pch_dma.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/slab.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/module.h>
  26. #include <linux/pch_dma.h>
  27. #include "dmaengine.h"
  28. #define DRV_NAME "pch-dma"
  29. #define DMA_CTL0_DISABLE 0x0
  30. #define DMA_CTL0_SG 0x1
  31. #define DMA_CTL0_ONESHOT 0x2
  32. #define DMA_CTL0_MODE_MASK_BITS 0x3
  33. #define DMA_CTL0_DIR_SHIFT_BITS 2
  34. #define DMA_CTL0_BITS_PER_CH 4
  35. #define DMA_CTL2_START_SHIFT_BITS 8
  36. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  37. #define DMA_STATUS_IDLE 0x0
  38. #define DMA_STATUS_DESC_READ 0x1
  39. #define DMA_STATUS_WAIT 0x2
  40. #define DMA_STATUS_ACCESS 0x3
  41. #define DMA_STATUS_BITS_PER_CH 2
  42. #define DMA_STATUS_MASK_BITS 0x3
  43. #define DMA_STATUS_SHIFT_BITS 16
  44. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  45. #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
  46. #define DMA_STATUS2_ERR(x) (0x1 << (x))
  47. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  48. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  49. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  50. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  51. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  52. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  53. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  54. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  55. #define DMA_DESC_END_WITH_IRQ 0x1
  56. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  57. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  58. #define MAX_CHAN_NR 12
  59. #define DMA_MASK_CTL0_MODE 0x33333333
  60. #define DMA_MASK_CTL2_MODE 0x00003333
  61. static unsigned int init_nr_desc_per_channel = 64;
  62. module_param(init_nr_desc_per_channel, uint, 0644);
  63. MODULE_PARM_DESC(init_nr_desc_per_channel,
  64. "initial descriptors per channel (default: 64)");
  65. struct pch_dma_desc_regs {
  66. u32 dev_addr;
  67. u32 mem_addr;
  68. u32 size;
  69. u32 next;
  70. };
  71. struct pch_dma_regs {
  72. u32 dma_ctl0;
  73. u32 dma_ctl1;
  74. u32 dma_ctl2;
  75. u32 dma_ctl3;
  76. u32 dma_sts0;
  77. u32 dma_sts1;
  78. u32 dma_sts2;
  79. u32 reserved3;
  80. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  81. };
  82. struct pch_dma_desc {
  83. struct pch_dma_desc_regs regs;
  84. struct dma_async_tx_descriptor txd;
  85. struct list_head desc_node;
  86. struct list_head tx_list;
  87. };
  88. struct pch_dma_chan {
  89. struct dma_chan chan;
  90. void __iomem *membase;
  91. enum dma_transfer_direction dir;
  92. struct tasklet_struct tasklet;
  93. unsigned long err_status;
  94. spinlock_t lock;
  95. struct list_head active_list;
  96. struct list_head queue;
  97. struct list_head free_list;
  98. unsigned int descs_allocated;
  99. };
  100. #define PDC_DEV_ADDR 0x00
  101. #define PDC_MEM_ADDR 0x04
  102. #define PDC_SIZE 0x08
  103. #define PDC_NEXT 0x0C
  104. #define channel_readl(pdc, name) \
  105. readl((pdc)->membase + PDC_##name)
  106. #define channel_writel(pdc, name, val) \
  107. writel((val), (pdc)->membase + PDC_##name)
  108. struct pch_dma {
  109. struct dma_device dma;
  110. void __iomem *membase;
  111. struct pci_pool *pool;
  112. struct pch_dma_regs regs;
  113. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  114. struct pch_dma_chan channels[MAX_CHAN_NR];
  115. };
  116. #define PCH_DMA_CTL0 0x00
  117. #define PCH_DMA_CTL1 0x04
  118. #define PCH_DMA_CTL2 0x08
  119. #define PCH_DMA_CTL3 0x0C
  120. #define PCH_DMA_STS0 0x10
  121. #define PCH_DMA_STS1 0x14
  122. #define PCH_DMA_STS2 0x18
  123. #define dma_readl(pd, name) \
  124. readl((pd)->membase + PCH_DMA_##name)
  125. #define dma_writel(pd, name, val) \
  126. writel((val), (pd)->membase + PCH_DMA_##name)
  127. static inline
  128. struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  129. {
  130. return container_of(txd, struct pch_dma_desc, txd);
  131. }
  132. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  133. {
  134. return container_of(chan, struct pch_dma_chan, chan);
  135. }
  136. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  137. {
  138. return container_of(ddev, struct pch_dma, dma);
  139. }
  140. static inline struct device *chan2dev(struct dma_chan *chan)
  141. {
  142. return &chan->dev->device;
  143. }
  144. static inline struct device *chan2parent(struct dma_chan *chan)
  145. {
  146. return chan->dev->device.parent;
  147. }
  148. static inline
  149. struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  150. {
  151. return list_first_entry(&pd_chan->active_list,
  152. struct pch_dma_desc, desc_node);
  153. }
  154. static inline
