pch_can.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  16. */
  17. #include <linux/interrupt.h>
  18. #include <linux/delay.h>
  19. #include <linux/io.h>
  20. #include <linux/module.h>
  21. #include <linux/sched.h>
  22. #include <linux/pci.h>
  23. #include <linux/kernel.h>
  24. #include <linux/types.h>
  25. #include <linux/errno.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/can.h>
  29. #include <linux/can/dev.h>
  30. #include <linux/can/error.h>
  31. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  32. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  33. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  34. #define PCH_CTRL_CCE BIT(6)
  35. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  36. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  37. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  38. #define PCH_CMASK_RX_TX_SET 0x00f3
  39. #define PCH_CMASK_RX_TX_GET 0x0073
  40. #define PCH_CMASK_ALL 0xff
  41. #define PCH_CMASK_NEWDAT BIT(2)
  42. #define PCH_CMASK_CLRINTPND BIT(3)
  43. #define PCH_CMASK_CTRL BIT(4)
  44. #define PCH_CMASK_ARB BIT(5)
  45. #define PCH_CMASK_MASK BIT(6)
  46. #define PCH_CMASK_RDWR BIT(7)
  47. #define PCH_IF_MCONT_NEWDAT BIT(15)
  48. #define PCH_IF_MCONT_MSGLOST BIT(14)
  49. #define PCH_IF_MCONT_INTPND BIT(13)
  50. #define PCH_IF_MCONT_UMASK BIT(12)
  51. #define PCH_IF_MCONT_TXIE BIT(11)
  52. #define PCH_IF_MCONT_RXIE BIT(10)
  53. #define PCH_IF_MCONT_RMTEN BIT(9)
  54. #define PCH_IF_MCONT_TXRQXT BIT(8)
  55. #define PCH_IF_MCONT_EOB BIT(7)
  56. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  57. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  58. #define PCH_ID2_DIR BIT(13)
  59. #define PCH_ID2_XTD BIT(14)
  60. #define PCH_ID_MSGVAL BIT(15)
  61. #define PCH_IF_CREQ_BUSY BIT(15)
  62. #define PCH_STATUS_INT 0x8000
  63. #define PCH_RP 0x00008000
  64. #define PCH_REC 0x00007f00
  65. #define PCH_TEC 0x000000ff
  66. #define PCH_TX_OK BIT(3)
  67. #define PCH_RX_OK BIT(4)
  68. #define PCH_EPASSIV BIT(5)
  69. #define PCH_EWARN BIT(6)
  70. #define PCH_BUS_OFF BIT(7)
  71. /* bit position of certain controller bits. */
  72. #define PCH_BIT_BRP_SHIFT 0
  73. #define PCH_BIT_SJW_SHIFT 6
  74. #define PCH_BIT_TSEG1_SHIFT 8
  75. #define PCH_BIT_TSEG2_SHIFT 12
  76. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  77. #define PCH_MSK_BITT_BRP 0x3f
  78. #define PCH_MSK_BRPE_BRPE 0x3c0
  79. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  80. #define PCH_COUNTER_LIMIT 10
  81. #define PCH_CAN_CLK 50000000 /* 50MHz */
  82. /*
  83. * Define the number of message object.
  84. * PCH CAN communications are done via Message RAM.
  85. * The Message RAM consists of 32 message objects.
