alloc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. /*
  2. * Primary bucket allocation code
  3. *
  4. * Copyright 2012 Google, Inc.
  5. *
  6. * Allocation in bcache is done in terms of buckets:
  7. *
  8. * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  9. * btree pointers - they must match for the pointer to be considered valid.
  10. *
  11. * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  12. * bucket simply by incrementing its gen.
  13. *
  14. * The gens (along with the priorities; it's really the gens are important but
  15. * the code is named as if it's the priorities) are written in an arbitrary list
  16. * of buckets on disk, with a pointer to them in the journal header.
  17. *
  18. * When we invalidate a bucket, we have to write its new gen to disk and wait
  19. * for that write to complete before we use it - otherwise after a crash we
  20. * could have pointers that appeared to be good but pointed to data that had
  21. * been overwritten.
  22. *
  23. * Since the gens and priorities are all stored contiguously on disk, we can
  24. * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  25. * call prio_write(), and when prio_write() finishes we pull buckets off the
  26. * free_inc list and optionally discard them.
  27. *
  28. * free_inc isn't the only freelist - if it was, we'd often to sleep while
  29. * priorities and gens were being written before we could allocate. c->free is a
  30. * smaller freelist, and buckets on that list are always ready to be used.
  31. *
  32. * If we've got discards enabled, that happens when a bucket moves from the
  33. * free_inc list to the free list.
  34. *
  35. * There is another freelist, because sometimes we have buckets that we know
  36. * have nothing pointing into them - these we can reuse without waiting for
  37. * priorities to be rewritten. These come from freed btree nodes and buckets
  38. * that garbage collection discovered no longer had valid keys pointing into
  39. * them (because they were overwritten). That's the unused list - buckets on the
  40. * unused list move to the free list, optionally being discarded in the process.
  41. *
  42. * It's also important to ensure that gens don't wrap around - with respect to
  43. * either the oldest gen in the btree or the gen on disk. This is quite
  44. * difficult to do in practice, but we explicitly guard against it anyways - if
  45. * a bucket is in danger of wrapping around we simply skip invalidating it that
  46. * time around, and we garbage collect or rewrite the priorities sooner than we
  47. * would have otherwise.
  48. *
  49. * bch_bucket_alloc() allocates a single bucket from a specific cache.
  50. *
  51. * bch_bucket_alloc_set() allocates one or more buckets from different caches
  52. * out of a cache set.
  53. *
  54. * free_some_buckets() drives all the processes described above. It's called
  55. * from bch_bucket_alloc() and a few other places that need to make sure free
  56. * buckets are ready.
  57. *
  58. * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  59. * invalidated, and then invalidate them and stick them on the free_inc list -
  60. * in either lru or fifo order.
  61. */
  62. #include "bcache.h"
  63. #include "btree.h"
  64. #include <linux/blkdev.h>
  65. #include <linux/freezer.h>
  66. #include <linux/kthread.h>
  67. #include <linux/random.h>
  68. #include <trace/events/bcache.h>
  69. /* Bucket heap / gen */
  70. uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  71. {
  72. uint8_t ret = ++b->gen;
  73. ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  74. WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  75. return ret;
  76. }
  77. void bch_rescale_priorities(struct cache_set *c, int sectors)
  78. {
  79. struct cache *ca;
  80. struct bucket *b;
  81. unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
  82. unsigned i;
  83. int r;
  84. atomic_sub(sectors, &c->rescale);
  85. do {
  86. r = atomic_read(&c->rescale);
  87. if (r >= 0)
  88. return;
  89. } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
  90. mutex_lock(&c->bucket_lock);
  91. c->min_prio = USHRT_MAX;
  92. for_each_cache(ca, c, i)
  93. for_each_bucket(b, ca)
  94. if (b->prio &&
  95. b->prio != BTREE_PRIO &&
  96. !atomic_read(&b->pin)) {
  97. b->prio--;
  98. c->min_prio = min(c->min_prio, b->prio);
  99. }
  100. mutex_unlock(&c->bucket_lock);
  101. }
  102. /*
  103. * Background allocation thread: scans for buckets to be invalidated,
  104. * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
  105. * then optionally issues discard commands to the newly free buckets, then puts
  106. * them on the various freelists.
