m_can.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. /*
  2. * CAN bus driver for Bosch M_CAN controller
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. * Dong Aisheng <b29396@freescale.com>
  6. *
  7. * Bosch M_CAN user manual can be obtained from:
  8. * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
  9. * mcan_users_manual_v302.pdf
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/can/dev.h>
  26. /* napi related */
  27. #define M_CAN_NAPI_WEIGHT 64
  28. /* message ram configuration data length */
  29. #define MRAM_CFG_LEN 8
  30. /* registers definition */
  31. enum m_can_reg {
  32. M_CAN_CREL = 0x0,
  33. M_CAN_ENDN = 0x4,
  34. M_CAN_CUST = 0x8,
  35. M_CAN_FBTP = 0xc,
  36. M_CAN_TEST = 0x10,
  37. M_CAN_RWD = 0x14,
  38. M_CAN_CCCR = 0x18,
  39. M_CAN_BTP = 0x1c,
  40. M_CAN_TSCC = 0x20,
  41. M_CAN_TSCV = 0x24,
  42. M_CAN_TOCC = 0x28,
  43. M_CAN_TOCV = 0x2c,
  44. M_CAN_ECR = 0x40,
  45. M_CAN_PSR = 0x44,
  46. M_CAN_IR = 0x50,
  47. M_CAN_IE = 0x54,
  48. M_CAN_ILS = 0x58,
  49. M_CAN_ILE = 0x5c,
  50. M_CAN_GFC = 0x80,
  51. M_CAN_SIDFC = 0x84,
  52. M_CAN_XIDFC = 0x88,
  53. M_CAN_XIDAM = 0x90,
  54. M_CAN_HPMS = 0x94,
  55. M_CAN_NDAT1 = 0x98,
  56. M_CAN_NDAT2 = 0x9c,
  57. M_CAN_RXF0C = 0xa0,
  58. M_CAN_RXF0S = 0xa4,
  59. M_CAN_RXF0A = 0xa8,
  60. M_CAN_RXBC = 0xac,
  61. M_CAN_RXF1C = 0xb0,
  62. M_CAN_RXF1S = 0xb4,
  63. M_CAN_RXF1A = 0xb8,
  64. M_CAN_RXESC = 0xbc,
  65. M_CAN_TXBC = 0xc0,
  66. M_CAN_TXFQS = 0xc4,
  67. M_CAN_TXESC = 0xc8,
  68. M_CAN_TXBRP = 0xcc,
  69. M_CAN_TXBAR = 0xd0,
  70. M_CAN_TXBCR = 0xd4,
  71. M_CAN_TXBTO = 0xd8,
  72. M_CAN_TXBCF = 0xdc,
  73. M_CAN_TXBTIE = 0xe0,
  74. M_CAN_TXBCIE = 0xe4,
  75. M_CAN_TXEFC = 0xf0,
  76. M_CAN_TXEFS = 0xf4,
  77. M_CAN_TXEFA = 0xf8,
  78. };
  79. /* m_can lec values */
  80. enum m_can_lec_type {
  81. LEC_NO_ERROR = 0,
  82. LEC_STUFF_ERROR,
  83. LEC_FORM_ERROR,
  84. LEC_ACK_ERROR,
  85. LEC_BIT1_ERROR,
  86. LEC_BIT0_ERROR,
  87. LEC_CRC_ERROR,
  88. LEC_UNUSED,
  89. };
  90. enum m_can_mram_cfg {
  91. MRAM_SIDF = 0,
  92. MRAM_XIDF,
  93. MRAM_RXF0,
  94. MRAM_RXF1,
  95. MRAM_RXB,
  96. MRAM_TXE,
  97. MRAM_TXB,
  98. MRAM_CFG_NUM,
  99. };
  100. /* Fast Bit Timing & Prescaler Register (FBTP) */
  101. #define FBTR_FBRP_MASK 0x1f
  102. #define FBTR_FBRP_SHIFT 16
  103. #define FBTR_FTSEG1_SHIFT 8
  104. #define FBTR_FTSEG1_MASK (0xf << FBTR_FTSEG1_SHIFT)
  105. #define FBTR_FTSEG2_SHIFT 4
  106. #define FBTR_FTSEG2_MASK (0x7 << FBTR_FTSEG2_SHIFT)
  107. #define FBTR_FSJW_SHIFT 0
  108. #define FBTR_FSJW_MASK 0x3
  109. /* Test Register (TEST) */
  110. #define TEST_LBCK BIT(4)
  111. /* CC Control Register(CCCR) */
  112. #define CCCR_TEST BIT(7)
  113. #define CCCR_CMR_MASK 0x3
  114. #define CCCR_CMR_SHIFT 10
  115. #define CCCR_CMR_CANFD 0x1
  116. #define CCCR_CMR_CANFD_BRS 0x2
  117. #define CCCR_CMR_CAN 0x3
  118. #define CCCR_CME_MASK 0x3
  119. #define CCCR_CME_SHIFT 8
  120. #define CCCR_CME_CAN 0
  121. #define CCCR_CME_CANFD 0x1
  122. #define CCCR_CME_CANFD_BRS 0x2
  123. #define CCCR_TEST BIT(7)
  124. #define CCCR_MON BIT(5)
  125. #define CCCR_CCE BIT(1)
  126. #define CCCR_INIT BIT(0)
  127. #define CCCR_CANFD 0x10
  128. /* Bit Timing & Prescaler Register (BTP) */
  129. #define BTR_BRP_MASK 0x3ff
  130. #define BTR_BRP_SHIFT 16
  131. #define BTR_TSEG1_SHIFT 8
  132. #define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT)
  133. #define BTR_TSEG2_SHIFT 4
  134. #define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT)
  135. #define BTR_SJW_SHIFT 0
  136. #define BTR_SJW_MASK 0xf
  137. /* Error Counter Register(ECR) */
  138. #define ECR_RP BIT(15)
  139. #define ECR_REC_SHIFT 8
  140. #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
  141. #define ECR_TEC_SHIFT 0
  142. #define ECR_TEC_MASK 0xff
  143. /* Protocol Status Register(PSR) */
  144. #define PSR_BO BIT(7)
  145. #define PSR_EW BIT(6)
  146. #define PSR_EP BIT(5)
  147. #define PSR_LEC_MASK 0x7
  148. /* Interrupt Register(IR) */
  149. #define IR_ALL_INT 0xffffffff
  150. #define IR_STE BIT(31)
  151. #define IR_FOE BIT(30)
  152. #define IR_ACKE BIT(29)
  153. #define IR_BE BIT(28)
  154. #define IR_CRCE BIT(27)