  86. */
  87. #define PCH_RX_OBJ_NUM 26
  88. #define PCH_TX_OBJ_NUM 6
  89. #define PCH_RX_OBJ_START 1
  90. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  91. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  92. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  93. #define PCH_FIFO_THRESH 16
  94. /* TxRqst2 show status of MsgObjNo.17~32 */
  95. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  96. (PCH_RX_OBJ_END - 16))
  97. enum pch_ifreg {
  98. PCH_RX_IFREG,
  99. PCH_TX_IFREG,
  100. };
  101. enum pch_can_err {
  102. PCH_STUF_ERR = 1,
  103. PCH_FORM_ERR,
  104. PCH_ACK_ERR,
  105. PCH_BIT1_ERR,
  106. PCH_BIT0_ERR,
  107. PCH_CRC_ERR,
  108. PCH_LEC_ALL,
  109. };
  110. enum pch_can_mode {
  111. PCH_CAN_ENABLE,
  112. PCH_CAN_DISABLE,
  113. PCH_CAN_ALL,
  114. PCH_CAN_NONE,
  115. PCH_CAN_STOP,
  116. PCH_CAN_RUN,
  117. };
  118. struct pch_can_if_regs {
  119. u32 creq;
  120. u32 cmask;
  121. u32 mask1;
  122. u32 mask2;
  123. u32 id1;
  124. u32 id2;
  125. u32 mcont;
  126. u32 data[4];
  127. u32 rsv[13];
  128. };
  129. struct pch_can_regs {
  130. u32 cont;
  131. u32 stat;
  132. u32 errc;
  133. u32 bitt;
  134. u32 intr;
  135. u32 opt;
  136. u32 brpe;
  137. u32 reserve;
  138. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  139. u32 reserve1[8];
  140. u32 treq1;
  141. u32 treq2;
  142. u32 reserve2[6];
  143. u32 data1;
  144. u32 data2;
  145. u32 reserve3[6];
  146. u32 canipend1;
  147. u32 canipend2;
  148. u32 reserve4[6];
  149. u32 canmval1;
  150. u32 canmval2;
  151. u32 reserve5[37];
  152. u32 srst;
  153. };
  154. struct pch_can_priv {
  155. struct can_priv can;
  156. struct pci_dev *dev;
  157. u32 tx_enable[PCH_TX_OBJ_END];
  158. u32 rx_enable[PCH_TX_OBJ_END];
  159. u32 rx_link[PCH_TX_OBJ_END];
  160. u32 int_enables;
  161. struct net_device *ndev;
  162. struct pch_can_regs __iomem *regs;
  163. struct napi_struct napi;
  164. int tx_obj; /* Point next Tx Obj index */
  165. int use_msi;
  166. };
  167. static const struct can_bittiming_const pch_can_bittiming_const = {
  168. .name = KBUILD_MODNAME,
  169. .tseg1_min = 2,
  170. .tseg1_max = 16,
  171. .tseg2_min = 1,
  172. .tseg2_max = 8,
  173. .sjw_max = 4,
  174. .brp_min = 1,
  175. .brp_max = 1024, /* 6bit + extended 4bit */
  176. .brp_inc = 1,
  177. };
  178. static const struct pci_device_id pch_pci_tbl[] = {
  179. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  180. {0,}
  181. };
  182. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  183. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  184. {
  185. iowrite32(ioread32(addr) | mask, addr);
  186. }
  187. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  188. {
  189. iowrite32(ioread32(addr) & ~mask, addr);
  190. }
  191. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  192. enum pch_can_mode mode)
  193. {
  194. switch (mode) {
  195. case PCH_CAN_RUN:
  196. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  197. break;
  198. case PCH_CAN_STOP:
  199. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  200. break;
  201. default:
  202. netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
  203. break;
  204. }
  205. }
  206. static void pch_can_set_optmode(struct pch_can_priv *priv)
  207. {
  208. u32 reg_val = ioread32(&priv->regs->opt);
  209. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  210. reg_val |= PCH_OPT_SILENT;
  211. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  212. reg_val |= PCH_OPT_LBACK;
  213. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  214. iowrite32(reg_val, &priv->regs->opt);
  215. }
  216. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  217. {
  218. int counter = PCH_COUNTER_LIMIT;
  219. u32 ifx_creq;
  220. iowrite32(num, creq_addr);
  221. while (counter) {
  222. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  223. if (!ifx_creq)
  224. break;
  225. counter--;
  226. udelay(1);
  227. }
  228. if (!counter)
  229. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  230. }
  231. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  232. enum pch_can_mode interrupt_no)
  233. {
  234. switch (interrupt_no) {
  235. case PCH_CAN_DISABLE:
  236. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  237. break;
  238. case PCH_CAN_ALL:
  239. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  240. break;
  241. case PCH_CAN_NONE:
  242. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  243. break;
  244. default:
  245. netdev_err(priv->ndev, "Invalid interrupt number.\n");
  246. break;
  247. }
  248. }
  249. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  250. int set, enum pch_ifreg dir)
  251. {
  252. u32 ie;
  253. if (dir)
  254. ie = PCH_IF_MCONT_TXIE;
  255. else
  256. ie = PCH_IF_MCONT_RXIE;
  257. /* Reading the Msg buffer from Message RAM to IF1/2 registers. */
  258. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  259. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  260. /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