  155. struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  156. {
  157. return list_first_entry(&pd_chan->queue,
  158. struct pch_dma_desc, desc_node);
  159. }
  160. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  161. {
  162. struct pch_dma *pd = to_pd(chan->device);
  163. u32 val;
  164. int pos;
  165. if (chan->chan_id < 8)
  166. pos = chan->chan_id;
  167. else
  168. pos = chan->chan_id + 8;
  169. val = dma_readl(pd, CTL2);
  170. if (enable)
  171. val |= 0x1 << pos;
  172. else
  173. val &= ~(0x1 << pos);
  174. dma_writel(pd, CTL2, val);
  175. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  176. chan->chan_id, val);
  177. }
  178. static void pdc_set_dir(struct dma_chan *chan)
  179. {
  180. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  181. struct pch_dma *pd = to_pd(chan->device);
  182. u32 val;
  183. u32 mask_mode;
  184. u32 mask_ctl;
  185. if (chan->chan_id < 8) {
  186. val = dma_readl(pd, CTL0);
  187. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  188. (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  189. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  190. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  191. val &= mask_mode;
  192. if (pd_chan->dir == DMA_MEM_TO_DEV)
  193. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  194. DMA_CTL0_DIR_SHIFT_BITS);
  195. else
  196. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  197. DMA_CTL0_DIR_SHIFT_BITS));
  198. val |= mask_ctl;
  199. dma_writel(pd, CTL0, val);
  200. } else {
  201. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  202. val = dma_readl(pd, CTL3);
  203. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  204. (DMA_CTL0_BITS_PER_CH * ch);
  205. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  206. (DMA_CTL0_BITS_PER_CH * ch));
  207. val &= mask_mode;
  208. if (pd_chan->dir == DMA_MEM_TO_DEV)
  209. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  210. DMA_CTL0_DIR_SHIFT_BITS);
  211. else
  212. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  213. DMA_CTL0_DIR_SHIFT_BITS));
  214. val |= mask_ctl;
  215. dma_writel(pd, CTL3, val);
  216. }
  217. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  218. chan->chan_id, val);
  219. }
  220. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  221. {
  222. struct pch_dma *pd = to_pd(chan->device);
  223. u32 val;
  224. u32 mask_ctl;
  225. u32 mask_dir;
  226. if (chan->chan_id < 8) {
  227. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  228. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  229. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
  230. DMA_CTL0_DIR_SHIFT_BITS);
  231. val = dma_readl(pd, CTL0);
  232. val &= mask_dir;
  233. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  234. val |= mask_ctl;
  235. dma_writel(pd, CTL0, val);
  236. } else {
  237. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  238. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  239. (DMA_CTL0_BITS_PER_CH * ch));
  240. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
  241. DMA_CTL0_DIR_SHIFT_BITS);
  242. val = dma_readl(pd, CTL3);
  243. val &= mask_dir;
  244. val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
  245. val |= mask_ctl;
  246. dma_writel(pd, CTL3, val);
  247. }
  248. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  249. chan->chan_id, val);
  250. }
  251. static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
  252. {
  253. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  254. u32 val;
  255. val = dma_readl(pd, STS0);
  256. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  257. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  258. }
  259. static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
  260. {
  261. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  262. u32 val;
  263. val = dma_readl(pd, STS2);
  264. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  265. DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
  266. }
  267. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  268. {
  269. u32 sts;
  270. if (pd_chan->chan.chan_id < 8)
  271. sts = pdc_get_status0(pd_chan);
  272. else
  273. sts = pdc_get_status2(pd_chan);
  274. if (sts == DMA_STATUS_IDLE)
  275. return true;
  276. else
  277. return false;
  278. }
  279. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  280. {
  281. if (!pdc_is_idle(pd_chan)) {
  282. dev_err(chan2dev(&pd_chan->chan),
  283. "BUG: Attempt to start non-idle channel\n");
  284. return;
  285. }
  286. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  287. pd_chan->chan.chan_id, desc->regs.dev_addr);
  288. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  289. pd_chan->chan.chan_id, desc->regs.mem_addr);