  155. #define IR_WDI BIT(26)
  156. #define IR_BO BIT(25)
  157. #define IR_EW BIT(24)
  158. #define IR_EP BIT(23)
  159. #define IR_ELO BIT(22)
  160. #define IR_BEU BIT(21)
  161. #define IR_BEC BIT(20)
  162. #define IR_DRX BIT(19)
  163. #define IR_TOO BIT(18)
  164. #define IR_MRAF BIT(17)
  165. #define IR_TSW BIT(16)
  166. #define IR_TEFL BIT(15)
  167. #define IR_TEFF BIT(14)
  168. #define IR_TEFW BIT(13)
  169. #define IR_TEFN BIT(12)
  170. #define IR_TFE BIT(11)
  171. #define IR_TCF BIT(10)
  172. #define IR_TC BIT(9)
  173. #define IR_HPM BIT(8)
  174. #define IR_RF1L BIT(7)
  175. #define IR_RF1F BIT(6)
  176. #define IR_RF1W BIT(5)
  177. #define IR_RF1N BIT(4)
  178. #define IR_RF0L BIT(3)
  179. #define IR_RF0F BIT(2)
  180. #define IR_RF0W BIT(1)
  181. #define IR_RF0N BIT(0)
  182. #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
  183. #define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
  184. #define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
  185. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  186. IR_RF1L | IR_RF0L)
  187. #define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS)
  188. /* Interrupt Line Select (ILS) */
  189. #define ILS_ALL_INT0 0x0
  190. #define ILS_ALL_INT1 0xFFFFFFFF
  191. /* Interrupt Line Enable (ILE) */
  192. #define ILE_EINT0 BIT(0)
  193. #define ILE_EINT1 BIT(1)
  194. /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
  195. #define RXFC_FWM_OFF 24
  196. #define RXFC_FWM_MASK 0x7f
  197. #define RXFC_FWM_1 (1 << RXFC_FWM_OFF)
  198. #define RXFC_FS_OFF 16
  199. #define RXFC_FS_MASK 0x7f
  200. /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
  201. #define RXFS_RFL BIT(25)
  202. #define RXFS_FF BIT(24)
  203. #define RXFS_FPI_OFF 16
  204. #define RXFS_FPI_MASK 0x3f0000
  205. #define RXFS_FGI_OFF 8
  206. #define RXFS_FGI_MASK 0x3f00
  207. #define RXFS_FFL_MASK 0x7f
  208. /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
  209. #define M_CAN_RXESC_8BYTES 0x0
  210. #define M_CAN_RXESC_64BYTES 0x777
  211. /* Tx Buffer Configuration(TXBC) */
  212. #define TXBC_NDTB_OFF 16
  213. #define TXBC_NDTB_MASK 0x3f
  214. /* Tx Buffer Element Size Configuration(TXESC) */
  215. #define TXESC_TBDS_8BYTES 0x0
  216. #define TXESC_TBDS_64BYTES 0x7
  217. /* Tx Event FIFO Con.guration (TXEFC) */
  218. #define TXEFC_EFS_OFF 16
  219. #define TXEFC_EFS_MASK 0x3f
  220. /* Message RAM Configuration (in bytes) */
  221. #define SIDF_ELEMENT_SIZE 4
  222. #define XIDF_ELEMENT_SIZE 8
  223. #define RXF0_ELEMENT_SIZE 72
  224. #define RXF1_ELEMENT_SIZE 72
  225. #define RXB_ELEMENT_SIZE 16
  226. #define TXE_ELEMENT_SIZE 8
  227. #define TXB_ELEMENT_SIZE 72
  228. /* Message RAM Elements */
  229. #define M_CAN_FIFO_ID 0x0
  230. #define M_CAN_FIFO_DLC 0x4
  231. #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
  232. /* Rx Buffer Element */
  233. /* R0 */
  234. #define RX_BUF_ESI BIT(31)
  235. #define RX_BUF_XTD BIT(30)
  236. #define RX_BUF_RTR BIT(29)
  237. /* R1 */
  238. #define RX_BUF_ANMF BIT(31)
  239. #define RX_BUF_EDL BIT(21)
  240. #define RX_BUF_BRS BIT(20)
  241. /* Tx Buffer Element */
  242. /* R0 */
  243. #define TX_BUF_XTD BIT(30)
  244. #define TX_BUF_RTR BIT(29)
  245. /* address offset and element number for each FIFO/Buffer in the Message RAM */
  246. struct mram_cfg {
  247. u16 off;
  248. u8 num;
  249. };
  250. /* m_can private data structure */
  251. struct m_can_priv {
  252. struct can_priv can; /* must be the first member */
  253. struct napi_struct napi;
  254. struct net_device *dev;
  255. struct device *device;
  256. struct clk *hclk;
  257. struct clk *cclk;
  258. void __iomem *base;
  259. u32 irqstatus;
  260. /* message ram configuration */
  261. void __iomem *mram_base;
  262. struct mram_cfg mcfg[MRAM_CFG_NUM];
  263. };
  264. static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
  265. {
  266. return readl(priv->base + reg);
  267. }
  268. static inline void m_can_write(const struct m_can_priv *priv,
  269. enum m_can_reg reg, u32 val)
  270. {
  271. writel(val, priv->base + reg);
  272. }
  273. static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
  274. u32 fgi, unsigned int offset)