  261. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  262. &priv->regs->ifregs[dir].cmask);
  263. if (set) {
  264. /* Setting the MsgVal and RxIE/TxIE bits */
  265. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  266. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  267. } else {
  268. /* Clearing the MsgVal and RxIE/TxIE bits */
  269. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  270. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  271. }
  272. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  273. }
  274. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  275. {
  276. int i;
  277. /* Traversing to obtain the object configured as receivers. */
  278. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  279. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  280. }
  281. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  282. {
  283. int i;
  284. /* Traversing to obtain the object configured as transmit object. */
  285. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  286. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  287. }
  288. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  289. {
  290. return ioread32(&priv->regs->intr) & 0xffff;
  291. }
  292. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  293. {
  294. int i; /* Msg Obj ID (1~32) */
  295. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  296. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  297. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  298. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  299. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  300. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  301. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  302. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  303. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  304. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  305. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  306. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  307. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  308. &priv->regs->ifregs[0].cmask);
  309. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  310. }
  311. }
  312. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  313. {
  314. int i;
  315. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  316. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  317. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  318. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  319. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  320. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  321. PCH_IF_MCONT_UMASK);
  322. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  323. if (i == PCH_RX_OBJ_END)
  324. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  325. PCH_IF_MCONT_EOB);
  326. else
  327. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  328. PCH_IF_MCONT_EOB);
  329. iowrite32(0, &priv->regs->ifregs[0].mask1);
  330. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  331. 0x1fff | PCH_MASK2_MDIR_MXTD);
  332. /* Setting CMASK for writing */
  333. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  334. PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
  335. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  336. }
  337. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  338. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  339. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  340. /* Resetting DIR bit for reception */
  341. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  342. iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
  343. /* Setting EOB bit for transmitter */
  344. iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
  345. &priv->regs->ifregs[1].mcont);
  346. iowrite32(0, &priv->regs->ifregs[1].mask1);
  347. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  348. /* Setting CMASK for writing */
  349. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  350. PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
  351. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  352. }
  353. }
  354. static void pch_can_init(struct pch_can_priv *priv)
  355. {
  356. /* Stopping the Can device. */
  357. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  358. /* Clearing all the message object buffers. */
  359. pch_can_clear_if_buffers(priv);
  360. /* Configuring the respective message object as either rx/tx object. */
  361. pch_can_config_rx_tx_buffers(priv);
  362. /* Enabling the interrupts. */
  363. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  364. }
  365. static void pch_can_release(struct pch_can_priv *priv)
  366. {
  367. /* Stooping the CAN device. */
  368. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  369. /* Disabling the interrupts. */