  107. */
  108. static inline bool can_inc_bucket_gen(struct bucket *b)
  109. {
  110. return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
  111. }
  112. bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
  113. {
  114. BUG_ON(!ca->set->gc_mark_valid);
  115. return (!GC_MARK(b) ||
  116. GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
  117. !atomic_read(&b->pin) &&
  118. can_inc_bucket_gen(b);
  119. }
  120. void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
  121. {
  122. lockdep_assert_held(&ca->set->bucket_lock);
  123. BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
  124. if (GC_SECTORS_USED(b))
  125. trace_bcache_invalidate(ca, b - ca->buckets);
  126. bch_inc_gen(ca, b);
  127. b->prio = INITIAL_PRIO;
  128. atomic_inc(&b->pin);
  129. }
  130. static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
  131. {
  132. __bch_invalidate_one_bucket(ca, b);
  133. fifo_push(&ca->free_inc, b - ca->buckets);
  134. }
  135. /*
  136. * Determines what order we're going to reuse buckets, smallest bucket_prio()
  137. * first: we also take into account the number of sectors of live data in that
  138. * bucket, and in order for that multiply to make sense we have to scale bucket
  139. *
  140. * Thus, we scale the bucket priorities so that the bucket with the smallest
  141. * prio is worth 1/8th of what INITIAL_PRIO is worth.
  142. */
  143. #define bucket_prio(b) \
  144. ({ \
  145. unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
  146. \
  147. (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
  148. })
  149. #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
  150. #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
  151. static void invalidate_buckets_lru(struct cache *ca)
  152. {
  153. struct bucket *b;
  154. ssize_t i;
  155. ca->heap.used = 0;
  156. for_each_bucket(b, ca) {
  157. if (!bch_can_invalidate_bucket(ca, b))
  158. continue;
  159. if (!heap_full(&ca->heap))
  160. heap_add(&ca->heap, b, bucket_max_cmp);
  161. else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
  162. ca->heap.data[0] = b;
  163. heap_sift(&ca->heap, 0, bucket_max_cmp);
  164. }
  165. }
  166. for (i = ca->heap.used / 2 - 1; i >= 0; --i)
  167. heap_sift(&ca->heap, i, bucket_min_cmp);
  168. while (!fifo_full(&ca->free_inc)) {
  169. if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
  170. /*
  171. * We don't want to be calling invalidate_buckets()
  172. * multiple times when it can't do anything
  173. */
  174. ca->invalidate_needs_gc = 1;
  175. wake_up_gc(ca->set);
  176. return;
  177. }
  178. bch_invalidate_one_bucket(ca, b);
  179. }
  180. }
  181. static void invalidate_buckets_fifo(struct cache *ca)
  182. {
  183. struct bucket *b;
  184. size_t checked = 0;
  185. while (!fifo_full(&ca->free_inc)) {
  186. if (ca->fifo_last_bucket < ca->sb.first_bucket ||
  187. ca->fifo_last_bucket >= ca->sb.nbuckets)
  188. ca->fifo_last_bucket = ca->sb.first_bucket;
  189. b = ca->buckets + ca->fifo_last_bucket++;
  190. if (bch_can_invalidate_bucket(ca, b))
  191. bch_invalidate_one_bucket(ca, b);
  192. if (++checked >= ca->sb.nbuckets) {
  193. ca->invalidate_needs_gc = 1;
  194. wake_up_gc(ca->set);
  195. return;
  196. }
  197. }
  198. }
  199. static void invalidate_buckets_random(struct cache *ca)
  200. {
  201. struct bucket *b;
  202. size_t checked = 0;
  203. while (!fifo_full(&ca->free_inc)) {
  204. size_t n;
  205. get_random_bytes(&n, sizeof(n));