  275. {
  276. return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
  277. fgi * RXF0_ELEMENT_SIZE + offset);
  278. }
  279. static inline void m_can_fifo_write(const struct m_can_priv *priv,
  280. u32 fpi, unsigned int offset, u32 val)
  281. {
  282. writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
  283. fpi * TXB_ELEMENT_SIZE + offset);
  284. }
  285. static inline void m_can_config_endisable(const struct m_can_priv *priv,
  286. bool enable)
  287. {
  288. u32 cccr = m_can_read(priv, M_CAN_CCCR);
  289. u32 timeout = 10;
  290. u32 val = 0;
  291. if (enable) {
  292. /* enable m_can configuration */
  293. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
  294. udelay(5);
  295. /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
  296. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
  297. } else {
  298. m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
  299. }
  300. /* there's a delay for module initialization */
  301. if (enable)
  302. val = CCCR_INIT | CCCR_CCE;
  303. while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
  304. if (timeout == 0) {
  305. netdev_warn(priv->dev, "Failed to init module\n");
  306. return;
  307. }
  308. timeout--;
  309. udelay(1);
  310. }
  311. }
  312. static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
  313. {
  314. m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
  315. }
  316. static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
  317. {
  318. m_can_write(priv, M_CAN_ILE, 0x0);
  319. }
  320. static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
  321. {
  322. struct net_device_stats *stats = &dev->stats;
  323. struct m_can_priv *priv = netdev_priv(dev);
  324. struct canfd_frame *cf;
  325. struct sk_buff *skb;
  326. u32 id, fgi, dlc;
  327. int i;
  328. /* calculate the fifo get index for where to read data */
  329. fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
  330. dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
  331. if (dlc & RX_BUF_EDL)
  332. skb = alloc_canfd_skb(dev, &cf);
  333. else
  334. skb = alloc_can_skb(dev, (struct can_frame **)&cf);
  335. if (!skb) {
  336. stats->rx_dropped++;
  337. return;
  338. }
  339. if (dlc & RX_BUF_EDL)
  340. cf->len = can_dlc2len((dlc >> 16) & 0x0F);
  341. else
  342. cf->len = get_can_dlc((dlc >> 16) & 0x0F);
  343. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
  344. if (id & RX_BUF_XTD)
  345. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  346. else
  347. cf->can_id = (id >> 18) & CAN_SFF_MASK;
  348. if (id & RX_BUF_ESI) {
  349. cf->flags |= CANFD_ESI;
  350. netdev_dbg(dev, "ESI Error\n");
  351. }
  352. if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) {
  353. cf->can_id |= CAN_RTR_FLAG;
  354. } else {
  355. if (dlc & RX_BUF_BRS)
  356. cf->flags |= CANFD_BRS;
  357. for (i = 0; i < cf->len; i += 4)
  358. *(u32 *)(cf->data + i) =
  359. m_can_fifo_read(priv, fgi,
  360. M_CAN_FIFO_DATA(i / 4));
  361. }
  362. /* acknowledge rx fifo 0 */
  363. m_can_write(priv, M_CAN_RXF0A, fgi);
  364. stats->rx_packets++;
  365. stats->rx_bytes += cf->len;
  366. netif_receive_skb(skb);
  367. }
  368. static int m_can_do_rx_poll(struct net_device *dev, int quota)
  369. {
  370. struct m_can_priv *priv = netdev_priv(dev);
  371. u32 pkts = 0;
  372. u32 rxfs;
  373. rxfs = m_can_read(priv, M_CAN_RXF0S);
  374. if (!(rxfs & RXFS_FFL_MASK)) {
  375. netdev_dbg(dev, "no messages in fifo0\n");
  376. return 0;
  377. }
  378. while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
  379. if (rxfs & RXFS_RFL)
  380. netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
  381. m_can_read_fifo(dev, rxfs);
  382. quota--;
  383. pkts++;
  384. rxfs = m_can_read(priv, M_CAN_RXF0S);
  385. }
  386. if (pkts)
  387. can_led_event(dev, CAN_LED_EVENT_RX);
  388. return pkts;
  389. }
  390. static int m_can_handle_lost_msg(struct net_device *dev)
  391. {
  392. struct net_device_stats *stats = &dev->stats;
  393. struct sk_buff *skb;
  394. struct can_frame *frame;
  395. netdev_err(dev, "msg lost in rxf0\n");
  396. stats->rx_errors++;
  397. stats->rx_over_errors++;
  398. skb = alloc_can_err_skb(dev, &frame);