  370. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  371. /* Disabling all the receive object. */
  372. pch_can_set_rx_all(priv, 0);
  373. /* Disabling all the transmit object. */
  374. pch_can_set_tx_all(priv, 0);
  375. }
  376. /* This function clears interrupt(s) from the CAN device. */
  377. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  378. {
  379. /* Clear interrupt for transmit object */
  380. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  381. /* Setting CMASK for clearing the reception interrupts. */
  382. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  383. &priv->regs->ifregs[0].cmask);
  384. /* Clearing the Dir bit. */
  385. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  386. /* Clearing NewDat & IntPnd */
  387. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  388. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  389. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  390. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  391. /*
  392. * Setting CMASK for clearing interrupts for frame transmission.
  393. */
  394. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  395. &priv->regs->ifregs[1].cmask);
  396. /* Resetting the ID registers. */
  397. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  398. PCH_ID2_DIR | (0x7ff << 2));
  399. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  400. /* Claring NewDat, TxRqst & IntPnd */
  401. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  402. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  403. PCH_IF_MCONT_TXRQXT);
  404. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  405. }
  406. }
  407. static void pch_can_reset(struct pch_can_priv *priv)
  408. {
  409. /* write to sw reset register */
  410. iowrite32(1, &priv->regs->srst);
  411. iowrite32(0, &priv->regs->srst);
  412. }
  413. static void pch_can_error(struct net_device *ndev, u32 status)
  414. {
  415. struct sk_buff *skb;
  416. struct pch_can_priv *priv = netdev_priv(ndev);
  417. struct can_frame *cf;
  418. u32 errc, lec;
  419. struct net_device_stats *stats = &(priv->ndev->stats);
  420. enum can_state state = priv->can.state;
  421. skb = alloc_can_err_skb(ndev, &cf);
  422. if (!skb)
  423. return;
  424. if (status & PCH_BUS_OFF) {
  425. pch_can_set_tx_all(priv, 0);
  426. pch_can_set_rx_all(priv, 0);
  427. state = CAN_STATE_BUS_OFF;
  428. cf->can_id |= CAN_ERR_BUSOFF;
  429. priv->can.can_stats.bus_off++;
  430. can_bus_off(ndev);
  431. }
  432. errc = ioread32(&priv->regs->errc);
  433. /* Warning interrupt. */
  434. if (status & PCH_EWARN) {
  435. state = CAN_STATE_ERROR_WARNING;
  436. priv->can.can_stats.error_warning++;
  437. cf->can_id |= CAN_ERR_CRTL;
  438. if (((errc & PCH_REC) >> 8) > 96)
  439. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  440. if ((errc & PCH_TEC) > 96)
  441. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  442. netdev_dbg(ndev,
  443. "%s -> Error Counter is more than 96.\n", __func__);
  444. }
  445. /* Error passive interrupt. */
  446. if (status & PCH_EPASSIV) {
  447. priv->can.can_stats.error_passive++;
  448. state = CAN_STATE_ERROR_PASSIVE;
  449. cf->can_id |= CAN_ERR_CRTL;
  450. if (errc & PCH_RP)
  451. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  452. if ((errc & PCH_TEC) > 127)
  453. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  454. netdev_dbg(ndev,
  455. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  456. }
  457. lec = status & PCH_LEC_ALL;
  458. switch (lec) {
  459. case PCH_STUF_ERR:
  460. cf->data[2] |= CAN_ERR_PROT_STUFF;
  461. priv->can.can_stats.bus_error++;
  462. stats->rx_errors++;
  463. break;
  464. case PCH_FORM_ERR:
  465. cf->data[2] |= CAN_ERR_PROT_FORM;
  466. priv->can.can_stats.bus_error++;
  467. stats->rx_errors++;
  468. break;
  469. case PCH_ACK_ERR:
  470. cf->can_id |= CAN_ERR_ACK;
  471. priv->can.can_stats.bus_error++;
  472. stats->rx_errors++;
  473. break;
  474. case PCH_BIT1_ERR:
  475. case PCH_BIT0_ERR:
  476. cf->data[2] |= CAN_ERR_PROT_BIT;
  477. priv->can.can_stats.bus_error++;
  478. stats->rx_errors++;
  479. break;
  480. case PCH_CRC_ERR:
  481. cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ |
  482. CAN_ERR_PROT_LOC_CRC_DEL;
  483. priv->can.can_stats.bus_error++;
  484. stats->rx_errors++;
  485. break;
  486. case PCH_LEC_ALL: /* Written by CPU. No error status */
  487. break;
  488. }
  489. cf->data[6] = errc & PCH_TEC;
  490. cf->data[7] = (errc & PCH_REC) >> 8;
  491. priv->can.state = state;
  492. netif_receive_skb(skb);
  493. stats->rx_packets++;
  494. stats->rx_bytes += cf->can_dlc;
  495. }
  496. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  497. {
  498. struct net_device *ndev = (struct net_device *)dev_id;
  499. struct pch_can_priv *priv = netdev_priv(ndev);
  500. if (!pch_can_int_pending(priv))
  501. return IRQ_NONE;
  502. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  503. napi_schedule(&priv->napi);
  504. return IRQ_HANDLED;
