aio.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/migrate.h>
  38. #include <linux/ramfs.h>
  39. #include <linux/percpu-refcount.h>
  40. #include <linux/mount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head; /* Written to by userland or under ring_lock
  51. * mutex by aio_read_events_ring(). */
  52. unsigned tail;
  53. unsigned magic;
  54. unsigned compat_features;
  55. unsigned incompat_features;
  56. unsigned header_length; /* size of aio_ring */
  57. struct io_event io_events[0];
  58. }; /* 128 bytes + ring size */
  59. #define AIO_RING_PAGES 8
  60. struct kioctx_table {
  61. struct rcu_head rcu;
  62. unsigned nr;
  63. struct kioctx *table[];
  64. };
  65. struct kioctx_cpu {
  66. unsigned reqs_available;
  67. };
  68. struct ctx_rq_wait {
  69. struct completion comp;
  70. atomic_t count;
  71. };
  72. struct kioctx {
  73. struct percpu_ref users;
  74. atomic_t dead;
  75. struct percpu_ref reqs;
  76. unsigned long user_id;
  77. struct __percpu kioctx_cpu *cpu;
  78. /*
  79. * For percpu reqs_available, number of slots we move to/from global
  80. * counter at a time:
  81. */
  82. unsigned req_batch;
  83. /*
  84. * This is what userspace passed to io_setup(), it's not used for
  85. * anything but counting against the global max_reqs quota.
  86. *
  87. * The real limit is nr_events - 1, which will be larger (see
  88. * aio_setup_ring())
  89. */
  90. unsigned max_reqs;
  91. /* Size of ringbuffer, in units of struct io_event */
  92. unsigned nr_events;
  93. unsigned long mmap_base;
  94. unsigned long mmap_size;
  95. struct page **ring_pages;
  96. long nr_pages;
  97. struct work_struct free_work;
  98. /*
  99. * signals when all in-flight requests are done
  100. */
  101. struct ctx_rq_wait *rq_wait;
  102. struct {
  103. /*
  104. * This counts the number of available slots in the ringbuffer,
  105. * so we avoid overflowing it: it's decremented (if positive)
  106. * when allocating a kiocb and incremented when the resulting
  107. * io_event is pulled off the ringbuffer.
  108. *
  109. * We batch accesses to it with a percpu version.
  110. */
  111. atomic_t reqs_available;
  112. } ____cacheline_aligned_in_smp;
  113. struct {
  114. spinlock_t ctx_lock;
  115. struct list_head active_reqs; /* used for cancellation */
  116. } ____cacheline_aligned_in_smp;
  117. struct {
  118. struct mutex ring_lock;
  119. wait_queue_head_t wait;
  120. } ____cacheline_aligned_in_smp;
  121. struct {
  122. unsigned tail;
  123. unsigned completed_events;
  124. spinlock_t completion_lock;
  125. } ____cacheline_aligned_in_smp;
  126. struct page *internal_pages[AIO_RING_PAGES];
  127. struct file *aio_ring_file;
  128. unsigned id;
  129. };
  130. /*
  131. * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
  132. * cancelled or completed (this makes a certain amount of sense because
  133. * successful cancellation - io_cancel() - does deliver the completion to
  134. * userspace).
  135. *
  136. * And since most things don't implement kiocb cancellation and we'd really like
  137. * kiocb completion to be lockless when possible, we use ki_cancel to
  138. * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
  139. * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
  140. */
  141. #define KIOCB_CANCELLED ((void *) (~0ULL))
  142. struct aio_kiocb {
  143. struct kiocb common;
  144. struct kioctx *ki_ctx;
  145. kiocb_cancel_fn *ki_cancel;
  146. struct iocb __user *ki_user_iocb; /* user's aiocb */
  147. __u64 ki_user_data; /* user's data for completion */
  148. struct list_head ki_list; /* the aio core uses this
  149. * for cancellation */
  150. /*
  151. * If the aio_resfd field of the userspace iocb is not zero,
  152. * this is the underlying eventfd context to deliver events to.
  153. */
  154. struct eventfd_ctx *ki_eventfd;
  155. };
  156. /*------ sysctl variables----*/
  157. static DEFINE_SPINLOCK(aio_nr_lock);
  158. unsigned long aio_nr; /* current system wide number of aio requests */
  159. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  160. /*----end sysctl variables---*/
  161. static struct kmem_cache *kiocb_cachep;
  162. static struct kmem_cache *kioctx_cachep;
  163. static struct vfsmount *aio_mnt;
  164. static const struct file_operations aio_ring_fops;
  165. static const struct address_space_operations aio_ctx_aops;
  166. static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
  167. {
  168. struct qstr this = QSTR_INIT("[aio]", 5);
  169. struct file *file;
  170. struct path path;
  171. struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
  172. if (IS_ERR(inode))
  173. return ERR_CAST(inode);
  174. inode->i_mapping->a_ops = &aio_ctx_aops;
  175. inode->i_mapping->private_data = ctx;
  176. inode->i_size = PAGE_SIZE * nr_pages;
  177. path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
  178. if (!path.dentry) {
  179. iput(inode);
  180. return ERR_PTR(-ENOMEM);
  181. }
  182. path.mnt = mntget(aio_mnt);
  183. d_instantiate(path.dentry, inode);
  184. file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
  185. if (IS_ERR(file)) {
  186. path_put(&path);
  187. return file;
  188. }
  189. file->f_flags = O_RDWR;
  190. return file;
  191. }
  192. static struct dentry *aio_mount(struct file_system_type *fs_type,
  193. int flags, const char *dev_name, void *data)
  194. {
  195. static const struct dentry_operations ops = {
  196. .d_dname = simple_dname,
  197. };
  198. return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
  199. }
  200. /* aio_setup
  201. * Creates the slab caches used by the aio routines, panic on
  202. * failure as this is done early during the boot sequence.
  203. */
  204. static int __init aio_setup(void)
  205. {
  206. static struct file_system_type aio_fs = {
  207. .name = "aio",
  208. .mount = aio_mount,
  209. .kill_sb = kill_anon_super,
  210. };
  211. aio_mnt = kern_mount(&aio_fs);
  212. if (IS_ERR(aio_mnt))
  213. panic("Failed to create aio fs mount.");
  214. kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  215. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  216. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  217. return 0;
  218. }
  219. __initcall(aio_setup);
  220. static void put_aio_ring_file(struct kioctx *ctx)
  221. {
  222. struct file *aio_ring_file = ctx->aio_ring_file;
  223. if (aio_ring_file) {
  224. truncate_setsize(aio_ring_file->f_inode, 0);
  225. /* Prevent further access to the kioctx from migratepages */
  226. spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
  227. aio_ring_file->f_inode->i_mapping->private_data = NULL;
  228. ctx->aio_ring_file = NULL;
  229. spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
  230. fput(aio_ring_file);
  231. }
  232. }
  233. static void aio_free_ring(struct kioctx *ctx)
  234. {
  235. int i;
  236. /* Disconnect the kiotx from the ring file. This prevents future
  237. * accesses to the kioctx from page migration.
