rtc-snvs.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /*
  2. * Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/init.h>
  12. #include <linux/io.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/of.h>
  16. #include <linux/of_device.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/rtc.h>
  19. #include <linux/clk.h>
  20. /* These register offsets are relative to LP (Low Power) range */
  21. #define SNVS_LPCR 0x04
  22. #define SNVS_LPSR 0x18
  23. #define SNVS_LPSRTCMR 0x1c
  24. #define SNVS_LPSRTCLR 0x20
  25. #define SNVS_LPTAR 0x24
  26. #define SNVS_LPPGDR 0x30
  27. #define SNVS_LPCR_SRTC_ENV (1 << 0)
  28. #define SNVS_LPCR_LPTA_EN (1 << 1)
  29. #define SNVS_LPCR_LPWUI_EN (1 << 3)
  30. #define SNVS_LPSR_LPTA (1 << 0)
  31. #define SNVS_LPPGDR_INIT 0x41736166
  32. #define CNTR_TO_SECS_SH 15
  33. struct snvs_rtc_data {
  34. struct rtc_device *rtc;
  35. void __iomem *ioaddr;
  36. int irq;
  37. spinlock_t lock;
  38. struct clk *clk;
  39. };
  40. static u32 rtc_read_lp_counter(void __iomem *ioaddr)
  41. {
  42. u64 read1, read2;
  43. do {
  44. read1 = readl(ioaddr + SNVS_LPSRTCMR);
  45. read1 <<= 32;
  46. read1 |= readl(ioaddr + SNVS_LPSRTCLR);
  47. read2 = readl(ioaddr + SNVS_LPSRTCMR);
  48. read2 <<= 32;
  49. read2 |= readl(ioaddr + SNVS_LPSRTCLR);
  50. } while (read1 != read2);
  51. /* Convert 47-bit counter to 32-bit raw second count */
  52. return (u32) (read1 >> CNTR_TO_SECS_SH);
  53. }
  54. static void rtc_write_sync_lp(void __iomem *ioaddr)
  55. {
  56. u32 count1, count2, count3;
  57. int i;
  58. /* Wait for 3 CKIL cycles */
  59. for (i = 0; i < 3; i++) {
  60. do {
  61. count1 = readl(ioaddr + SNVS_LPSRTCLR);
  62. count2 = readl(ioaddr + SNVS_LPSRTCLR);
  63. } while (count1 != count2);
  64. /* Now wait until counter value changes */
  65. do {
  66. do {
  67. count2 = readl(ioaddr + SNVS_LPSRTCLR);
  68. count3 = readl(ioaddr + SNVS_LPSRTCLR);
  69. } while (count2 != count3);
  70. } while (count3 == count1);
  71. }
  72. }
  73. static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
  74. {
  75. unsigned long flags;
  76. int timeout = 1000;
  77. u32 lpcr;
  78. spin_lock_irqsave(&data->lock, flags);
  79. lpcr = readl(data->ioaddr + SNVS_LPCR);
  80. if (enable)
  81. lpcr |= SNVS_LPCR_SRTC_ENV;
  82. else
  83. lpcr &= ~SNVS_LPCR_SRTC_ENV;
  84. writel(lpcr, data->ioaddr + SNVS_LPCR);
  85. spin_unlock_irqrestore(&data->lock, flags);
  86. while (--timeout) {
  87. lpcr = readl(data->ioaddr + SNVS_LPCR);
  88. if (enable) {
  89. if (lpcr & SNVS_LPCR_SRTC_ENV)
  90. break;
  91. } else {
  92. if (!(lpcr & SNVS_LPCR_SRTC_ENV))
  93. break;
  94. }
  95. }
  96. if (!timeout)
  97. return -ETIMEDOUT;
  98. return 0;
  99. }
  100. static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
  101. {
  102. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  103. unsigned long time = rtc_read_lp_counter(data->ioaddr);
  104. rtc_time_to_tm(time, tm);
  105. return 0;
  106. }
  107. static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
  108. {
  109. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  110. unsigned long time;
  111. rtc_tm_to_time(tm, &time);
  112. /* Disable RTC first */
  113. snvs_rtc_enable(data, false);
  114. /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
  115. writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR);
  116. writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR);
  117. /* Enable RTC again */
  118. snvs_rtc_enable(data, true);
  119. return 0;
  120. }
  121. static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  122. {
  123. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  124. u32 lptar, lpsr;
  125. lptar = readl(data->ioaddr + SNVS_LPTAR);
  126. rtc_time_to_tm(lptar, &alrm->time);
  127. lpsr = readl(data->ioaddr + SNVS_LPSR);
  128. alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
  129. return 0;
  130. }
  131. static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
  132. {
  133. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  134. u32 lpcr;
  135. unsigned long flags;
  136. spin_lock_irqsave(&data->lock, flags);
  137. lpcr = readl(data->ioaddr + SNVS_LPCR);
  138. if (enable)
  139. lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
  140. else
  141. lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
  142. writel(lpcr, data->ioaddr + SNVS_LPCR);
  143. spin_unlock_irqrestore(&data->lock, flags);
  144. rtc_write_sync_lp(data->ioaddr);
  145. return 0;
  146. }
  147. static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  148. {
  149. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  150. struct rtc_time *alrm_tm = &alrm->time;
  151. unsigned long time;
  152. unsigned long flags;
  153. u32 lpcr;
  154. rtc_tm_to_time(alrm_tm, &time);
  155. spin_lock_irqsave(&data->lock, flags);
  156. /* Have to clear LPTA_EN before programming new alarm time in LPTAR */
  157. lpcr = readl(data->ioaddr + SNVS_LPCR);
  158. lpcr &= ~SNVS_LPCR_LPTA_EN;