  206. n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
  207. n += ca->sb.first_bucket;
  208. b = ca->buckets + n;
  209. if (bch_can_invalidate_bucket(ca, b))
  210. bch_invalidate_one_bucket(ca, b);
  211. if (++checked >= ca->sb.nbuckets / 2) {
  212. ca->invalidate_needs_gc = 1;
  213. wake_up_gc(ca->set);
  214. return;
  215. }
  216. }
  217. }
  218. static void invalidate_buckets(struct cache *ca)
  219. {
  220. BUG_ON(ca->invalidate_needs_gc);
  221. switch (CACHE_REPLACEMENT(&ca->sb)) {
  222. case CACHE_REPLACEMENT_LRU:
  223. invalidate_buckets_lru(ca);
  224. break;
  225. case CACHE_REPLACEMENT_FIFO:
  226. invalidate_buckets_fifo(ca);
  227. break;
  228. case CACHE_REPLACEMENT_RANDOM:
  229. invalidate_buckets_random(ca);
  230. break;
  231. }
  232. }
  233. #define allocator_wait(ca, cond) \
  234. do { \
  235. while (1) { \
  236. set_current_state(TASK_INTERRUPTIBLE); \
  237. if (cond) \
  238. break; \
  239. \
  240. mutex_unlock(&(ca)->set->bucket_lock); \
  241. if (kthread_should_stop()) \
  242. return 0; \
  243. \
  244. try_to_freeze(); \
  245. schedule(); \
  246. mutex_lock(&(ca)->set->bucket_lock); \
  247. } \
  248. __set_current_state(TASK_RUNNING); \
  249. } while (0)
  250. static int bch_allocator_push(struct cache *ca, long bucket)
  251. {
  252. unsigned i;
  253. /* Prios/gens are actually the most important reserve */
  254. if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
  255. return true;
  256. for (i = 0; i < RESERVE_NR; i++)
  257. if (fifo_push(&ca->free[i], bucket))
  258. return true;
  259. return false;
  260. }
  261. static int bch_allocator_thread(void *arg)
  262. {
  263. struct cache *ca = arg;
  264. mutex_lock(&ca->set->bucket_lock);
  265. while (1) {
  266. /*
  267. * First, we pull buckets off of the unused and free_inc lists,
  268. * possibly issue discards to them, then we add the bucket to
  269. * the free list:
  270. */
  271. while (!fifo_empty(&ca->free_inc)) {
  272. long bucket;
  273. fifo_pop(&ca->free_inc, bucket);
  274. if (ca->discard) {
  275. mutex_unlock(&ca->set->bucket_lock);
  276. blkdev_issue_discard(ca->bdev,
  277. bucket_to_sector(ca->set, bucket),
  278. ca->sb.bucket_size, GFP_KERNEL, 0);
  279. mutex_lock(&ca->set->bucket_lock);
  280. }
  281. allocator_wait(ca, bch_allocator_push(ca, bucket));
  282. wake_up(&ca->set->btree_cache_wait);
  283. wake_up(&ca->set->bucket_wait);
  284. }
  285. /*
  286. * We've run out of free buckets, we need to find some buckets
  287. * we can invalidate. First, invalidate them in memory and add
  288. * them to the free_inc list:
  289. */
  290. retry_invalidate:
  291. allocator_wait(ca, ca->set->gc_mark_valid &&
  292. !ca->invalidate_needs_gc);
  293. invalidate_buckets(ca);
  294. /*
  295. * Now, we write their new gens to disk so we can start writing
  296. * new stuff to them:
  297. */
  298. allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
  299. if (CACHE_SYNC(&ca->set->sb)) {
  300. /*
  301. * This could deadlock if an allocation with a btree
  302. * node locked ever blocked - having the btree node
  303. * locked would block garbage collection, but here we're
  304. * waiting on garbage collection before we invalidate
  305. * and free anything.
  306. *
  307. * But this should be safe since the btree code always
  308. * uses btree_check_reserve() before allocating now, and
  309. * if it fails it blocks without btree nodes locked.