  238. */
  239. put_aio_ring_file(ctx);
  240. for (i = 0; i < ctx->nr_pages; i++) {
  241. struct page *page;
  242. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  243. page_count(ctx->ring_pages[i]));
  244. page = ctx->ring_pages[i];
  245. if (!page)
  246. continue;
  247. ctx->ring_pages[i] = NULL;
  248. put_page(page);
  249. }
  250. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
  251. kfree(ctx->ring_pages);
  252. ctx->ring_pages = NULL;
  253. }
  254. }
  255. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  256. {
  257. vma->vm_flags |= VM_DONTEXPAND;
  258. vma->vm_ops = &generic_file_vm_ops;
  259. return 0;
  260. }
  261. static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
  262. {
  263. struct mm_struct *mm = vma->vm_mm;
  264. struct kioctx_table *table;
  265. int i, res = -EINVAL;
  266. spin_lock(&mm->ioctx_lock);
  267. rcu_read_lock();
  268. table = rcu_dereference(mm->ioctx_table);
  269. for (i = 0; i < table->nr; i++) {
  270. struct kioctx *ctx;
  271. ctx = table->table[i];
  272. if (ctx && ctx->aio_ring_file == file) {
  273. if (!atomic_read(&ctx->dead)) {
  274. ctx->user_id = ctx->mmap_base = vma->vm_start;
  275. res = 0;
  276. }
  277. break;
  278. }
  279. }
  280. rcu_read_unlock();
  281. spin_unlock(&mm->ioctx_lock);
  282. return res;
  283. }
  284. static const struct file_operations aio_ring_fops = {
  285. .mmap = aio_ring_mmap,
  286. .mremap = aio_ring_remap,
  287. };
  288. #if IS_ENABLED(CONFIG_MIGRATION)
  289. static int aio_migratepage(struct address_space *mapping, struct page *new,
  290. struct page *old, enum migrate_mode mode)
  291. {
  292. struct kioctx *ctx;
  293. unsigned long flags;
  294. pgoff_t idx;
  295. int rc;
  296. rc = 0;
  297. /* mapping->private_lock here protects against the kioctx teardown. */
  298. spin_lock(&mapping->private_lock);
  299. ctx = mapping->private_data;
  300. if (!ctx) {
  301. rc = -EINVAL;
  302. goto out;
  303. }
  304. /* The ring_lock mutex. The prevents aio_read_events() from writing
  305. * to the ring's head, and prevents page migration from mucking in
  306. * a partially initialized kiotx.
  307. */
  308. if (!mutex_trylock(&ctx->ring_lock)) {
  309. rc = -EAGAIN;
  310. goto out;
  311. }
  312. idx = old->index;
  313. if (idx < (pgoff_t)ctx->nr_pages) {
  314. /* Make sure the old page hasn't already been changed */
  315. if (ctx->ring_pages[idx] != old)
  316. rc = -EAGAIN;
  317. } else
  318. rc = -EINVAL;
  319. if (rc != 0)
  320. goto out_unlock;
  321. /* Writeback must be complete */
  322. BUG_ON(PageWriteback(old));
  323. get_page(new);
  324. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
  325. if (rc != MIGRATEPAGE_SUCCESS) {
  326. put_page(new);
  327. goto out_unlock;
  328. }
  329. /* Take completion_lock to prevent other writes to the ring buffer
  330. * while the old page is copied to the new. This prevents new
  331. * events from being lost.
  332. */
  333. spin_lock_irqsave(&ctx->completion_lock, flags);
  334. migrate_page_copy(new, old);
  335. BUG_ON(ctx->ring_pages[idx] != old);
  336. ctx->ring_pages[idx] = new;
  337. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  338. /* The old page is no longer accessible. */
  339. put_page(old);
  340. out_unlock:
  341. mutex_unlock(&ctx->ring_lock);
  342. out:
  343. spin_unlock(&mapping->private_lock);
  344. return rc;
  345. }
  346. #endif
  347. static const struct address_space_operations aio_ctx_aops = {
  348. .set_page_dirty = __set_page_dirty_no_writeback,
  349. #if IS_ENABLED(CONFIG_MIGRATION)
  350. .migratepage = aio_migratepage,
  351. #endif
  352. };
  353. static int aio_setup_ring(struct kioctx *ctx)
  354. {
  355. struct aio_ring *ring;
  356. unsigned nr_events = ctx->max_reqs;
  357. struct mm_struct *mm = current->mm;
  358. unsigned long size, unused;
  359. int nr_pages;
  360. int i;
  361. struct file *file;
  362. /* Compensate for the ring buffer's head/tail overlap entry */
  363. nr_events += 2; /* 1 is required, 2 for good luck */
  364. size = sizeof(struct aio_ring);
  365. size += sizeof(struct io_event) * nr_events;
  366. nr_pages = PFN_UP(size);
  367. if (nr_pages < 0)
  368. return -EINVAL;
  369. file = aio_private_file(ctx, nr_pages);
  370. if (IS_ERR(file)) {
  371. ctx->aio_ring_file = NULL;
  372. return -ENOMEM;
  373. }
  374. ctx->aio_ring_file = file;
  375. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  376. / sizeof(struct io_event);
  377. ctx->ring_pages = ctx->internal_pages;
  378. if (nr_pages > AIO_RING_PAGES) {
  379. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  380. GFP_KERNEL);
  381. if (!ctx->ring_pages) {
  382. put_aio_ring_file(ctx);
  383. return -ENOMEM;
  384. }
  385. }
  386. for (i = 0; i < nr_pages; i++) {
  387. struct page *page;
  388. page = find_or_create_page(file->f_inode->i_mapping,
  389. i, GFP_HIGHUSER | __GFP_ZERO);
  390. if (!page)
  391. break;
  392. pr_debug("pid(%d) page[%d]->count=%d\n",
  393. current->pid, i, page_count(page));
  394. SetPageUptodate(page);
  395. unlock_page(page);
  396. ctx->ring_pages[i] = page;
  397. }
  398. ctx->nr_pages = i;
  399. if (unlikely(i != nr_pages)) {
  400. aio_free_ring(ctx);
  401. return -ENOMEM;
  402. }
  403. ctx->mmap_size = nr_pages * PAGE_SIZE;
  404. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  405. down_write(&mm->mmap_sem);
  406. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  407. PROT_READ | PROT_WRITE,
  408. MAP_SHARED, 0, &unused);