  399. if (unlikely(!skb))
  400. return 0;
  401. frame->can_id |= CAN_ERR_CRTL;
  402. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  403. netif_receive_skb(skb);
  404. return 1;
  405. }
  406. static int m_can_handle_lec_err(struct net_device *dev,
  407. enum m_can_lec_type lec_type)
  408. {
  409. struct m_can_priv *priv = netdev_priv(dev);
  410. struct net_device_stats *stats = &dev->stats;
  411. struct can_frame *cf;
  412. struct sk_buff *skb;
  413. priv->can.can_stats.bus_error++;
  414. stats->rx_errors++;
  415. /* propagate the error condition to the CAN stack */
  416. skb = alloc_can_err_skb(dev, &cf);
  417. if (unlikely(!skb))
  418. return 0;
  419. /* check for 'last error code' which tells us the
  420. * type of the last error to occur on the CAN bus
  421. */
  422. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  423. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  424. switch (lec_type) {
  425. case LEC_STUFF_ERROR:
  426. netdev_dbg(dev, "stuff error\n");
  427. cf->data[2] |= CAN_ERR_PROT_STUFF;
  428. break;
  429. case LEC_FORM_ERROR:
  430. netdev_dbg(dev, "form error\n");
  431. cf->data[2] |= CAN_ERR_PROT_FORM;
  432. break;
  433. case LEC_ACK_ERROR:
  434. netdev_dbg(dev, "ack error\n");
  435. cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
  436. CAN_ERR_PROT_LOC_ACK_DEL);
  437. break;
  438. case LEC_BIT1_ERROR:
  439. netdev_dbg(dev, "bit1 error\n");
  440. cf->data[2] |= CAN_ERR_PROT_BIT1;
  441. break;
  442. case LEC_BIT0_ERROR:
  443. netdev_dbg(dev, "bit0 error\n");
  444. cf->data[2] |= CAN_ERR_PROT_BIT0;
  445. break;
  446. case LEC_CRC_ERROR:
  447. netdev_dbg(dev, "CRC error\n");
  448. cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  449. CAN_ERR_PROT_LOC_CRC_DEL);
  450. break;
  451. default:
  452. break;
  453. }
  454. stats->rx_packets++;
  455. stats->rx_bytes += cf->can_dlc;
  456. netif_receive_skb(skb);
  457. return 1;
  458. }
  459. static int __m_can_get_berr_counter(const struct net_device *dev,
  460. struct can_berr_counter *bec)
  461. {
  462. struct m_can_priv *priv = netdev_priv(dev);
  463. unsigned int ecr;
  464. ecr = m_can_read(priv, M_CAN_ECR);
  465. bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
  466. bec->txerr = ecr & ECR_TEC_MASK;
  467. return 0;
  468. }
  469. static int m_can_get_berr_counter(const struct net_device *dev,
  470. struct can_berr_counter *bec)
  471. {
  472. struct m_can_priv *priv = netdev_priv(dev);
  473. int err;
  474. err = clk_prepare_enable(priv->hclk);
  475. if (err)
  476. return err;
  477. err = clk_prepare_enable(priv->cclk);
  478. if (err) {
  479. clk_disable_unprepare(priv->hclk);
  480. return err;
  481. }
  482. __m_can_get_berr_counter(dev, bec);
  483. clk_disable_unprepare(priv->cclk);
  484. clk_disable_unprepare(priv->hclk);
  485. return 0;
  486. }
  487. static int m_can_handle_state_change(struct net_device *dev,
  488. enum can_state new_state)
  489. {
  490. struct m_can_priv *priv = netdev_priv(dev);
  491. struct net_device_stats *stats = &dev->stats;
  492. struct can_frame *cf;
  493. struct sk_buff *skb;
  494. struct can_berr_counter bec;
  495. unsigned int ecr;
  496. switch (new_state) {
  497. case CAN_STATE_ERROR_ACTIVE:
  498. /* error warning state */
  499. priv->can.can_stats.error_warning++;
  500. priv->can.state = CAN_STATE_ERROR_WARNING;
  501. break;
  502. case CAN_STATE_ERROR_PASSIVE:
  503. /* error passive state */
  504. priv->can.can_stats.error_passive++;
  505. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  506. break;
  507. case CAN_STATE_BUS_OFF:
  508. /* bus-off state */
  509. priv->can.state = CAN_STATE_BUS_OFF;
  510. m_can_disable_all_interrupts(priv);
  511. priv->can.can_stats.bus_off++;
  512. can_bus_off(dev);
  513. break;
  514. default:
  515. break;
  516. }
  517. /* propagate the error condition to the CAN stack */
  518. skb = alloc_can_err_skb(dev, &cf);
  519. if (unlikely(!skb))
  520. return 0;
  521. __m_can_get_berr_counter(dev, &bec);
  522. switch (new_state) {
  523. case CAN_STATE_ERROR_ACTIVE:
  524. /* error warning state */
  525. cf->can_id |= CAN_ERR_CRTL;
  526. cf->data[1] = (bec.txerr > bec.rxerr) ?