  505. }
  506. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  507. {
  508. if (obj_id < PCH_FIFO_THRESH) {
  509. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  510. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  511. /* Clearing the Dir bit. */
  512. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  513. /* Clearing NewDat & IntPnd */
  514. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  515. PCH_IF_MCONT_INTPND);
  516. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  517. } else if (obj_id > PCH_FIFO_THRESH) {
  518. pch_can_int_clr(priv, obj_id);
  519. } else if (obj_id == PCH_FIFO_THRESH) {
  520. int cnt;
  521. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  522. pch_can_int_clr(priv, cnt + 1);
  523. }
  524. }
  525. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  526. {
  527. struct pch_can_priv *priv = netdev_priv(ndev);
  528. struct net_device_stats *stats = &(priv->ndev->stats);
  529. struct sk_buff *skb;
  530. struct can_frame *cf;
  531. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  532. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  533. PCH_IF_MCONT_MSGLOST);
  534. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  535. &priv->regs->ifregs[0].cmask);
  536. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  537. skb = alloc_can_err_skb(ndev, &cf);
  538. if (!skb)
  539. return;
  540. cf->can_id |= CAN_ERR_CRTL;
  541. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  542. stats->rx_over_errors++;
  543. stats->rx_errors++;
  544. netif_receive_skb(skb);
  545. }
  546. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  547. {
  548. u32 reg;
  549. canid_t id;
  550. int rcv_pkts = 0;
  551. struct sk_buff *skb;
  552. struct can_frame *cf;
  553. struct pch_can_priv *priv = netdev_priv(ndev);
  554. struct net_device_stats *stats = &(priv->ndev->stats);
  555. int i;
  556. u32 id2;
  557. u16 data_reg;
  558. do {
  559. /* Reading the message object from the Message RAM */
  560. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  561. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  562. /* Reading the MCONT register. */
  563. reg = ioread32(&priv->regs->ifregs[0].mcont);
  564. if (reg & PCH_IF_MCONT_EOB)
  565. break;
  566. /* If MsgLost bit set. */
  567. if (reg & PCH_IF_MCONT_MSGLOST) {
  568. pch_can_rx_msg_lost(ndev, obj_num);
  569. rcv_pkts++;
  570. quota--;
  571. obj_num++;
  572. continue;
  573. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  574. obj_num++;
  575. continue;
  576. }
  577. skb = alloc_can_skb(priv->ndev, &cf);
  578. if (!skb) {
  579. netdev_err(ndev, "alloc_can_skb Failed\n");
  580. return rcv_pkts;
  581. }
  582. /* Get Received data */
  583. id2 = ioread32(&priv->regs->ifregs[0].id2);
  584. if (id2 & PCH_ID2_XTD) {
  585. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  586. id |= (((id2) & 0x1fff) << 16);
  587. cf->can_id = id | CAN_EFF_FLAG;
  588. } else {
  589. id = (id2 >> 2) & CAN_SFF_MASK;
  590. cf->can_id = id;
  591. }
  592. if (id2 & PCH_ID2_DIR)
  593. cf->can_id |= CAN_RTR_FLAG;
  594. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  595. ifregs[0].mcont)) & 0xF);
  596. for (i = 0; i < cf->can_dlc; i += 2) {
  597. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  598. cf->data[i] = data_reg;
  599. cf->data[i + 1] = data_reg >> 8;
  600. }
  601. netif_receive_skb(skb);
  602. rcv_pkts++;
  603. stats->rx_packets++;
  604. quota--;
  605. stats->rx_bytes += cf->can_dlc;
  606. pch_fifo_thresh(priv, obj_num);
  607. obj_num++;
  608. } while (quota > 0);
  609. return rcv_pkts;
  610. }
  611. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  612. {
  613. struct pch_can_priv *priv = netdev_priv(ndev);
  614. struct net_device_stats *stats = &(priv->ndev->stats);
  615. u32 dlc;
  616. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  617. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  618. &priv->regs->ifregs[1].cmask);
  619. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  620. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  621. PCH_IF_MCONT_DLC);
  622. stats->tx_bytes += dlc;
  623. stats->tx_packets++;
  624. if (int_stat == PCH_TX_OBJ_END)
  625. netif_wake_queue(ndev);
  626. }
  627. static int pch_can_poll(struct napi_struct *napi, int quota)
  628. {
  629. struct net_device *ndev = napi->dev;
  630. struct pch_can_priv *priv = netdev_priv(ndev);
  631. u32 int_stat;
  632. u32 reg_stat;
  633. int quota_save = quota;
  634. int_stat = pch_can_int_pending(priv);
  635. if (!int_stat)
  636. goto end;
  637. if (int_stat == PCH_STATUS_INT) {
  638. reg_stat = ioread32(&priv->regs->stat);
  639. if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
  640. ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
  641. pch_can_error(ndev, reg_stat);
  642. quota--;
  643. }
  644. if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
  645. pch_can_bit_clear(&priv->regs->stat,