  409. up_write(&mm->mmap_sem);
  410. if (IS_ERR((void *)ctx->mmap_base)) {
  411. ctx->mmap_size = 0;
  412. aio_free_ring(ctx);
  413. return -ENOMEM;
  414. }
  415. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  416. ctx->user_id = ctx->mmap_base;
  417. ctx->nr_events = nr_events; /* trusted copy */
  418. ring = kmap_atomic(ctx->ring_pages[0]);
  419. ring->nr = nr_events; /* user copy */
  420. ring->id = ~0U;
  421. ring->head = ring->tail = 0;
  422. ring->magic = AIO_RING_MAGIC;
  423. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  424. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  425. ring->header_length = sizeof(struct aio_ring);
  426. kunmap_atomic(ring);
  427. flush_dcache_page(ctx->ring_pages[0]);
  428. return 0;
  429. }
  430. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  431. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  432. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  433. void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
  434. {
  435. struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
  436. struct kioctx *ctx = req->ki_ctx;
  437. unsigned long flags;
  438. spin_lock_irqsave(&ctx->ctx_lock, flags);
  439. if (!req->ki_list.next)
  440. list_add(&req->ki_list, &ctx->active_reqs);
  441. req->ki_cancel = cancel;
  442. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  443. }
  444. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  445. static int kiocb_cancel(struct aio_kiocb *kiocb)
  446. {
  447. kiocb_cancel_fn *old, *cancel;
  448. /*
  449. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  450. * actually has a cancel function, hence the cmpxchg()
  451. */
  452. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  453. do {
  454. if (!cancel || cancel == KIOCB_CANCELLED)
  455. return -EINVAL;
  456. old = cancel;
  457. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  458. } while (cancel != old);
  459. return cancel(&kiocb->common);
  460. }
  461. static void free_ioctx(struct work_struct *work)
  462. {
  463. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  464. pr_debug("freeing %p\n", ctx);
  465. aio_free_ring(ctx);
  466. free_percpu(ctx->cpu);
  467. percpu_ref_exit(&ctx->reqs);
  468. percpu_ref_exit(&ctx->users);
  469. kmem_cache_free(kioctx_cachep, ctx);
  470. }
  471. static void free_ioctx_reqs(struct percpu_ref *ref)
  472. {
  473. struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
  474. /* At this point we know that there are no any in-flight requests */
  475. if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
  476. complete(&ctx->rq_wait->comp);
  477. INIT_WORK(&ctx->free_work, free_ioctx);
  478. schedule_work(&ctx->free_work);
  479. }
  480. /*
  481. * When this function runs, the kioctx has been removed from the "hash table"
  482. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  483. * now it's safe to cancel any that need to be.
  484. */
  485. static void free_ioctx_users(struct percpu_ref *ref)
  486. {
  487. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  488. struct aio_kiocb *req;
  489. spin_lock_irq(&ctx->ctx_lock);
  490. while (!list_empty(&ctx->active_reqs)) {
  491. req = list_first_entry(&ctx->active_reqs,
  492. struct aio_kiocb, ki_list);
  493. list_del_init(&req->ki_list);
  494. kiocb_cancel(req);
  495. }
  496. spin_unlock_irq(&ctx->ctx_lock);
  497. percpu_ref_kill(&ctx->reqs);
  498. percpu_ref_put(&ctx->reqs);
  499. }
  500. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  501. {
  502. unsigned i, new_nr;
  503. struct kioctx_table *table, *old;
  504. struct aio_ring *ring;
  505. spin_lock(&mm->ioctx_lock);
  506. table = rcu_dereference_raw(mm->ioctx_table);
  507. while (1) {
  508. if (table)
  509. for (i = 0; i < table->nr; i++)
  510. if (!table->table[i]) {
  511. ctx->id = i;
  512. table->table[i] = ctx;
  513. spin_unlock(&mm->ioctx_lock);
  514. /* While kioctx setup is in progress,
  515. * we are protected from page migration
  516. * changes ring_pages by ->ring_lock.
  517. */
  518. ring = kmap_atomic(ctx->ring_pages[0]);
  519. ring->id = ctx->id;
  520. kunmap_atomic(ring);
  521. return 0;
  522. }
  523. new_nr = (table ? table->nr : 1) * 4;
  524. spin_unlock(&mm->ioctx_lock);
  525. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  526. new_nr, GFP_KERNEL);
  527. if (!table)
  528. return -ENOMEM;
  529. table->nr = new_nr;
  530. spin_lock(&mm->ioctx_lock);
  531. old = rcu_dereference_raw(mm->ioctx_table);
  532. if (!old) {
  533. rcu_assign_pointer(mm->ioctx_table, table);
  534. } else if (table->nr > old->nr) {
  535. memcpy(table->table, old->table,
  536. old->nr * sizeof(struct kioctx *));
  537. rcu_assign_pointer(mm->ioctx_table, table);
  538. kfree_rcu(old, rcu);
  539. } else {
  540. kfree(table);
  541. table = old;
  542. }
  543. }
  544. }
  545. static void aio_nr_sub(unsigned nr)
  546. {
  547. spin_lock(&aio_nr_lock);
  548. if (WARN_ON(aio_nr - nr > aio_nr))
  549. aio_nr = 0;
  550. else
  551. aio_nr -= nr;
  552. spin_unlock(&aio_nr_lock);
  553. }
  554. /* ioctx_alloc
  555. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  556. */
  557. static struct kioctx *ioctx_alloc(unsigned nr_events)
  558. {
  559. struct mm_struct *mm = current->mm;
  560. struct kioctx *ctx;
  561. int err = -ENOMEM;
  562. /*
  563. * We keep track of the number of available ringbuffer slots, to prevent
  564. * overflow (reqs_available), and we also use percpu counters for this.