  527. CAN_ERR_CRTL_TX_WARNING :
  528. CAN_ERR_CRTL_RX_WARNING;
  529. cf->data[6] = bec.txerr;
  530. cf->data[7] = bec.rxerr;
  531. break;
  532. case CAN_STATE_ERROR_PASSIVE:
  533. /* error passive state */
  534. cf->can_id |= CAN_ERR_CRTL;
  535. ecr = m_can_read(priv, M_CAN_ECR);
  536. if (ecr & ECR_RP)
  537. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  538. if (bec.txerr > 127)
  539. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  540. cf->data[6] = bec.txerr;
  541. cf->data[7] = bec.rxerr;
  542. break;
  543. case CAN_STATE_BUS_OFF:
  544. /* bus-off state */
  545. cf->can_id |= CAN_ERR_BUSOFF;
  546. break;
  547. default:
  548. break;
  549. }
  550. stats->rx_packets++;
  551. stats->rx_bytes += cf->can_dlc;
  552. netif_receive_skb(skb);
  553. return 1;
  554. }
  555. static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
  556. {
  557. struct m_can_priv *priv = netdev_priv(dev);
  558. int work_done = 0;
  559. if ((psr & PSR_EW) &&
  560. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  561. netdev_dbg(dev, "entered error warning state\n");
  562. work_done += m_can_handle_state_change(dev,
  563. CAN_STATE_ERROR_WARNING);
  564. }
  565. if ((psr & PSR_EP) &&
  566. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  567. netdev_dbg(dev, "entered error passive state\n");
  568. work_done += m_can_handle_state_change(dev,
  569. CAN_STATE_ERROR_PASSIVE);
  570. }
  571. if ((psr & PSR_BO) &&
  572. (priv->can.state != CAN_STATE_BUS_OFF)) {
  573. netdev_dbg(dev, "entered error bus off state\n");
  574. work_done += m_can_handle_state_change(dev,
  575. CAN_STATE_BUS_OFF);
  576. }
  577. return work_done;
  578. }
  579. static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
  580. {
  581. if (irqstatus & IR_WDI)
  582. netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
  583. if (irqstatus & IR_ELO)
  584. netdev_err(dev, "Error Logging Overflow\n");
  585. if (irqstatus & IR_BEU)
  586. netdev_err(dev, "Bit Error Uncorrected\n");
  587. if (irqstatus & IR_BEC)
  588. netdev_err(dev, "Bit Error Corrected\n");
  589. if (irqstatus & IR_TOO)
  590. netdev_err(dev, "Timeout reached\n");
  591. if (irqstatus & IR_MRAF)
  592. netdev_err(dev, "Message RAM access failure occurred\n");
  593. }
  594. static inline bool is_lec_err(u32 psr)
  595. {
  596. psr &= LEC_UNUSED;
  597. return psr && (psr != LEC_UNUSED);
  598. }
  599. static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
  600. u32 psr)
  601. {
  602. struct m_can_priv *priv = netdev_priv(dev);
  603. int work_done = 0;
  604. if (irqstatus & IR_RF0L)
  605. work_done += m_can_handle_lost_msg(dev);
  606. /* handle lec errors on the bus */
  607. if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  608. is_lec_err(psr))
  609. work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
  610. /* other unproccessed error interrupts */
  611. m_can_handle_other_err(dev, irqstatus);
  612. return work_done;
  613. }
  614. static int m_can_poll(struct napi_struct *napi, int quota)
  615. {
  616. struct net_device *dev = napi->dev;
  617. struct m_can_priv *priv = netdev_priv(dev);
  618. int work_done = 0;
  619. u32 irqstatus, psr;
  620. irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
  621. if (!irqstatus)
  622. goto end;
  623. psr = m_can_read(priv, M_CAN_PSR);
  624. if (irqstatus & IR_ERR_STATE)
  625. work_done += m_can_handle_state_errors(dev, psr);
  626. if (irqstatus & IR_ERR_BUS)
  627. work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
  628. if (irqstatus & IR_RF0N)
  629. work_done += m_can_do_rx_poll(dev, (quota - work_done));
  630. if (work_done < quota) {
  631. napi_complete(napi);
  632. m_can_enable_all_interrupts(priv);
  633. }
  634. end:
  635. return work_done;
  636. }
  637. static irqreturn_t m_can_isr(int irq, void *dev_id)
  638. {
  639. struct net_device *dev = (struct net_device *)dev_id;
  640. struct m_can_priv *priv = netdev_priv(dev);
  641. struct net_device_stats *stats = &dev->stats;
  642. u32 ir;
  643. ir = m_can_read(priv, M_CAN_IR);
  644. if (!ir)
  645. return IRQ_NONE;
  646. /* ACK all irqs */
  647. if (ir & IR_ALL_INT)
  648. m_can_write(priv, M_CAN_IR, ir);
  649. /* schedule NAPI in case of
  650. * - rx IRQ
  651. * - state change IRQ
  652. * - bus error IRQ and bus error reporting
  653. */
  654. if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
  655. priv->irqstatus = ir;
  656. m_can_disable_all_interrupts(priv);
  657. napi_schedule(&priv->napi);
  658. }
  659. /* transmission complete interrupt */
  660. if (ir & IR_TC) {
  661. stats->tx_bytes += can_get_echo_skb(dev, 0);
  662. stats->tx_packets++;
  663. can_led_event(dev, CAN_LED_EVENT_TX);
  664. netif_wake_queue(dev);
  665. }
  666. return IRQ_HANDLED;
  667. }
  668. static const struct can_bittiming_const m_can_bittiming_const = {
  669. .name = KBUILD_MODNAME,
  670. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  671. .tseg1_max = 64,
  672. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  673. .tseg2_max = 16,
  674. .sjw_max = 16,
  675. .brp_min = 1,
  676. .brp_max = 1024,
  677. .brp_inc = 1,
  678. };
  679. static const struct can_bittiming_const m_can_data_bittiming_const = {
  680. .name = KBUILD_MODNAME,