  310. */
  311. if (!fifo_full(&ca->free_inc))
  312. goto retry_invalidate;
  313. bch_prio_write(ca);
  314. }
  315. }
  316. }
  317. /* Allocation */
  318. long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
  319. {
  320. DEFINE_WAIT(w);
  321. struct bucket *b;
  322. long r;
  323. /* fastpath */
  324. if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
  325. fifo_pop(&ca->free[reserve], r))
  326. goto out;
  327. if (!wait) {
  328. trace_bcache_alloc_fail(ca, reserve);
  329. return -1;
  330. }
  331. do {
  332. prepare_to_wait(&ca->set->bucket_wait, &w,
  333. TASK_UNINTERRUPTIBLE);
  334. mutex_unlock(&ca->set->bucket_lock);
  335. schedule();
  336. mutex_lock(&ca->set->bucket_lock);
  337. } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
  338. !fifo_pop(&ca->free[reserve], r));
  339. finish_wait(&ca->set->bucket_wait, &w);
  340. out:
  341. wake_up_process(ca->alloc_thread);
  342. trace_bcache_alloc(ca, reserve);
  343. if (expensive_debug_checks(ca->set)) {
  344. size_t iter;
  345. long i;
  346. unsigned j;
  347. for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
  348. BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
  349. for (j = 0; j < RESERVE_NR; j++)
  350. fifo_for_each(i, &ca->free[j], iter)
  351. BUG_ON(i == r);
  352. fifo_for_each(i, &ca->free_inc, iter)
  353. BUG_ON(i == r);
  354. }
  355. b = ca->buckets + r;
  356. BUG_ON(atomic_read(&b->pin) != 1);
  357. SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
  358. if (reserve <= RESERVE_PRIO) {
  359. SET_GC_MARK(b, GC_MARK_METADATA);
  360. SET_GC_MOVE(b, 0);
  361. b->prio = BTREE_PRIO;
  362. } else {
  363. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  364. SET_GC_MOVE(b, 0);
  365. b->prio = INITIAL_PRIO;
  366. }
  367. return r;
  368. }
  369. void __bch_bucket_free(struct cache *ca, struct bucket *b)
  370. {
  371. SET_GC_MARK(b, 0);
  372. SET_GC_SECTORS_USED(b, 0);
  373. }
  374. void bch_bucket_free(struct cache_set *c, struct bkey *k)
  375. {
  376. unsigned i;
  377. for (i = 0; i < KEY_PTRS(k); i++)
  378. __bch_bucket_free(PTR_CACHE(c, k, i),
  379. PTR_BUCKET(c, k, i));
  380. }
  381. int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
  382. struct bkey *k, int n, bool wait)
  383. {
  384. int i;
  385. lockdep_assert_held(&c->bucket_lock);
  386. BUG_ON(!n || n > c->caches_loaded || n > 8);
  387. bkey_init(k);
  388. /* sort by free space/prio of oldest data in caches */
  389. for (i = 0; i < n; i++) {
  390. struct cache *ca = c->cache_by_alloc[i];
  391. long b = bch_bucket_alloc(ca, reserve, wait);
  392. if (b == -1)
  393. goto err;
  394. k->ptr[i] = PTR(ca->buckets[b].gen,
  395. bucket_to_sector(c, b),
  396. ca->sb.nr_this_dev);
  397. SET_KEY_PTRS(k, i + 1);
  398. }
  399. return 0;
  400. err:
  401. bch_bucket_free(c, k);
  402. bkey_put(c, k);
  403. return -1;
  404. }
  405. int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
  406. struct bkey *k, int n, bool wait)
  407. {
  408. int ret;
  409. mutex_lock(&c->bucket_lock);
  410. ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
  411. mutex_unlock(&c->bucket_lock);
  412. return ret;
  413. }
  414. /* Sector allocator */
  415. struct open_bucket {
  416. struct list_head list;
  417. unsigned last_write_point;
  418. unsigned sectors_free;
  419. BKEY_PADDED(key);
  420. };
  421. /*
  422. * We keep multiple buckets open for writes, and try to segregate different
  423. * write streams for better cache utilization: first we look for a bucket where
  424. * the last write to it was sequential with the current write, and failing that
  425. * we look for a bucket that was last used by the same task.
  426. *
  427. * The ideas is if you've got multiple tasks pulling data into the cache at the
  428. * same time, you'll get better cache utilization if you try to segregate their
  429. * data and preserve locality.
  430. *
  431. * For example, say you've starting Firefox at the same time you're copying a
  432. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  433. * cache awhile, but the data you copied might not be; if you wrote all that
  434. * data to the same buckets it'd get invalidated at the same time.
  435. *
  436. * Both of those tasks will be doing fairly random IO so we can't rely on
  437. * detecting sequential IO to segregate their data, but going off of the task
  438. * should be a sane heuristic.