  565. *
  566. * So since up to half the slots might be on other cpu's percpu counters
  567. * and unavailable, double nr_events so userspace sees what they
  568. * expected: additionally, we move req_batch slots to/from percpu
  569. * counters at a time, so make sure that isn't 0:
  570. */
  571. nr_events = max(nr_events, num_possible_cpus() * 4);
  572. nr_events *= 2;
  573. /* Prevent overflows */
  574. if (nr_events > (0x10000000U / sizeof(struct io_event))) {
  575. pr_debug("ENOMEM: nr_events too high\n");
  576. return ERR_PTR(-EINVAL);
  577. }
  578. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  579. return ERR_PTR(-EAGAIN);
  580. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  581. if (!ctx)
  582. return ERR_PTR(-ENOMEM);
  583. ctx->max_reqs = nr_events;
  584. spin_lock_init(&ctx->ctx_lock);
  585. spin_lock_init(&ctx->completion_lock);
  586. mutex_init(&ctx->ring_lock);
  587. /* Protect against page migration throughout kiotx setup by keeping
  588. * the ring_lock mutex held until setup is complete. */
  589. mutex_lock(&ctx->ring_lock);
  590. init_waitqueue_head(&ctx->wait);
  591. INIT_LIST_HEAD(&ctx->active_reqs);
  592. if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
  593. goto err;
  594. if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
  595. goto err;
  596. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  597. if (!ctx->cpu)
  598. goto err;
  599. err = aio_setup_ring(ctx);
  600. if (err < 0)
  601. goto err;
  602. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  603. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  604. if (ctx->req_batch < 1)
  605. ctx->req_batch = 1;
  606. /* limit the number of system wide aios */
  607. spin_lock(&aio_nr_lock);
  608. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  609. aio_nr + nr_events < aio_nr) {
  610. spin_unlock(&aio_nr_lock);
  611. err = -EAGAIN;
  612. goto err_ctx;
  613. }
  614. aio_nr += ctx->max_reqs;
  615. spin_unlock(&aio_nr_lock);
  616. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  617. percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
  618. err = ioctx_add_table(ctx, mm);
  619. if (err)
  620. goto err_cleanup;
  621. /* Release the ring_lock mutex now that all setup is complete. */
  622. mutex_unlock(&ctx->ring_lock);
  623. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  624. ctx, ctx->user_id, mm, ctx->nr_events);
  625. return ctx;
  626. err_cleanup:
  627. aio_nr_sub(ctx->max_reqs);
  628. err_ctx:
  629. atomic_set(&ctx->dead, 1);
  630. if (ctx->mmap_size)
  631. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  632. aio_free_ring(ctx);
  633. err:
  634. mutex_unlock(&ctx->ring_lock);
  635. free_percpu(ctx->cpu);
  636. percpu_ref_exit(&ctx->reqs);
  637. percpu_ref_exit(&ctx->users);
  638. kmem_cache_free(kioctx_cachep, ctx);
  639. pr_debug("error allocating ioctx %d\n", err);
  640. return ERR_PTR(err);
  641. }
  642. /* kill_ioctx
  643. * Cancels all outstanding aio requests on an aio context. Used
  644. * when the processes owning a context have all exited to encourage
  645. * the rapid destruction of the kioctx.
  646. */
  647. static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
  648. struct ctx_rq_wait *wait)
  649. {
  650. struct kioctx_table *table;
  651. spin_lock(&mm->ioctx_lock);
  652. if (atomic_xchg(&ctx->dead, 1)) {
  653. spin_unlock(&mm->ioctx_lock);
  654. return -EINVAL;
  655. }
  656. table = rcu_dereference_raw(mm->ioctx_table);
  657. WARN_ON(ctx != table->table[ctx->id]);
  658. table->table[ctx->id] = NULL;
  659. spin_unlock(&mm->ioctx_lock);
  660. /* percpu_ref_kill() will do the necessary call_rcu() */
  661. wake_up_all(&ctx->wait);
  662. /*
  663. * It'd be more correct to do this in free_ioctx(), after all
  664. * the outstanding kiocbs have finished - but by then io_destroy
  665. * has already returned, so io_setup() could potentially return
  666. * -EAGAIN with no ioctxs actually in use (as far as userspace
  667. * could tell).
  668. */
  669. aio_nr_sub(ctx->max_reqs);
  670. if (ctx->mmap_size)
  671. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  672. ctx->rq_wait = wait;
  673. percpu_ref_kill(&ctx->users);
  674. return 0;
  675. }
  676. /*
  677. * exit_aio: called when the last user of mm goes away. At this point, there is
  678. * no way for any new requests to be submited or any of the io_* syscalls to be
  679. * called on the context.
  680. *
  681. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  682. * them.
  683. */
  684. void exit_aio(struct mm_struct *mm)
  685. {
  686. struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
  687. struct ctx_rq_wait wait;
  688. int i, skipped;
  689. if (!table)
  690. return;
  691. atomic_set(&wait.count, table->nr);
  692. init_completion(&wait.comp);
  693. skipped = 0;
  694. for (i = 0; i < table->nr; ++i) {
  695. struct kioctx *ctx = table->table[i];
  696. if (!ctx) {
  697. skipped++;
  698. continue;
  699. }
  700. /*
  701. * We don't need to bother with munmap() here - exit_mmap(mm)
  702. * is coming and it'll unmap everything. And we simply can't,
  703. * this is not necessarily our ->mm.
  704. * Since kill_ioctx() uses non-zero ->mmap_size as indicator
  705. * that it needs to unmap the area, just set it to 0.
  706. */
  707. ctx->mmap_size = 0;
  708. kill_ioctx(mm, ctx, &wait);
  709. }
  710. if (!atomic_sub_and_test(skipped, &wait.count)) {
  711. /* Wait until all IO for the context are done. */
  712. wait_for_completion(&wait.comp);
  713. }
  714. RCU_INIT_POINTER(mm->ioctx_table, NULL);
  715. kfree(table);
  716. }
  717. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  718. {
  719. struct kioctx_cpu *kcpu;
  720. unsigned long flags;
  721. local_irq_save(flags);
  722. kcpu = this_cpu_ptr(ctx->cpu);
  723. kcpu->reqs_available += nr;
  724. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  725. kcpu->reqs_available -= ctx->req_batch;
  726. atomic_add(ctx->req_batch, &ctx->reqs_available);
  727. }
  728. local_irq_restore(flags);
  729. }
  730. static bool get_reqs_available(struct kioctx *ctx)
  731. {
  732. struct kioctx_cpu *kcpu;
  733. bool ret = false;
  734. unsigned long flags;
  735. local_irq_save(flags);
  736. kcpu = this_cpu_ptr(ctx->cpu);
  737. if (!kcpu->reqs_available) {
  738. int old, avail = atomic_read(&ctx->reqs_available);
  739. do {
  740. if (avail < ctx->req_batch)
  741. goto out;
  742. old = avail;
  743. avail = atomic_cmpxchg(&ctx->reqs_available,
  744. avail, avail - ctx->req_batch);
  745. } while (avail != old);
  746. kcpu->reqs_available += ctx->req_batch;
  747. }
  748. ret = true;
  749. kcpu->reqs_available--;
  750. out:
  751. local_irq_restore(flags);
  752. return ret;
  753. }
  754. /* refill_reqs_available
  755. * Updates the reqs_available reference counts used for tracking the
  756. * number of free slots in the completion ring. This can be called
  757. * from aio_complete() (to optimistically update reqs_available) or
  758. * from aio_get_req() (the we're out of events case). It must be
  759. * called holding ctx->completion_lock.