  681. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  682. .tseg1_max = 16,
  683. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  684. .tseg2_max = 8,
  685. .sjw_max = 4,
  686. .brp_min = 1,
  687. .brp_max = 32,
  688. .brp_inc = 1,
  689. };
  690. static int m_can_set_bittiming(struct net_device *dev)
  691. {
  692. struct m_can_priv *priv = netdev_priv(dev);
  693. const struct can_bittiming *bt = &priv->can.bittiming;
  694. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  695. u16 brp, sjw, tseg1, tseg2;
  696. u32 reg_btp;
  697. brp = bt->brp - 1;
  698. sjw = bt->sjw - 1;
  699. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  700. tseg2 = bt->phase_seg2 - 1;
  701. reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
  702. (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
  703. m_can_write(priv, M_CAN_BTP, reg_btp);
  704. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  705. brp = dbt->brp - 1;
  706. sjw = dbt->sjw - 1;
  707. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  708. tseg2 = dbt->phase_seg2 - 1;
  709. reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) |
  710. (tseg1 << FBTR_FTSEG1_SHIFT) |
  711. (tseg2 << FBTR_FTSEG2_SHIFT);
  712. m_can_write(priv, M_CAN_FBTP, reg_btp);
  713. }
  714. return 0;
  715. }
  716. /* Configure M_CAN chip:
  717. * - set rx buffer/fifo element size
  718. * - configure rx fifo
  719. * - accept non-matching frame into fifo 0
  720. * - configure tx buffer
  721. * - configure mode
  722. * - setup bittiming
  723. */
  724. static void m_can_chip_config(struct net_device *dev)
  725. {
  726. struct m_can_priv *priv = netdev_priv(dev);
  727. u32 cccr, test;
  728. m_can_config_endisable(priv, true);
  729. /* RX Buffer/FIFO Element Size 64 bytes data field */
  730. m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
  731. /* Accept Non-matching Frames Into FIFO 0 */
  732. m_can_write(priv, M_CAN_GFC, 0x0);
  733. /* only support one Tx Buffer currently */
  734. m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
  735. priv->mcfg[MRAM_TXB].off);
  736. /* support 64 bytes payload */
  737. m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
  738. m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
  739. priv->mcfg[MRAM_TXE].off);
  740. /* rx fifo configuration, blocking mode, fifo size 1 */
  741. m_can_write(priv, M_CAN_RXF0C,
  742. (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
  743. RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
  744. m_can_write(priv, M_CAN_RXF1C,
  745. (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
  746. RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
  747. cccr = m_can_read(priv, M_CAN_CCCR);
  748. cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
  749. (CCCR_CME_MASK << CCCR_CME_SHIFT));
  750. test = m_can_read(priv, M_CAN_TEST);
  751. test &= ~TEST_LBCK;
  752. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  753. cccr |= CCCR_MON;
  754. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  755. cccr |= CCCR_TEST;
  756. test |= TEST_LBCK;
  757. }
  758. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  759. cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
  760. m_can_write(priv, M_CAN_CCCR, cccr);
  761. m_can_write(priv, M_CAN_TEST, test);
  762. /* enable interrupts */
  763. m_can_write(priv, M_CAN_IR, IR_ALL_INT);
  764. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  765. m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
  766. else
  767. m_can_write(priv, M_CAN_IE, IR_ALL_INT);
  768. /* route all interrupts to INT0 */
  769. m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
  770. /* set bittiming params */
  771. m_can_set_bittiming(dev);
  772. m_can_config_endisable(priv, false);
  773. }
  774. static void m_can_start(struct net_device *dev)
  775. {
  776. struct m_can_priv *priv = netdev_priv(dev);
  777. /* basic m_can configuration */
  778. m_can_chip_config(dev);
  779. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  780. m_can_enable_all_interrupts(priv);
  781. }
  782. static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
  783. {
  784. switch (mode) {
  785. case CAN_MODE_START:
  786. m_can_start(dev);
  787. netif_wake_queue(dev);
  788. break;
  789. default:
  790. return -EOPNOTSUPP;
  791. }
  792. return 0;
  793. }
  794. static void free_m_can_dev(struct net_device *dev)
  795. {
  796. free_candev(dev);
  797. }
  798. static struct net_device *alloc_m_can_dev(void)
  799. {
  800. struct net_device *dev;
  801. struct m_can_priv *priv;
  802. dev = alloc_candev(sizeof(*priv), 1);
  803. if (!dev)
  804. return NULL;
  805. priv = netdev_priv(dev);
  806. netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
  807. priv->dev = dev;
  808. priv->can.bittiming_const = &m_can_bittiming_const;
  809. priv->can.data_bittiming_const = &m_can_data_bittiming_const;
  810. priv->can.do_set_mode = m_can_set_mode;
  811. priv->can.do_get_berr_counter = m_can_get_berr_counter;
  812. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */
  813. priv->can.ctrlmode = CAN_CTRLMODE_FD_NON_ISO;
  814. /* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */
  815. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  816. CAN_CTRLMODE_LISTENONLY |