  646. reg_stat & (PCH_TX_OK | PCH_RX_OK));
  647. int_stat = pch_can_int_pending(priv);
  648. }
  649. if (quota == 0)
  650. goto end;
  651. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  652. quota -= pch_can_rx_normal(ndev, int_stat, quota);
  653. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  654. (int_stat <= PCH_TX_OBJ_END)) {
  655. /* Handle transmission interrupt */
  656. pch_can_tx_complete(ndev, int_stat);
  657. }
  658. end:
  659. napi_complete(napi);
  660. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  661. return quota_save - quota;
  662. }
  663. static int pch_set_bittiming(struct net_device *ndev)
  664. {
  665. struct pch_can_priv *priv = netdev_priv(ndev);
  666. const struct can_bittiming *bt = &priv->can.bittiming;
  667. u32 canbit;
  668. u32 bepe;
  669. /* Setting the CCE bit for accessing the Can Timing register. */
  670. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  671. canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
  672. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  673. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  674. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  675. bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  676. iowrite32(canbit, &priv->regs->bitt);
  677. iowrite32(bepe, &priv->regs->brpe);
  678. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  679. return 0;
  680. }
  681. static void pch_can_start(struct net_device *ndev)
  682. {
  683. struct pch_can_priv *priv = netdev_priv(ndev);
  684. if (priv->can.state != CAN_STATE_STOPPED)
  685. pch_can_reset(priv);
  686. pch_set_bittiming(ndev);
  687. pch_can_set_optmode(priv);
  688. pch_can_set_tx_all(priv, 1);
  689. pch_can_set_rx_all(priv, 1);
  690. /* Setting the CAN to run mode. */
  691. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  692. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  693. return;
  694. }
  695. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  696. {
  697. int ret = 0;
  698. switch (mode) {
  699. case CAN_MODE_START:
  700. pch_can_start(ndev);
  701. netif_wake_queue(ndev);
  702. break;
  703. default:
  704. ret = -EOPNOTSUPP;
  705. break;
  706. }
  707. return ret;
  708. }
  709. static int pch_can_open(struct net_device *ndev)
  710. {
  711. struct pch_can_priv *priv = netdev_priv(ndev);
  712. int retval;
  713. /* Regstering the interrupt. */
  714. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  715. ndev->name, ndev);
  716. if (retval) {
  717. netdev_err(ndev, "request_irq failed.\n");
  718. goto req_irq_err;
  719. }
  720. /* Open common can device */
  721. retval = open_candev(ndev);
  722. if (retval) {
  723. netdev_err(ndev, "open_candev() failed %d\n", retval);
  724. goto err_open_candev;
  725. }
  726. pch_can_init(priv);
  727. pch_can_start(ndev);
  728. napi_enable(&priv->napi);
  729. netif_start_queue(ndev);
  730. return 0;
  731. err_open_candev:
  732. free_irq(priv->dev->irq, ndev);
  733. req_irq_err:
  734. pch_can_release(priv);
  735. return retval;
  736. }
  737. static int pch_close(struct net_device *ndev)
  738. {
  739. struct pch_can_priv *priv = netdev_priv(ndev);
  740. netif_stop_queue(ndev);
  741. napi_disable(&priv->napi);
  742. pch_can_release(priv);
  743. free_irq(priv->dev->irq, ndev);
  744. close_candev(ndev);
  745. priv->can.state = CAN_STATE_STOPPED;
  746. return 0;
  747. }
  748. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  749. {
  750. struct pch_can_priv *priv = netdev_priv(ndev);
  751. struct can_frame *cf = (struct can_frame *)skb->data;
  752. int tx_obj_no;
  753. int i;
  754. u32 id2;
  755. if (can_dropped_invalid_skb(ndev, skb))
  756. return NETDEV_TX_OK;
  757. tx_obj_no = priv->tx_obj;
  758. if (priv->tx_obj == PCH_TX_OBJ_END) {
  759. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  760. netif_stop_queue(ndev);
  761. priv->tx_obj = PCH_TX_OBJ_START;
  762. } else {
  763. priv->tx_obj++;
  764. }
  765. /* Setting the CMASK register. */
  766. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  767. /* If ID extended is set. */
  768. if (cf->can_id & CAN_EFF_FLAG) {
  769. iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
  770. id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
  771. } else {
  772. iowrite32(0, &priv->regs->ifregs[1].id1);
  773. id2 = (cf->can_id & CAN_SFF_MASK) << 2;
  774. }
  775. id2 |= PCH_ID_MSGVAL;
  776. /* If remote frame has to be transmitted.. */
  777. if (!(cf->can_id & CAN_RTR_FLAG))
  778. id2 |= PCH_ID2_DIR;
  779. iowrite32(id2, &priv->regs->ifregs[1].id2);
  780. /* Copy data to register */
  781. for (i = 0; i < cf->can_dlc; i += 2) {
  782. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  783. &priv->regs->ifregs[1].data[i / 2]);
  784. }
  785. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
  786. /* Set the size of the data. Update if2_mcont */
  787. iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