  760. */
  761. static void refill_reqs_available(struct kioctx *ctx, unsigned head,
  762. unsigned tail)
  763. {
  764. unsigned events_in_ring, completed;
  765. /* Clamp head since userland can write to it. */
  766. head %= ctx->nr_events;
  767. if (head <= tail)
  768. events_in_ring = tail - head;
  769. else
  770. events_in_ring = ctx->nr_events - (head - tail);
  771. completed = ctx->completed_events;
  772. if (events_in_ring < completed)
  773. completed -= events_in_ring;
  774. else
  775. completed = 0;
  776. if (!completed)
  777. return;
  778. ctx->completed_events -= completed;
  779. put_reqs_available(ctx, completed);
  780. }
  781. /* user_refill_reqs_available
  782. * Called to refill reqs_available when aio_get_req() encounters an
  783. * out of space in the completion ring.
  784. */
  785. static void user_refill_reqs_available(struct kioctx *ctx)
  786. {
  787. spin_lock_irq(&ctx->completion_lock);
  788. if (ctx->completed_events) {
  789. struct aio_ring *ring;
  790. unsigned head;
  791. /* Access of ring->head may race with aio_read_events_ring()
  792. * here, but that's okay since whether we read the old version
  793. * or the new version, and either will be valid. The important
  794. * part is that head cannot pass tail since we prevent
  795. * aio_complete() from updating tail by holding
  796. * ctx->completion_lock. Even if head is invalid, the check
  797. * against ctx->completed_events below will make sure we do the
  798. * safe/right thing.
  799. */
  800. ring = kmap_atomic(ctx->ring_pages[0]);
  801. head = ring->head;
  802. kunmap_atomic(ring);
  803. refill_reqs_available(ctx, head, ctx->tail);
  804. }
  805. spin_unlock_irq(&ctx->completion_lock);
  806. }
  807. /* aio_get_req
  808. * Allocate a slot for an aio request.
  809. * Returns NULL if no requests are free.
  810. */
  811. static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
  812. {
  813. struct aio_kiocb *req;
  814. if (!get_reqs_available(ctx)) {
  815. user_refill_reqs_available(ctx);
  816. if (!get_reqs_available(ctx))
  817. return NULL;
  818. }
  819. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  820. if (unlikely(!req))
  821. goto out_put;
  822. percpu_ref_get(&ctx->reqs);
  823. req->ki_ctx = ctx;
  824. return req;
  825. out_put:
  826. put_reqs_available(ctx, 1);
  827. return NULL;
  828. }
  829. static void kiocb_free(struct aio_kiocb *req)
  830. {
  831. if (req->common.ki_filp)
  832. fput(req->common.ki_filp);
  833. if (req->ki_eventfd != NULL)
  834. eventfd_ctx_put(req->ki_eventfd);
  835. kmem_cache_free(kiocb_cachep, req);
  836. }
  837. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  838. {
  839. struct aio_ring __user *ring = (void __user *)ctx_id;
  840. struct mm_struct *mm = current->mm;
  841. struct kioctx *ctx, *ret = NULL;
  842. struct kioctx_table *table;
  843. unsigned id;
  844. if (get_user(id, &ring->id))
  845. return NULL;
  846. rcu_read_lock();
  847. table = rcu_dereference(mm->ioctx_table);
  848. if (!table || id >= table->nr)
  849. goto out;
  850. ctx = table->table[id];
  851. if (ctx && ctx->user_id == ctx_id) {
  852. percpu_ref_get(&ctx->users);
  853. ret = ctx;
  854. }
  855. out:
  856. rcu_read_unlock();
  857. return ret;
  858. }
  859. /* aio_complete
  860. * Called when the io request on the given iocb is complete.
  861. */
  862. static void aio_complete(struct kiocb *kiocb, long res, long res2)
  863. {
  864. struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
  865. struct kioctx *ctx = iocb->ki_ctx;
  866. struct aio_ring *ring;
  867. struct io_event *ev_page, *event;
  868. unsigned tail, pos, head;
  869. unsigned long flags;
  870. /*
  871. * Special case handling for sync iocbs:
  872. * - events go directly into the iocb for fast handling
  873. * - the sync task with the iocb in its stack holds the single iocb
  874. * ref, no other paths have a way to get another ref
  875. * - the sync task helpfully left a reference to itself in the iocb
  876. */
  877. BUG_ON(is_sync_kiocb(kiocb));
  878. if (iocb->ki_list.next) {
  879. unsigned long flags;
  880. spin_lock_irqsave(&ctx->ctx_lock, flags);
  881. list_del(&iocb->ki_list);
  882. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  883. }
  884. /*
  885. * Add a completion event to the ring buffer. Must be done holding
  886. * ctx->completion_lock to prevent other code from messing with the tail
  887. * pointer since we might be called from irq context.
  888. */
  889. spin_lock_irqsave(&ctx->completion_lock, flags);
  890. tail = ctx->tail;
  891. pos = tail + AIO_EVENTS_OFFSET;
  892. if (++tail >= ctx->nr_events)
  893. tail = 0;
  894. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  895. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  896. event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
  897. event->data = iocb->ki_user_data;
  898. event->res = res;
  899. event->res2 = res2;
  900. kunmap_atomic(ev_page);
  901. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  902. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  903. ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
  904. res, res2);
  905. /* after flagging the request as done, we
  906. * must never even look at it again
  907. */
  908. smp_wmb(); /* make event visible before updating tail */
  909. ctx->tail = tail;
  910. ring = kmap_atomic(ctx->ring_pages[0]);
  911. head = ring->head;
  912. ring->tail = tail;
  913. kunmap_atomic(ring);
  914. flush_dcache_page(ctx->ring_pages[0]);
  915. ctx->completed_events++;
  916. if (ctx->completed_events > 1)
  917. refill_reqs_available(ctx, head, tail);
  918. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  919. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  920. /*
  921. * Check if the user asked us to deliver the result through an
  922. * eventfd. The eventfd_signal() function is safe to be called
  923. * from IRQ context.