  817. CAN_CTRLMODE_BERR_REPORTING |
  818. CAN_CTRLMODE_FD;
  819. return dev;
  820. }
  821. static int m_can_open(struct net_device *dev)
  822. {
  823. struct m_can_priv *priv = netdev_priv(dev);
  824. int err;
  825. err = clk_prepare_enable(priv->hclk);
  826. if (err)
  827. return err;
  828. err = clk_prepare_enable(priv->cclk);
  829. if (err)
  830. goto exit_disable_hclk;
  831. /* open the can device */
  832. err = open_candev(dev);
  833. if (err) {
  834. netdev_err(dev, "failed to open can device\n");
  835. goto exit_disable_cclk;
  836. }
  837. /* register interrupt handler */
  838. err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
  839. dev);
  840. if (err < 0) {
  841. netdev_err(dev, "failed to request interrupt\n");
  842. goto exit_irq_fail;
  843. }
  844. /* start the m_can controller */
  845. m_can_start(dev);
  846. can_led_event(dev, CAN_LED_EVENT_OPEN);
  847. napi_enable(&priv->napi);
  848. netif_start_queue(dev);
  849. return 0;
  850. exit_irq_fail:
  851. close_candev(dev);
  852. exit_disable_cclk:
  853. clk_disable_unprepare(priv->cclk);
  854. exit_disable_hclk:
  855. clk_disable_unprepare(priv->hclk);
  856. return err;
  857. }
  858. static void m_can_stop(struct net_device *dev)
  859. {
  860. struct m_can_priv *priv = netdev_priv(dev);
  861. /* disable all interrupts */
  862. m_can_disable_all_interrupts(priv);
  863. clk_disable_unprepare(priv->hclk);
  864. clk_disable_unprepare(priv->cclk);
  865. /* set the state as STOPPED */
  866. priv->can.state = CAN_STATE_STOPPED;
  867. }
  868. static int m_can_close(struct net_device *dev)
  869. {
  870. struct m_can_priv *priv = netdev_priv(dev);
  871. netif_stop_queue(dev);
  872. napi_disable(&priv->napi);
  873. m_can_stop(dev);
  874. free_irq(dev->irq, dev);
  875. close_candev(dev);
  876. can_led_event(dev, CAN_LED_EVENT_STOP);
  877. return 0;
  878. }
  879. static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
  880. struct net_device *dev)
  881. {
  882. struct m_can_priv *priv = netdev_priv(dev);
  883. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  884. u32 id, cccr;
  885. int i;
  886. if (can_dropped_invalid_skb(dev, skb))
  887. return NETDEV_TX_OK;
  888. netif_stop_queue(dev);
  889. if (cf->can_id & CAN_EFF_FLAG) {
  890. id = cf->can_id & CAN_EFF_MASK;
  891. id |= TX_BUF_XTD;
  892. } else {
  893. id = ((cf->can_id & CAN_SFF_MASK) << 18);
  894. }
  895. if (cf->can_id & CAN_RTR_FLAG)
  896. id |= TX_BUF_RTR;
  897. /* message ram configuration */
  898. m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
  899. m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16);
  900. for (i = 0; i < cf->len; i += 4)
  901. m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4),
  902. *(u32 *)(cf->data + i));
  903. can_put_echo_skb(skb, dev, 0);
  904. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  905. cccr = m_can_read(priv, M_CAN_CCCR);
  906. cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
  907. if (can_is_canfd_skb(skb)) {
  908. if (cf->flags & CANFD_BRS)
  909. cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT;
  910. else
  911. cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT;
  912. } else {
  913. cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
  914. }
  915. m_can_write(priv, M_CAN_CCCR, cccr);
  916. }
  917. /* enable first TX buffer to start transfer */
  918. m_can_write(priv, M_CAN_TXBTIE, 0x1);
  919. m_can_write(priv, M_CAN_TXBAR, 0x1);
  920. return NETDEV_TX_OK;
  921. }
  922. static const struct net_device_ops m_can_netdev_ops = {
  923. .ndo_open = m_can_open,
  924. .ndo_stop = m_can_close,
  925. .ndo_start_xmit = m_can_start_xmit,
  926. .ndo_change_mtu = can_change_mtu,
  927. };
  928. static int register_m_can_dev(struct net_device *dev)
  929. {
  930. dev->flags |= IFF_ECHO; /* we support local echo */
  931. dev->netdev_ops = &m_can_netdev_ops;
  932. return register_candev(dev);
  933. }
  934. static int m_can_of_parse_mram(struct platform_device *pdev,
  935. struct m_can_priv *priv)
  936. {
  937. struct device_node *np = pdev->dev.of_node;
  938. struct resource *res;
  939. void __iomem *addr;
  940. u32 out_val[MRAM_CFG_LEN];
  941. int i, start, end, ret;
  942. /* message ram could be shared */
  943. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
  944. if (!res)
  945. return -ENODEV;
  946. addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  947. if (!addr)
  948. return -ENOMEM;
  949. /* get message ram configuration */
  950. ret = of_property_read_u32_array(np, "bosch,mram-cfg",
  951. out_val, sizeof(out_val) / 4);
  952. if (ret) {
  953. dev_err(&pdev->dev, "can not get message ram configuration\n");
  954. return -ENODEV;
  955. }
  956. priv->mram_base = addr;
  957. priv->mcfg[MRAM_SIDF].off = out_val[0];
  958. priv->mcfg[MRAM_SIDF].num = out_val[1];
  959. priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
  960. priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
  961. priv->mcfg[MRAM_XIDF].num = out_val[2];
  962. priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
  963. priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
  964. priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
  965. priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
