handle, inode);
  3001. if (error) {
  3002. ext3_journal_stop(handle);
  3003. goto err_out;
  3004. }
  3005. EXT3_I(inode)->i_disksize = attr->ia_size;
  3006. error = ext3_mark_inode_dirty(handle, inode);
  3007. ext3_journal_stop(handle);
  3008. if (error) {
  3009. /* Some hard fs error must have happened. Bail out. */
  3010. ext3_orphan_del(NULL, inode);
  3011. goto err_out;
  3012. }
  3013. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3014. if (rc) {
  3015. /* Cleanup orphan list and exit */
  3016. handle = ext3_journal_start(inode, 3);
  3017. if (IS_ERR(handle)) {
  3018. ext3_orphan_del(NULL, inode);
  3019. goto err_out;
  3020. }
  3021. ext3_orphan_del(handle, inode);
  3022. ext3_journal_stop(handle);
  3023. goto err_out;
  3024. }
  3025. }
  3026. if ((attr->ia_valid & ATTR_SIZE) &&
  3027. attr->ia_size != i_size_read(inode)) {
  3028. truncate_setsize(inode, attr->ia_size);
  3029. ext3_truncate(inode);
  3030. }
  3031. setattr_copy(inode, attr);
  3032. mark_inode_dirty(inode);
  3033. if (ia_valid & ATTR_MODE)
  3034. rc = posix_acl_chmod(inode, inode->i_mode);
  3035. err_out:
  3036. ext3_std_error(inode->i_sb, error);
  3037. if (!error)
  3038. error = rc;
  3039. return error;
  3040. }
  3041. /*
  3042. * How many blocks doth make a writepage()?
  3043. *
  3044. * With N blocks per page, it may be:
  3045. * N data blocks
  3046. * 2 indirect block
  3047. * 2 dindirect
  3048. * 1 tindirect
  3049. * N+5 bitmap blocks (from the above)
  3050. * N+5 group descriptor summary blocks
  3051. * 1 inode block
  3052. * 1 superblock.
  3053. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3054. *
  3055. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3056. *
  3057. * With ordered or writeback data it's the same, less the N data blocks.
  3058. *
  3059. * If the inode's direct blocks can hold an integral number of pages then a
  3060. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3061. * and dindirect block, and the "5" above becomes "3".
  3062. *
  3063. * This still overestimates under most circumstances. If we were to pass the
  3064. * start and end offsets in here as well we could do block_to_path() on each
  3065. * block and work out the exact number of indirects which are touched. Pah.
  3066. */
  3067. static int ext3_writepage_trans_blocks(struct inode *inode)
  3068. {
  3069. int bpp = ext3_journal_blocks_per_page(inode);
  3070. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3071. int ret;
  3072. if (ext3_should_journal_data(inode))
  3073. ret = 3 * (bpp + indirects) + 2;
  3074. else
  3075. ret = 2 * (bpp + indirects) + indirects + 2;
  3076. #ifdef CONFIG_QUOTA
  3077. /* We know that structure was already allocated during dquot_initialize so
  3078. * we will be updating only the data blocks + inodes */
  3079. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3080. #endif
  3081. return ret;
  3082. }
  3083. /*
  3084. * The caller must have previously called ext3_reserve_inode_write().
  3085. * Give this, we know that the caller already has write access to iloc->bh.
  3086. */
  3087. int ext3_mark_iloc_dirty(handle_t *handle,
  3088. struct inode *inode, struct ext3_iloc *iloc)
  3089. {
  3090. int err = 0;
  3091. /* the do_update_inode consumes one bh->b_count */
  3092. get_bh(iloc->bh);
  3093. /* ext3_do_update_inode() does journal_dirty_metadata */
  3094. err = ext3_do_update_inode(handle, inode, iloc);
  3095. put_bh(iloc->bh);
  3096. return err;
  3097. }
  3098. /*
  3099. * On success, We end up with an outstanding reference count against
  3100. * iloc->bh. This _must_ be cleaned up later.
  3101. */
  3102. int
  3103. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3104. struct ext3_iloc *iloc)
  3105. {
  3106. int err = 0;
  3107. if (handle) {
  3108. err = ext3_get_inode_loc(inode, iloc);
  3109. if (!err) {
  3110. BUFFER_TRACE(iloc->bh, "get_write_access");
  3111. err = ext3_journal_get_write_access(handle, iloc->bh);
  3112. if (err) {
  3113. brelse(iloc->bh);
  3114. iloc->bh = NULL;
  3115. }
  3116. }
  3117. }
  3118. ext3_std_error(inode->i_sb, err);
  3119. return err;
  3120. }
  3121. /*
  3122. * What we do here is to mark the in-core inode as clean with respect to inode
  3123. * dirtiness (it may still be data-dirty).