  924. */
  925. if (iocb->ki_eventfd != NULL)
  926. eventfd_signal(iocb->ki_eventfd, 1);
  927. /* everything turned out well, dispose of the aiocb. */
  928. kiocb_free(iocb);
  929. /*
  930. * We have to order our ring_info tail store above and test
  931. * of the wait list below outside the wait lock. This is
  932. * like in wake_up_bit() where clearing a bit has to be
  933. * ordered with the unlocked test.
  934. */
  935. smp_mb();
  936. if (waitqueue_active(&ctx->wait))
  937. wake_up(&ctx->wait);
  938. percpu_ref_put(&ctx->reqs);
  939. }
  940. /* aio_read_events_ring
  941. * Pull an event off of the ioctx's event ring. Returns the number of
  942. * events fetched
  943. */
  944. static long aio_read_events_ring(struct kioctx *ctx,
  945. struct io_event __user *event, long nr)
  946. {
  947. struct aio_ring *ring;
  948. unsigned head, tail, pos;
  949. long ret = 0;
  950. int copy_ret;
  951. /*
  952. * The mutex can block and wake us up and that will cause
  953. * wait_event_interruptible_hrtimeout() to schedule without sleeping
  954. * and repeat. This should be rare enough that it doesn't cause
  955. * peformance issues. See the comment in read_events() for more detail.
  956. */
  957. sched_annotate_sleep();
  958. mutex_lock(&ctx->ring_lock);
  959. /* Access to ->ring_pages here is protected by ctx->ring_lock. */
  960. ring = kmap_atomic(ctx->ring_pages[0]);
  961. head = ring->head;
  962. tail = ring->tail;
  963. kunmap_atomic(ring);
  964. /*
  965. * Ensure that once we've read the current tail pointer, that
  966. * we also see the events that were stored up to the tail.
  967. */
  968. smp_rmb();
  969. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  970. if (head == tail)
  971. goto out;
  972. head %= ctx->nr_events;
  973. tail %= ctx->nr_events;
  974. while (ret < nr) {
  975. long avail;
  976. struct io_event *ev;
  977. struct page *page;
  978. avail = (head <= tail ? tail : ctx->nr_events) - head;
  979. if (head == tail)
  980. break;
  981. avail = min(avail, nr - ret);
  982. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  983. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  984. pos = head + AIO_EVENTS_OFFSET;
  985. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  986. pos %= AIO_EVENTS_PER_PAGE;
  987. ev = kmap(page);
  988. copy_ret = copy_to_user(event + ret, ev + pos,
  989. sizeof(*ev) * avail);
  990. kunmap(page);
  991. if (unlikely(copy_ret)) {
  992. ret = -EFAULT;
  993. goto out;
  994. }
  995. ret += avail;
  996. head += avail;
  997. head %= ctx->nr_events;
  998. }
  999. ring = kmap_atomic(ctx->ring_pages[0]);
  1000. ring->head = head;
  1001. kunmap_atomic(ring);
  1002. flush_dcache_page(ctx->ring_pages[0]);
  1003. pr_debug("%li h%u t%u\n", ret, head, tail);
  1004. out:
  1005. mutex_unlock(&ctx->ring_lock);
  1006. return ret;
  1007. }
  1008. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  1009. struct io_event __user *event, long *i)
  1010. {
  1011. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  1012. if (ret > 0)
  1013. *i += ret;
  1014. if (unlikely(atomic_read(&ctx->dead)))
  1015. ret = -EINVAL;
  1016. if (!*i)
  1017. *i = ret;
  1018. return ret < 0 || *i >= min_nr;
  1019. }
  1020. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  1021. struct io_event __user *event,
  1022. struct timespec __user *timeout)
  1023. {
  1024. ktime_t until = { .tv64 = KTIME_MAX };
  1025. long ret = 0;
  1026. if (timeout) {
  1027. struct timespec ts;
  1028. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1029. return -EFAULT;
  1030. until = timespec_to_ktime(ts);
  1031. }
  1032. /*
  1033. * Note that aio_read_events() is being called as the conditional - i.e.
  1034. * we're calling it after prepare_to_wait() has set task state to
  1035. * TASK_INTERRUPTIBLE.
  1036. *
  1037. * But aio_read_events() can block, and if it blocks it's going to flip
  1038. * the task state back to TASK_RUNNING.
  1039. *
  1040. * This should be ok, provided it doesn't flip the state back to
  1041. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  1042. * will only happen if the mutex_lock() call blocks, and we then find
  1043. * the ringbuffer empty. So in practice we should be ok, but it's
  1044. * something to be aware of when touching this code.
  1045. */
  1046. if (until.tv64 == 0)
  1047. aio_read_events(ctx, min_nr, nr, event, &ret);
  1048. else
  1049. wait_event_interruptible_hrtimeout(ctx->wait,
  1050. aio_read_events(ctx, min_nr, nr, event, &ret),
  1051. until);
  1052. if (!ret && signal_pending(current))
  1053. ret = -EINTR;
  1054. return ret;
  1055. }
  1056. /* sys_io_setup:
  1057. * Create an aio_context capable of receiving at least nr_events.
  1058. * ctxp must not point to an aio_context that already exists, and
  1059. * must be initialized to 0 prior to the call. On successful
  1060. * creation of the aio_context, *ctxp is filled in with the resulting
  1061. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1062. * if the specified nr_events exceeds internal limits. May fail
  1063. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1064. * of available events. May fail with -ENOMEM if insufficient kernel
  1065. * resources are available. May fail with -EFAULT if an invalid
  1066. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1067. * implemented.