  966. priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
  967. priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
  968. priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
  969. priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
  970. priv->mcfg[MRAM_RXB].num = out_val[5];
  971. priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
  972. priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
  973. priv->mcfg[MRAM_TXE].num = out_val[6];
  974. priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
  975. priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
  976. priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
  977. dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
  978. priv->mram_base,
  979. priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
  980. priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
  981. priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
  982. priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
  983. priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
  984. priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
  985. priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
  986. /* initialize the entire Message RAM in use to avoid possible
  987. * ECC/parity checksum errors when reading an uninitialized buffer
  988. */
  989. start = priv->mcfg[MRAM_SIDF].off;
  990. end = priv->mcfg[MRAM_TXB].off +
  991. priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
  992. for (i = start; i < end; i += 4)
  993. writel(0x0, priv->mram_base + i);
  994. return 0;
  995. }
  996. static int m_can_plat_probe(struct platform_device *pdev)
  997. {
  998. struct net_device *dev;
  999. struct m_can_priv *priv;
  1000. struct resource *res;
  1001. void __iomem *addr;
  1002. struct clk *hclk, *cclk;
  1003. int irq, ret;
  1004. hclk = devm_clk_get(&pdev->dev, "hclk");
  1005. cclk = devm_clk_get(&pdev->dev, "cclk");
  1006. if (IS_ERR(hclk) || IS_ERR(cclk)) {
  1007. dev_err(&pdev->dev, "no clock find\n");
  1008. return -ENODEV;
  1009. }
  1010. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
  1011. addr = devm_ioremap_resource(&pdev->dev, res);
  1012. irq = platform_get_irq_byname(pdev, "int0");
  1013. if (IS_ERR(addr) || irq < 0)
  1014. return -EINVAL;
  1015. /* allocate the m_can device */
  1016. dev = alloc_m_can_dev();
  1017. if (!dev)
  1018. return -ENOMEM;
  1019. priv = netdev_priv(dev);
  1020. dev->irq = irq;
  1021. priv->base = addr;
  1022. priv->device = &pdev->dev;
  1023. priv->hclk = hclk;
  1024. priv->cclk = cclk;
  1025. priv->can.clock.freq = clk_get_rate(cclk);
  1026. ret = m_can_of_parse_mram(pdev, priv);
  1027. if (ret)
  1028. goto failed_free_dev;
  1029. platform_set_drvdata(pdev, dev);
  1030. SET_NETDEV_DEV(dev, &pdev->dev);
  1031. ret = register_m_can_dev(dev);
  1032. if (ret) {
  1033. dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
  1034. KBUILD_MODNAME, ret);
  1035. goto failed_free_dev;
  1036. }
  1037. devm_can_led_init(dev);
  1038. dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
  1039. KBUILD_MODNAME, priv->base, dev->irq);
  1040. return 0;
  1041. failed_free_dev:
  1042. free_m_can_dev(dev);
  1043. return ret;
  1044. }
  1045. static __maybe_unused int m_can_suspend(struct device *dev)
  1046. {
  1047. struct net_device *ndev = dev_get_drvdata(dev);
  1048. struct m_can_priv *priv = netdev_priv(ndev);
  1049. if (netif_running(ndev)) {
  1050. netif_stop_queue(ndev);
  1051. netif_device_detach(ndev);
  1052. }
  1053. /* TODO: enter low power */
  1054. priv->can.state = CAN_STATE_SLEEPING;
  1055. return 0;
  1056. }
  1057. static __maybe_unused int m_can_resume(struct device *dev)
  1058. {
  1059. struct net_device *ndev = dev_get_drvdata(dev);
  1060. struct m_can_priv *priv = netdev_priv(ndev);
  1061. /* TODO: exit low power */
  1062. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1063. if (netif_running(ndev)) {
  1064. netif_device_attach(ndev);
  1065. netif_start_queue(ndev);
  1066. }
  1067. return 0;
  1068. }
  1069. static void unregister_m_can_dev(struct net_device *dev)
  1070. {
  1071. unregister_candev(dev);
  1072. }
  1073. static int m_can_plat_remove(struct platform_device *pdev)
  1074. {
  1075. struct net_device *dev = platform_get_drvdata(pdev);
  1076. unregister_m_can_dev(dev);
  1077. platform_set_drvdata(pdev, NULL);
  1078. free_m_can_dev(dev);
  1079. return 0;
  1080. }
  1081. static const struct dev_pm_ops m_can_pmops = {
  1082. SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
  1083. };
  1084. static const struct of_device_id m_can_of_table[] = {
  1085. { .compatible = "bosch,m_can", .data = NULL },
  1086. { /* sentinel */ },
  1087. };
  1088. MODULE_DEVICE_TABLE(of, m_can_of_table);
  1089. static struct platform_driver m_can_plat_driver = {
  1090. .driver = {
  1091. .name = KBUILD_MODNAME,
  1092. .of_match_table = m_can_of_table,
  1093. .pm = &m_can_pmops,
  1094. },
  1095. .probe = m_can_plat_probe,
  1096. .remove = m_can_plat_remove,
  1097. };
  1098. module_platform_driver(m_can_plat_driver);
  1099. MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
  1100. MODULE_LICENSE("GPL v2");
  1101. MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");