  788. PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
  789. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  790. return NETDEV_TX_OK;
  791. }
  792. static const struct net_device_ops pch_can_netdev_ops = {
  793. .ndo_open = pch_can_open,
  794. .ndo_stop = pch_close,
  795. .ndo_start_xmit = pch_xmit,
  796. .ndo_change_mtu = can_change_mtu,
  797. };
  798. static void pch_can_remove(struct pci_dev *pdev)
  799. {
  800. struct net_device *ndev = pci_get_drvdata(pdev);
  801. struct pch_can_priv *priv = netdev_priv(ndev);
  802. unregister_candev(priv->ndev);
  803. if (priv->use_msi)
  804. pci_disable_msi(priv->dev);
  805. pci_release_regions(pdev);
  806. pci_disable_device(pdev);
  807. pch_can_reset(priv);
  808. pci_iounmap(pdev, priv->regs);
  809. free_candev(priv->ndev);
  810. }
  811. #ifdef CONFIG_PM
  812. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  813. {
  814. /* Clearing the IE, SIE and EIE bits of Can control register. */
  815. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  816. /* Appropriately setting them. */
  817. pch_can_bit_set(&priv->regs->cont,
  818. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  819. }
  820. /* This function retrieves interrupt enabled for the CAN device. */
  821. static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
  822. {
  823. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  824. return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
  825. }
  826. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  827. enum pch_ifreg dir)
  828. {
  829. u32 ie, enable;
  830. if (dir)
  831. ie = PCH_IF_MCONT_RXIE;
  832. else
  833. ie = PCH_IF_MCONT_TXIE;
  834. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  835. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  836. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  837. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
  838. enable = 1;
  839. else
  840. enable = 0;
  841. return enable;
  842. }
  843. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  844. u32 buffer_num, int set)
  845. {
  846. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  847. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  848. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  849. &priv->regs->ifregs[0].cmask);
  850. if (set)
  851. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  852. PCH_IF_MCONT_EOB);
  853. else
  854. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  855. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  856. }
  857. static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
  858. {
  859. u32 link;
  860. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  861. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  862. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  863. link = 0;
  864. else
  865. link = 1;
  866. return link;
  867. }
  868. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  869. {
  870. return (ioread32(&priv->regs->treq1) & 0xffff) |
  871. (ioread32(&priv->regs->treq2) << 16);
  872. }
  873. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  874. {
  875. int i;
  876. int retval;
  877. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  878. int counter = PCH_COUNTER_LIMIT;
  879. struct net_device *dev = pci_get_drvdata(pdev);
  880. struct pch_can_priv *priv = netdev_priv(dev);
  881. /* Stop the CAN controller */
  882. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  883. /* Indicate that we are aboutto/in suspend */
  884. priv->can.state = CAN_STATE_STOPPED;
  885. /* Waiting for all transmission to complete. */
  886. while (counter) {
  887. buf_stat = pch_can_get_buffer_status(priv);
  888. if (!buf_stat)
  889. break;
  890. counter--;
  891. udelay(1);
  892. }
  893. if (!counter)
  894. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  895. /* Save interrupt configuration and then disable them */
  896. priv->int_enables = pch_can_get_int_enables(priv);
  897. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  898. /* Save Tx buffer enable state */
  899. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  900. priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  901. PCH_TX_IFREG);
  902. /* Disable all Transmit buffers */
  903. pch_can_set_tx_all(priv, 0);
  904. /* Save Rx buffer enable state */
  905. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  906. priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  907. PCH_RX_IFREG);
  908. priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
  909. }
  910. /* Disable all Receive buffers */
  911. pch_can_set_rx_all(priv, 0);
  912. retval = pci_save_state(pdev);
  913. if (retval) {
  914. dev_err(&pdev->dev, "pci_save_state failed.\n");
  915. } else {
  916. pci_enable_wake(pdev, PCI_D3hot, 0);
  917. pci_disable_device(pdev);
  918. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  919. }
  920. return retval;
  921. }