  1068. */
  1069. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1070. {
  1071. struct kioctx *ioctx = NULL;
  1072. unsigned long ctx;
  1073. long ret;
  1074. ret = get_user(ctx, ctxp);
  1075. if (unlikely(ret))
  1076. goto out;
  1077. ret = -EINVAL;
  1078. if (unlikely(ctx || nr_events == 0)) {
  1079. pr_debug("EINVAL: ctx %lu nr_events %u\n",
  1080. ctx, nr_events);
  1081. goto out;
  1082. }
  1083. ioctx = ioctx_alloc(nr_events);
  1084. ret = PTR_ERR(ioctx);
  1085. if (!IS_ERR(ioctx)) {
  1086. ret = put_user(ioctx->user_id, ctxp);
  1087. if (ret)
  1088. kill_ioctx(current->mm, ioctx, NULL);
  1089. percpu_ref_put(&ioctx->users);
  1090. }
  1091. out:
  1092. return ret;
  1093. }
  1094. /* sys_io_destroy:
  1095. * Destroy the aio_context specified. May cancel any outstanding
  1096. * AIOs and block on completion. Will fail with -ENOSYS if not
  1097. * implemented. May fail with -EINVAL if the context pointed to
  1098. * is invalid.
  1099. */
  1100. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1101. {
  1102. struct kioctx *ioctx = lookup_ioctx(ctx);
  1103. if (likely(NULL != ioctx)) {
  1104. struct ctx_rq_wait wait;
  1105. int ret;
  1106. init_completion(&wait.comp);
  1107. atomic_set(&wait.count, 1);
  1108. /* Pass requests_done to kill_ioctx() where it can be set
  1109. * in a thread-safe way. If we try to set it here then we have
  1110. * a race condition if two io_destroy() called simultaneously.
  1111. */
  1112. ret = kill_ioctx(current->mm, ioctx, &wait);
  1113. percpu_ref_put(&ioctx->users);
  1114. /* Wait until all IO for the context are done. Otherwise kernel
  1115. * keep using user-space buffers even if user thinks the context
  1116. * is destroyed.
  1117. */
  1118. if (!ret)
  1119. wait_for_completion(&wait.comp);
  1120. return ret;
  1121. }
  1122. pr_debug("EINVAL: invalid context id\n");
  1123. return -EINVAL;
  1124. }
  1125. typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
  1126. static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
  1127. struct iovec **iovec,
  1128. bool compat,
  1129. struct iov_iter *iter)
  1130. {
  1131. #ifdef CONFIG_COMPAT
  1132. if (compat)
  1133. return compat_import_iovec(rw,
  1134. (struct compat_iovec __user *)buf,
  1135. len, UIO_FASTIOV, iovec, iter);
  1136. #endif
  1137. return import_iovec(rw, (struct iovec __user *)buf,
  1138. len, UIO_FASTIOV, iovec, iter);
  1139. }
  1140. /*
  1141. * aio_run_iocb:
  1142. * Performs the initial checks and io submission.
  1143. */
  1144. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  1145. char __user *buf, size_t len, bool compat)
  1146. {
  1147. struct file *file = req->ki_filp;
  1148. ssize_t ret;
  1149. int rw;
  1150. fmode_t mode;
  1151. rw_iter_op *iter_op;
  1152. struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
  1153. struct iov_iter iter;
  1154. switch (opcode) {
  1155. case IOCB_CMD_PREAD:
  1156. case IOCB_CMD_PREADV:
  1157. mode = FMODE_READ;
  1158. rw = READ;
  1159. iter_op = file->f_op->read_iter;
  1160. goto rw_common;
  1161. case IOCB_CMD_PWRITE:
  1162. case IOCB_CMD_PWRITEV:
  1163. mode = FMODE_WRITE;
  1164. rw = WRITE;
  1165. iter_op = file->f_op->write_iter;
  1166. goto rw_common;
  1167. rw_common:
  1168. if (unlikely(!(file->f_mode & mode)))
  1169. return -EBADF;
  1170. if (!iter_op)
  1171. return -EINVAL;
  1172. if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
  1173. ret = aio_setup_vectored_rw(rw, buf, len,
  1174. &iovec, compat, &iter);
  1175. else {
  1176. ret = import_single_range(rw, buf, len, iovec, &iter);
  1177. iovec = NULL;
  1178. }
  1179. if (!ret)
  1180. ret = rw_verify_area(rw, file, &req->ki_pos,
  1181. iov_iter_count(&iter));
  1182. if (ret < 0) {
  1183. kfree(iovec);
  1184. return ret;
  1185. }
  1186. len = ret;
  1187. if (rw == WRITE)
  1188. file_start_write(file);
  1189. ret = iter_op(req, &iter);
  1190. if (rw == WRITE)
  1191. file_end_write(file);
  1192. kfree(iovec);
  1193. break;
  1194. case IOCB_CMD_FDSYNC:
  1195. if (!file->f_op->aio_fsync)
  1196. return -EINVAL;
  1197. ret = file->f_op->aio_fsync(req, 1);
  1198. break;
  1199. case IOCB_CMD_FSYNC:
  1200. if (!file->f_op->aio_fsync)
  1201. return -EINVAL;
  1202. ret = file->f_op->aio_fsync(req, 0);
  1203. break;
  1204. default:
  1205. pr_debug("EINVAL: no operation provided\n");
  1206. return -EINVAL;
  1207. }
  1208. if (ret != -EIOCBQUEUED) {
  1209. /*
  1210. * There's no easy way to restart the syscall since other AIO's
  1211. * may be already running. Just fail this IO with EINTR.
  1212. */
  1213. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1214. ret == -ERESTARTNOHAND ||
  1215. ret == -ERESTART_RESTARTBLOCK))
  1216. ret = -EINTR;
  1217. aio_complete(req, ret, 0);
  1218. }
  1219. return 0;
  1220. }
  1221. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1222. struct iocb *iocb, bool compat)
  1223. {
  1224. struct aio_kiocb *req;
  1225. ssize_t ret;
  1226. /* enforce forwards compatibility on users */
  1227. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1228. pr_debug("EINVAL: reserve field set\n");
  1229. return -EINVAL;
  1230. }
  1231. /* prevent overflows */
  1232. if (unlikely(
  1233. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1234. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1235. ((ssize_t)iocb->aio_nbytes < 0)
  1236. )) {
  1237. pr_debug("EINVAL: overflow check\n");
  1238. return -EINVAL;
  1239. }
  1240. req = aio_get_req(ctx);
  1241. if (unlikely(!req))
  1242. return -EAGAIN;
  1243. req->common.ki_filp = fget(iocb->aio_fildes);
  1244. if (unlikely(!req->common.ki_filp)) {
  1245. ret = -EBADF;
  1246. goto out_put_req;
  1247. }
  1248. req->common.ki_pos = iocb->aio_offset;
  1249. req->common.ki_complete = aio_complete;
  1250. req->common.ki_flags = iocb_flags(req->common.ki_filp);
  1251. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1252. /*
  1253. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1254. * instance of the file* now. The file descriptor must be
  1255. * an eventfd() fd, and will be signaled for each completed
  1256. * event using the eventfd_signal() function.