  3124. * This means that the in-core inode may be reaped by prune_icache
  3125. * without having to perform any I/O. This is a very good thing,
  3126. * because *any* task may call prune_icache - even ones which
  3127. * have a transaction open against a different journal.
  3128. *
  3129. * Is this cheating? Not really. Sure, we haven't written the
  3130. * inode out, but prune_icache isn't a user-visible syncing function.
  3131. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3132. * we start and wait on commits.
  3133. */
  3134. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3135. {
  3136. struct ext3_iloc iloc;
  3137. int err;
  3138. might_sleep();
  3139. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3140. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3141. if (!err)
  3142. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3143. return err;
  3144. }
  3145. /*
  3146. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3147. *
  3148. * We're really interested in the case where a file is being extended.
  3149. * i_size has been changed by generic_commit_write() and we thus need
  3150. * to include the updated inode in the current transaction.
  3151. *
  3152. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3153. * are allocated to the file.
  3154. *
  3155. * If the inode is marked synchronous, we don't honour that here - doing
  3156. * so would cause a commit on atime updates, which we don't bother doing.
  3157. * We handle synchronous inodes at the highest possible level.
  3158. */
  3159. void ext3_dirty_inode(struct inode *inode, int flags)
  3160. {
  3161. handle_t *current_handle = ext3_journal_current_handle();
  3162. handle_t *handle;
  3163. handle = ext3_journal_start(inode, 2);
  3164. if (IS_ERR(handle))
  3165. goto out;
  3166. if (current_handle &&
  3167. current_handle->h_transaction != handle->h_transaction) {
  3168. /* This task has a transaction open against a different fs */
  3169. printk(KERN_EMERG "%s: transactions do not match!\n",
  3170. __func__);
  3171. } else {
  3172. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3173. current_handle);
  3174. ext3_mark_inode_dirty(handle, inode);
  3175. }
  3176. ext3_journal_stop(handle);
  3177. out:
  3178. return;
  3179. }
  3180. #if 0
  3181. /*
  3182. * Bind an inode's backing buffer_head into this transaction, to prevent
  3183. * it from being flushed to disk early. Unlike
  3184. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3185. * returns no iloc structure, so the caller needs to repeat the iloc
  3186. * lookup to mark the inode dirty later.
  3187. */
  3188. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3189. {
  3190. struct ext3_iloc iloc;
  3191. int err = 0;
  3192. if (handle) {
  3193. err = ext3_get_inode_loc(inode, &iloc);
  3194. if (!err) {
  3195. BUFFER_TRACE(iloc.bh, "get_write_access");
  3196. err = journal_get_write_access(handle, iloc.bh);
  3197. if (!err)
  3198. err = ext3_journal_dirty_metadata(handle,
  3199. iloc.bh);
  3200. brelse(iloc.bh);
  3201. }
  3202. }
  3203. ext3_std_error(inode->i_sb, err);
  3204. return err;
  3205. }
  3206. #endif
  3207. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3208. {
  3209. journal_t *journal;
  3210. handle_t *handle;
  3211. int err;
  3212. /*
  3213. * We have to be very careful here: changing a data block's
  3214. * journaling status dynamically is dangerous. If we write a
  3215. * data block to the journal, change the status and then delete
  3216. * that block, we risk forgetting to revoke the old log record
  3217. * from the journal and so a subsequent replay can corrupt data.
  3218. * So, first we make sure that the journal is empty and that
  3219. * nobody is changing anything.
  3220. */
  3221. journal = EXT3_JOURNAL(inode);
  3222. if (is_journal_aborted(journal))
  3223. return -EROFS;
  3224. journal_lock_updates(journal);
  3225. journal_flush(journal);
  3226. /*
  3227. * OK, there are no updates running now, and all cached data is
  3228. * synced to disk. We are now in a completely consistent state
  3229. * which doesn't have anything in the journal, and we know that
  3230. * no filesystem updates are running, so it is safe to modify
  3231. * the inode's in-core data-journaling state flag now.
  3232. */
  3233. if (val)
  3234. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3235. else
  3236. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3237. ext3_set_aops(inode);
  3238. journal_unlock_updates(journal);
  3239. /* Finally we can mark the inode as dirty. */
  3240. handle = ext3_journal_start(inode, 1);
  3241. if (IS_ERR(handle))
  3242. return PTR_ERR(handle);
  3243. err = ext3_mark_inode_dirty(handle, inode);
  3244. handle->h_sync = 1;
  3245. ext3_journal_stop(handle);
  3246. ext3_std_error(inode->i_sb, err);
  3247. return err;
  3248. }