  922. static int pch_can_resume(struct pci_dev *pdev)
  923. {
  924. int i;
  925. int retval;
  926. struct net_device *dev = pci_get_drvdata(pdev);
  927. struct pch_can_priv *priv = netdev_priv(dev);
  928. pci_set_power_state(pdev, PCI_D0);
  929. pci_restore_state(pdev);
  930. retval = pci_enable_device(pdev);
  931. if (retval) {
  932. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  933. return retval;
  934. }
  935. pci_enable_wake(pdev, PCI_D3hot, 0);
  936. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  937. /* Disabling all interrupts. */
  938. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  939. /* Setting the CAN device in Stop Mode. */
  940. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  941. /* Configuring the transmit and receive buffers. */
  942. pch_can_config_rx_tx_buffers(priv);
  943. /* Restore the CAN state */
  944. pch_set_bittiming(dev);
  945. /* Listen/Active */
  946. pch_can_set_optmode(priv);
  947. /* Enabling the transmit buffer. */
  948. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  949. pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
  950. /* Configuring the receive buffer and enabling them. */
  951. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  952. /* Restore buffer link */
  953. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
  954. /* Restore buffer enables */
  955. pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
  956. }
  957. /* Enable CAN Interrupts */
  958. pch_can_set_int_custom(priv);
  959. /* Restore Run Mode */
  960. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  961. return retval;
  962. }
  963. #else
  964. #define pch_can_suspend NULL
  965. #define pch_can_resume NULL
  966. #endif
  967. static int pch_can_get_berr_counter(const struct net_device *dev,
  968. struct can_berr_counter *bec)
  969. {
  970. struct pch_can_priv *priv = netdev_priv(dev);
  971. u32 errc = ioread32(&priv->regs->errc);
  972. bec->txerr = errc & PCH_TEC;
  973. bec->rxerr = (errc & PCH_REC) >> 8;
  974. return 0;
  975. }
  976. static int pch_can_probe(struct pci_dev *pdev,
  977. const struct pci_device_id *id)
  978. {
  979. struct net_device *ndev;
  980. struct pch_can_priv *priv;
  981. int rc;
  982. void __iomem *addr;
  983. rc = pci_enable_device(pdev);
  984. if (rc) {
  985. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  986. goto probe_exit_endev;
  987. }
  988. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  989. if (rc) {
  990. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  991. goto probe_exit_pcireq;
  992. }
  993. addr = pci_iomap(pdev, 1, 0);
  994. if (!addr) {
  995. rc = -EIO;
  996. dev_err(&pdev->dev, "Failed pci_iomap\n");
  997. goto probe_exit_ipmap;
  998. }
  999. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  1000. if (!ndev) {
  1001. rc = -ENOMEM;
  1002. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1003. goto probe_exit_alloc_candev;
  1004. }
  1005. priv = netdev_priv(ndev);
  1006. priv->ndev = ndev;
  1007. priv->regs = addr;
  1008. priv->dev = pdev;
  1009. priv->can.bittiming_const = &pch_can_bittiming_const;
  1010. priv->can.do_set_mode = pch_can_do_set_mode;
  1011. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1012. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1013. CAN_CTRLMODE_LOOPBACK;
  1014. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1015. ndev->irq = pdev->irq;
  1016. ndev->flags |= IFF_ECHO;
  1017. pci_set_drvdata(pdev, ndev);
  1018. SET_NETDEV_DEV(ndev, &pdev->dev);
  1019. ndev->netdev_ops = &pch_can_netdev_ops;
  1020. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1021. netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  1022. rc = pci_enable_msi(priv->dev);
  1023. if (rc) {
  1024. netdev_err(ndev, "PCH CAN opened without MSI\n");
  1025. priv->use_msi = 0;
  1026. } else {
  1027. netdev_err(ndev, "PCH CAN opened with MSI\n");
  1028. pci_set_master(pdev);
  1029. priv->use_msi = 1;
  1030. }
  1031. rc = register_candev(ndev);
  1032. if (rc) {
  1033. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1034. goto probe_exit_reg_candev;
  1035. }
  1036. return 0;
  1037. probe_exit_reg_candev:
  1038. if (priv->use_msi)
  1039. pci_disable_msi(priv->dev);
  1040. free_candev(ndev);
  1041. probe_exit_alloc_candev:
  1042. pci_iounmap(pdev, addr);
  1043. probe_exit_ipmap:
  1044. pci_release_regions(pdev);
  1045. probe_exit_pcireq:
  1046. pci_disable_device(pdev);
  1047. probe_exit_endev:
  1048. return rc;
  1049. }
  1050. static struct pci_driver pch_can_pci_driver = {
  1051. .name = "pch_can",
  1052. .id_table = pch_pci_tbl,
  1053. .probe = pch_can_probe,
  1054. .remove = pch_can_remove,
  1055. .suspend = pch_can_suspend,
  1056. .resume = pch_can_resume,
  1057. };
  1058. module_pci_driver(pch_can_pci_driver);
  1059. MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
  1060. MODULE_LICENSE("GPL v2");
  1061. MODULE_VERSION("0.94");