  439. */
  440. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  441. const struct bkey *search,
  442. unsigned write_point,
  443. struct bkey *alloc)
  444. {
  445. struct open_bucket *ret, *ret_task = NULL;
  446. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  447. if (!bkey_cmp(&ret->key, search))
  448. goto found;
  449. else if (ret->last_write_point == write_point)
  450. ret_task = ret;
  451. ret = ret_task ?: list_first_entry(&c->data_buckets,
  452. struct open_bucket, list);
  453. found:
  454. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  455. ret->sectors_free = c->sb.bucket_size;
  456. bkey_copy(&ret->key, alloc);
  457. bkey_init(alloc);
  458. }
  459. if (!ret->sectors_free)
  460. ret = NULL;
  461. return ret;
  462. }
  463. /*
  464. * Allocates some space in the cache to write to, and k to point to the newly
  465. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  466. * end of the newly allocated space).
  467. *
  468. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  469. * sectors were actually allocated.
  470. *
  471. * If s->writeback is true, will not fail.
  472. */
  473. bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
  474. unsigned write_point, unsigned write_prio, bool wait)
  475. {
  476. struct open_bucket *b;
  477. BKEY_PADDED(key) alloc;
  478. unsigned i;
  479. /*
  480. * We might have to allocate a new bucket, which we can't do with a
  481. * spinlock held. So if we have to allocate, we drop the lock, allocate
  482. * and then retry. KEY_PTRS() indicates whether alloc points to
  483. * allocated bucket(s).
  484. */
  485. bkey_init(&alloc.key);
  486. spin_lock(&c->data_bucket_lock);
  487. while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
  488. unsigned watermark = write_prio
  489. ? RESERVE_MOVINGGC
  490. : RESERVE_NONE;
  491. spin_unlock(&c->data_bucket_lock);
  492. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
  493. return false;
  494. spin_lock(&c->data_bucket_lock);
  495. }
  496. /*
  497. * If we had to allocate, we might race and not need to allocate the
  498. * second time we call find_data_bucket(). If we allocated a bucket but
  499. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  500. */
  501. if (KEY_PTRS(&alloc.key))
  502. bkey_put(c, &alloc.key);
  503. for (i = 0; i < KEY_PTRS(&b->key); i++)
  504. EBUG_ON(ptr_stale(c, &b->key, i));
  505. /* Set up the pointer to the space we're allocating: */
  506. for (i = 0; i < KEY_PTRS(&b->key); i++)
  507. k->ptr[i] = b->key.ptr[i];
  508. sectors = min(sectors, b->sectors_free);
  509. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  510. SET_KEY_SIZE(k, sectors);
  511. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  512. /*
  513. * Move b to the end of the lru, and keep track of what this bucket was
  514. * last used for:
  515. */
  516. list_move_tail(&b->list, &c->data_buckets);
  517. bkey_copy_key(&b->key, k);
  518. b->last_write_point = write_point;
  519. b->sectors_free -= sectors;
  520. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  521. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  522. atomic_long_add(sectors,
  523. &PTR_CACHE(c, &b->key, i)->sectors_written);
  524. }
  525. if (b->sectors_free < c->sb.block_size)
  526. b->sectors_free = 0;
  527. /*
  528. * k takes refcounts on the buckets it points to until it's inserted
  529. * into the btree, but if we're done with this bucket we just transfer
  530. * get_data_bucket()'s refcount.
  531. */
  532. if (b->sectors_free)
  533. for (i = 0; i < KEY_PTRS(&b->key); i++)
  534. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  535. spin_unlock(&c->data_bucket_lock);
  536. return true;
  537. }
  538. /* Init */
  539. void bch_open_buckets_free(struct cache_set *c)
  540. {
  541. struct open_bucket *b;
  542. while (!list_empty(&c->data_buckets)) {
  543. b = list_first_entry(&c->data_buckets,
  544. struct open_bucket, list);
  545. list_del(&b->list);
  546. kfree(b);
  547. }
  548. }
  549. int bch_open_buckets_alloc(struct cache_set *c)
  550. {
  551. int i;
  552. spin_lock_init(&c->data_bucket_lock);
  553. for (i = 0; i < 6; i++) {
  554. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  555. if (!b)
  556. return -ENOMEM;
  557. list_add(&b->list, &c->data_buckets);
  558. }
  559. return 0;
  560. }
  561. int bch_cache_allocator_start(struct cache *ca)
  562. {
  563. struct task_struct *k = kthread_run(bch_allocator_thread,
  564. ca, "bcache_allocator");
  565. if (IS_ERR(k))
  566. return PTR_ERR(k);
  567. ca->alloc_thread = k;
  568. return 0;
  569. }