of_reserved_mem.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. /*
  2. * Device tree based initialization code for reserved memory.
  3. *
  4. * Copyright (c) 2013, The Linux Foundation. All Rights Reserved.
  5. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com
  7. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8. * Author: Josh Cartwright <joshc@codeaurora.org>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License or (at your optional) any later version of the license.
  14. */
  15. #include <linux/err.h>
  16. #include <linux/of.h>
  17. #include <linux/of_fdt.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/mm.h>
  20. #include <linux/sizes.h>
  21. #include <linux/of_reserved_mem.h>
  22. #define MAX_RESERVED_REGIONS 16
  23. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  24. static int reserved_mem_count;
  25. #if defined(CONFIG_HAVE_MEMBLOCK)
  26. #include <linux/memblock.h>
  27. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  28. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  29. phys_addr_t *res_base)
  30. {
  31. /*
  32. * We use __memblock_alloc_base() because memblock_alloc_base()
  33. * panic()s on allocation failure.
  34. */
  35. phys_addr_t base = __memblock_alloc_base(size, align, end);
  36. if (!base)
  37. return -ENOMEM;
  38. /*
  39. * Check if the allocated region fits in to start..end window
  40. */
  41. if (base < start) {
  42. memblock_free(base, size);
  43. return -ENOMEM;
  44. }
  45. *res_base = base;
  46. if (nomap)
  47. return memblock_remove(base, size);
  48. return 0;
  49. }
  50. #else
  51. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  52. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  53. phys_addr_t *res_base)
  54. {
  55. pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
  56. size, nomap ? " (nomap)" : "");
  57. return -ENOSYS;
  58. }
  59. #endif
  60. /**
  61. * res_mem_save_node() - save fdt node for second pass initialization
  62. */
  63. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  64. phys_addr_t base, phys_addr_t size)
  65. {
  66. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  67. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  68. pr_err("Reserved memory: not enough space all defined regions.\n");
  69. return;
  70. }
  71. rmem->fdt_node = node;
  72. rmem->name = uname;
  73. rmem->base = base;
  74. rmem->size = size;
  75. reserved_mem_count++;
  76. return;
  77. }
  78. /**
  79. * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
  80. * and 'alloc-ranges' properties
  81. */
  82. static int __init __reserved_mem_alloc_size(unsigned long node,
  83. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  84. {
  85. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  86. phys_addr_t start = 0, end = 0;
  87. phys_addr_t base = 0, align = 0, size;
  88. int len;
  89. const __be32 *prop;
  90. int nomap;
  91. int ret;
  92. prop = of_get_flat_dt_prop(node, "size", &len);
  93. if (!prop)
  94. return -EINVAL;
  95. if (len != dt_root_size_cells * sizeof(__be32)) {
  96. pr_err("Reserved memory: invalid size property in '%s' node.\n",
  97. uname);
  98. return -EINVAL;
  99. }
  100. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  101. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  102. prop = of_get_flat_dt_prop(node, "alignment", &len);
  103. if (prop) {
  104. if (len != dt_root_addr_cells * sizeof(__be32)) {
  105. pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
  106. uname);
  107. return -EINVAL;
  108. }
  109. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  110. }
  111. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  112. if (prop) {
  113. if (len % t_len != 0) {
  114. pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
  115. uname);
  116. return -EINVAL;
  117. }
  118. base = 0;
  119. while (len > 0) {
  120. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  121. end = start + dt_mem_next_cell(dt_root_size_cells,
  122. &prop);
  123. ret = early_init_dt_alloc_reserved_memory_arch(size,
  124. align, start, end, nomap, &base);
  125. if (ret == 0) {
  126. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  127. uname, &base,
  128. (unsigned long)size / SZ_1M);
  129. break;
  130. }
  131. len -= t_len;
  132. }
  133. } else {
  134. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  135. 0, 0, nomap, &base);
  136. if (ret == 0)
  137. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  138. uname, &base, (unsigned long)size / SZ_1M);
  139. }
  140. if (base == 0) {
  141. pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
  142. uname);
  143. return -ENOMEM;
  144. }
  145. *res_base = base;
  146. *res_size = size;
  147. return 0;
  148. }
  149. static const struct of_device_id __rmem_of_table_sentinel
  150. __used __section(__reservedmem_of_table_end);
  151. /**
  152. * res_mem_init_node() - call region specific reserved memory init code
  153. */
  154. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  155. {
  156. extern const struct of_device_id __reservedmem_of_table[];
  157. const struct of_device_id *i;
  158. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  159. reservedmem_of_init_fn initfn = i->data;
  160. const char *compat = i->compatible;
  161. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  162. continue;
  163. if (initfn(rmem) == 0) {
  164. pr_info("Reserved memory: initialized node %s, compatible id %s\n",
  165. rmem->name, compat);
  166. return 0;
  167. }
  168. }
  169. return -ENOENT;
  170. }
  171. /**
  172. * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
  173. */
  174. void __init fdt_init_reserved_mem(void)
  175. {
  176. int i;
  177. for (i = 0; i < reserved_mem_count; i++) {
  178. struct reserved_mem *rmem = &reserved_mem[i];
  179. unsigned long node = rmem->fdt_node;
  180. int len;
  181. const __be32 *prop;
  182. int err = 0;
  183. prop = of_get_flat_dt_prop(node, "phandle", &len);
  184. if (!prop)
  185. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  186. if (prop)
  187. rmem->phandle = of_read_number(prop, len/4);
  188. if (rmem->size == 0)
  189. err = __reserved_mem_alloc_size(node, rmem->name,
  190. &rmem->base, &rmem->size);
  191. if (err == 0)
  192. __reserved_mem_init_node(rmem);
  193. }
  194. }
  195. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  196. {
  197. unsigned int i;
  198. if (!node->phandle)
  199. return NULL;
  200. for (i = 0; i < reserved_mem_count; i++)
  201. if (reserved_mem[i].phandle == node->phandle)
  202. return &reserved_mem[i];
  203. return NULL;
  204. }
  205. /**
  206. * of_reserved_mem_device_init() - assign reserved memory region to given device
  207. *
  208. * This function assign memory region pointed by "memory-region" device tree
  209. * property to the given device.
  210. */
  211. int of_reserved_mem_device_init(struct device *dev)
  212. {
  213. struct reserved_mem *rmem;
  214. struct device_node *np;
  215. int ret;
  216. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  217. if (!np)
  218. return -ENODEV;
  219. rmem = __find_rmem(np);
  220. of_node_put(np);
  221. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  222. return -EINVAL;
  223. ret = rmem->ops->device_init(rmem, dev);
  224. if (ret == 0)
  225. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  226. return ret;
  227. }
  228. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
  229. /**
  230. * of_reserved_mem_device_release() - release reserved memory device structures
  231. *
  232. * This function releases structures allocated for memory region handling for
  233. * the given device.
  234. */
  235. void of_reserved_mem_device_release(struct device *dev)
  236. {
  237. struct reserved_mem *rmem;
  238. struct device_node *np;
  239. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  240. if (!np)
  241. return;
  242. rmem = __find_rmem(np);
  243. of_node_put(np);
  244. if (!rmem || !rmem->ops || !rmem->ops->device_release)
  245. return;
  246. rmem->ops->device_release(rmem, dev);
  247. }
  248. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);