  159. writel(lpcr, data->ioaddr + SNVS_LPCR);
  160. spin_unlock_irqrestore(&data->lock, flags);
  161. writel(time, data->ioaddr + SNVS_LPTAR);
  162. /* Clear alarm interrupt status bit */
  163. writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR);
  164. return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
  165. }
  166. static const struct rtc_class_ops snvs_rtc_ops = {
  167. .read_time = snvs_rtc_read_time,
  168. .set_time = snvs_rtc_set_time,
  169. .read_alarm = snvs_rtc_read_alarm,
  170. .set_alarm = snvs_rtc_set_alarm,
  171. .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
  172. };
  173. static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
  174. {
  175. struct device *dev = dev_id;
  176. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  177. u32 lpsr;
  178. u32 events = 0;
  179. lpsr = readl(data->ioaddr + SNVS_LPSR);
  180. if (lpsr & SNVS_LPSR_LPTA) {
  181. events |= (RTC_AF | RTC_IRQF);
  182. /* RTC alarm should be one-shot */
  183. snvs_rtc_alarm_irq_enable(dev, 0);
  184. rtc_update_irq(data->rtc, 1, events);
  185. }
  186. /* clear interrupt status */
  187. writel(lpsr, data->ioaddr + SNVS_LPSR);
  188. return events ? IRQ_HANDLED : IRQ_NONE;
  189. }
  190. static int snvs_rtc_probe(struct platform_device *pdev)
  191. {
  192. struct snvs_rtc_data *data;
  193. struct resource *res;
  194. int ret;
  195. data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
  196. if (!data)
  197. return -ENOMEM;
  198. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  199. data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
  200. if (IS_ERR(data->ioaddr))
  201. return PTR_ERR(data->ioaddr);
  202. data->irq = platform_get_irq(pdev, 0);
  203. if (data->irq < 0)
  204. return data->irq;
  205. data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
  206. if (IS_ERR(data->clk)) {
  207. data->clk = NULL;
  208. } else {
  209. ret = clk_prepare_enable(data->clk);
  210. if (ret) {
  211. dev_err(&pdev->dev,
  212. "Could not prepare or enable the snvs clock\n");
  213. return ret;
  214. }
  215. }
  216. platform_set_drvdata(pdev, data);
  217. spin_lock_init(&data->lock);
  218. /* Initialize glitch detect */
  219. writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR);
  220. /* Clear interrupt status */
  221. writel(0xffffffff, data->ioaddr + SNVS_LPSR);
  222. /* Enable RTC */
  223. snvs_rtc_enable(data, true);
  224. device_init_wakeup(&pdev->dev, true);
  225. ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
  226. IRQF_SHARED, "rtc alarm", &pdev->dev);
  227. if (ret) {
  228. dev_err(&pdev->dev, "failed to request irq %d: %d\n",
  229. data->irq, ret);
  230. goto error_rtc_device_register;
  231. }
  232. data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
  233. &snvs_rtc_ops, THIS_MODULE);
  234. if (IS_ERR(data->rtc)) {
  235. ret = PTR_ERR(data->rtc);
  236. dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
  237. goto error_rtc_device_register;
  238. }
  239. return 0;
  240. error_rtc_device_register:
  241. if (data->clk)
  242. clk_disable_unprepare(data->clk);
  243. return ret;
  244. }
  245. #ifdef CONFIG_PM_SLEEP
  246. static int snvs_rtc_suspend(struct device *dev)
  247. {
  248. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  249. if (device_may_wakeup(dev))
  250. enable_irq_wake(data->irq);
  251. return 0;
  252. }
  253. static int snvs_rtc_suspend_noirq(struct device *dev)
  254. {
  255. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  256. if (data->clk)
  257. clk_disable_unprepare(data->clk);
  258. return 0;
  259. }
  260. static int snvs_rtc_resume(struct device *dev)
  261. {
  262. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  263. if (device_may_wakeup(dev))
  264. return disable_irq_wake(data->irq);
  265. return 0;
  266. }
  267. static int snvs_rtc_resume_noirq(struct device *dev)
  268. {
  269. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  270. if (data->clk)
  271. return clk_prepare_enable(data->clk);
  272. return 0;
  273. }
  274. static const struct dev_pm_ops snvs_rtc_pm_ops = {
  275. .suspend = snvs_rtc_suspend,
  276. .suspend_noirq = snvs_rtc_suspend_noirq,
  277. .resume = snvs_rtc_resume,
  278. .resume_noirq = snvs_rtc_resume_noirq,
  279. };
  280. #define SNVS_RTC_PM_OPS (&snvs_rtc_pm_ops)
  281. #else
  282. #define SNVS_RTC_PM_OPS NULL
  283. #endif
  284. static const struct of_device_id snvs_dt_ids[] = {
  285. { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
  286. { /* sentinel */ }
  287. };
  288. MODULE_DEVICE_TABLE(of, snvs_dt_ids);
  289. static struct platform_driver snvs_rtc_driver = {
  290. .driver = {
  291. .name = "snvs_rtc",
  292. .pm = SNVS_RTC_PM_OPS,
  293. .of_match_table = snvs_dt_ids,
  294. },
  295. .probe = snvs_rtc_probe,
  296. };
  297. module_platform_driver(snvs_rtc_driver);
  298. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  299. MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
  300. MODULE_LICENSE("GPL");