  1257. */
  1258. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1259. if (IS_ERR(req->ki_eventfd)) {
  1260. ret = PTR_ERR(req->ki_eventfd);
  1261. req->ki_eventfd = NULL;
  1262. goto out_put_req;
  1263. }
  1264. req->common.ki_flags |= IOCB_EVENTFD;
  1265. }
  1266. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1267. if (unlikely(ret)) {
  1268. pr_debug("EFAULT: aio_key\n");
  1269. goto out_put_req;
  1270. }
  1271. req->ki_user_iocb = user_iocb;
  1272. req->ki_user_data = iocb->aio_data;
  1273. ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
  1274. (char __user *)(unsigned long)iocb->aio_buf,
  1275. iocb->aio_nbytes,
  1276. compat);
  1277. if (ret)
  1278. goto out_put_req;
  1279. return 0;
  1280. out_put_req:
  1281. put_reqs_available(ctx, 1);
  1282. percpu_ref_put(&ctx->reqs);
  1283. kiocb_free(req);
  1284. return ret;
  1285. }
  1286. long do_io_submit(aio_context_t ctx_id, long nr,
  1287. struct iocb __user *__user *iocbpp, bool compat)
  1288. {
  1289. struct kioctx *ctx;
  1290. long ret = 0;
  1291. int i = 0;
  1292. struct blk_plug plug;
  1293. if (unlikely(nr < 0))
  1294. return -EINVAL;
  1295. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1296. nr = LONG_MAX/sizeof(*iocbpp);
  1297. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1298. return -EFAULT;
  1299. ctx = lookup_ioctx(ctx_id);
  1300. if (unlikely(!ctx)) {
  1301. pr_debug("EINVAL: invalid context id\n");
  1302. return -EINVAL;
  1303. }
  1304. blk_start_plug(&plug);
  1305. /*
  1306. * AKPM: should this return a partial result if some of the IOs were
  1307. * successfully submitted?
  1308. */
  1309. for (i=0; i<nr; i++) {
  1310. struct iocb __user *user_iocb;
  1311. struct iocb tmp;
  1312. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1313. ret = -EFAULT;
  1314. break;
  1315. }
  1316. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1317. ret = -EFAULT;
  1318. break;
  1319. }
  1320. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1321. if (ret)
  1322. break;
  1323. }
  1324. blk_finish_plug(&plug);
  1325. percpu_ref_put(&ctx->users);
  1326. return i ? i : ret;
  1327. }
  1328. /* sys_io_submit:
  1329. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1330. * the number of iocbs queued. May return -EINVAL if the aio_context
  1331. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1332. * *iocbpp[0] is not properly initialized, if the operation specified
  1333. * is invalid for the file descriptor in the iocb. May fail with
  1334. * -EFAULT if any of the data structures point to invalid data. May
  1335. * fail with -EBADF if the file descriptor specified in the first
  1336. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1337. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1338. * fail with -ENOSYS if not implemented.
  1339. */
  1340. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1341. struct iocb __user * __user *, iocbpp)
  1342. {
  1343. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1344. }
  1345. /* lookup_kiocb
  1346. * Finds a given iocb for cancellation.
  1347. */
  1348. static struct aio_kiocb *
  1349. lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
  1350. {
  1351. struct aio_kiocb *kiocb;
  1352. assert_spin_locked(&ctx->ctx_lock);
  1353. if (key != KIOCB_KEY)
  1354. return NULL;
  1355. /* TODO: use a hash or array, this sucks. */
  1356. list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
  1357. if (kiocb->ki_user_iocb == iocb)
  1358. return kiocb;
  1359. }
  1360. return NULL;
  1361. }
  1362. /* sys_io_cancel:
  1363. * Attempts to cancel an iocb previously passed to io_submit. If
  1364. * the operation is successfully cancelled, the resulting event is
  1365. * copied into the memory pointed to by result without being placed
  1366. * into the completion queue and 0 is returned. May fail with
  1367. * -EFAULT if any of the data structures pointed to are invalid.
  1368. * May fail with -EINVAL if aio_context specified by ctx_id is
  1369. * invalid. May fail with -EAGAIN if the iocb specified was not
  1370. * cancelled. Will fail with -ENOSYS if not implemented.
  1371. */
  1372. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1373. struct io_event __user *, result)
  1374. {
  1375. struct kioctx *ctx;
  1376. struct aio_kiocb *kiocb;
  1377. u32 key;
  1378. int ret;
  1379. ret = get_user(key, &iocb->aio_key);
  1380. if (unlikely(ret))
  1381. return -EFAULT;
  1382. ctx = lookup_ioctx(ctx_id);
  1383. if (unlikely(!ctx))
  1384. return -EINVAL;
  1385. spin_lock_irq(&ctx->ctx_lock);
  1386. kiocb = lookup_kiocb(ctx, iocb, key);
  1387. if (kiocb)
  1388. ret = kiocb_cancel(kiocb);
  1389. else
  1390. ret = -EINVAL;
  1391. spin_unlock_irq(&ctx->ctx_lock);
  1392. if (!ret) {
  1393. /*
  1394. * The result argument is no longer used - the io_event is
  1395. * always delivered via the ring buffer. -EINPROGRESS indicates
  1396. * cancellation is progress:
  1397. */
  1398. ret = -EINPROGRESS;
  1399. }
  1400. percpu_ref_put(&ctx->users);
  1401. return ret;
  1402. }
  1403. /* io_getevents:
  1404. * Attempts to read at least min_nr events and up to nr events from
  1405. * the completion queue for the aio_context specified by ctx_id. If
  1406. * it succeeds, the number of read events is returned. May fail with
  1407. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1408. * out of range, if timeout is out of range. May fail with -EFAULT
  1409. * if any of the memory specified is invalid. May return 0 or
  1410. * < min_nr if the timeout specified by timeout has elapsed
  1411. * before sufficient events are available, where timeout == NULL
  1412. * specifies an infinite timeout. Note that the timeout pointed to by
  1413. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1414. */
  1415. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1416. long, min_nr,
  1417. long, nr,
  1418. struct io_event __user *, events,
  1419. struct timespec __user *, timeout)
  1420. {
  1421. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1422. long ret = -EINVAL;
  1423. if (likely(ioctx)) {
  1424. if (likely(min_nr <= nr && min_nr >= 0))
  1425. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1426. percpu_ref_put(&ioctx->users);
  1427. }
  1428. return ret;
  1429. }