  290. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  291. pd_chan->chan.chan_id, desc->regs.size);
  292. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  293. pd_chan->chan.chan_id, desc->regs.next);
  294. if (list_empty(&desc->tx_list)) {
  295. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  296. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  297. channel_writel(pd_chan, SIZE, desc->regs.size);
  298. channel_writel(pd_chan, NEXT, desc->regs.next);
  299. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  300. } else {
  301. channel_writel(pd_chan, NEXT, desc->txd.phys);
  302. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  303. }
  304. }
  305. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  306. struct pch_dma_desc *desc)
  307. {
  308. struct dma_async_tx_descriptor *txd = &desc->txd;
  309. dma_async_tx_callback callback = txd->callback;
  310. void *param = txd->callback_param;
  311. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  312. list_move(&desc->desc_node, &pd_chan->free_list);
  313. if (callback)
  314. callback(param);
  315. }
  316. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  317. {
  318. struct pch_dma_desc *desc, *_d;
  319. LIST_HEAD(list);
  320. BUG_ON(!pdc_is_idle(pd_chan));
  321. if (!list_empty(&pd_chan->queue))
  322. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  323. list_splice_init(&pd_chan->active_list, &list);
  324. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  325. list_for_each_entry_safe(desc, _d, &list, desc_node)
  326. pdc_chain_complete(pd_chan, desc);
  327. }
  328. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  329. {
  330. struct pch_dma_desc *bad_desc;
  331. bad_desc = pdc_first_active(pd_chan);
  332. list_del(&bad_desc->desc_node);
  333. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  334. if (!list_empty(&pd_chan->active_list))
  335. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  336. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  337. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  338. bad_desc->txd.cookie);
  339. pdc_chain_complete(pd_chan, bad_desc);
  340. }
  341. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  342. {
  343. if (list_empty(&pd_chan->active_list) ||
  344. list_is_singular(&pd_chan->active_list)) {
  345. pdc_complete_all(pd_chan);
  346. } else {
  347. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  348. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  349. }
  350. }
  351. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  352. {
  353. struct pch_dma_desc *desc = to_pd_desc(txd);
  354. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  355. dma_cookie_t cookie;
  356. spin_lock(&pd_chan->lock);
  357. cookie = dma_cookie_assign(txd);
  358. if (list_empty(&pd_chan->active_list)) {
  359. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  360. pdc_dostart(pd_chan, desc);
  361. } else {
  362. list_add_tail(&desc->desc_node, &pd_chan->queue);
  363. }
  364. spin_unlock(&pd_chan->lock);
  365. return 0;
  366. }
  367. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  368. {
  369. struct pch_dma_desc *desc = NULL;
  370. struct pch_dma *pd = to_pd(chan->device);
  371. dma_addr_t addr;
  372. desc = pci_pool_alloc(pd->pool, flags, &addr);
  373. if (desc) {
  374. memset(desc, 0, sizeof(struct pch_dma_desc));
  375. INIT_LIST_HEAD(&desc->tx_list);
  376. dma_async_tx_descriptor_init(&desc->txd, chan);
  377. desc->txd.tx_submit = pd_tx_submit;
  378. desc->txd.flags = DMA_CTRL_ACK;
  379. desc->txd.phys = addr;
  380. }
  381. return desc;
  382. }
  383. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  384. {
  385. struct pch_dma_desc *desc, *_d;
  386. struct pch_dma_desc *ret = NULL;
  387. int i = 0;
  388. spin_lock(&pd_chan->lock);
  389. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  390. i++;
  391. if (async_tx_test_ack(&desc->txd)) {
  392. list_del(&desc->desc_node);
  393. ret = desc;
  394. break;
  395. }
  396. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  397. }
  398. spin_unlock(&pd_chan->lock);
  399. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  400. if (!ret) {
  401. ret = pdc_alloc_desc(&pd_chan->chan, GFP_ATOMIC);
  402. if (ret) {
  403. spin_lock(&pd_chan->lock);
  404. pd_chan->descs_allocated++;
  405. spin_unlock(&pd_chan->lock);
  406. } else {
  407. dev_err(chan2dev(&pd_chan->chan),
  408. "failed to alloc desc\n");
  409. }
  410. }
  411. return ret;
  412. }
  413. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  414. struct pch_dma_desc *desc)
  415. {
  416. if (desc) {
  417. spin_lock(&pd_chan->lock);
  418. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  419. list_add(&desc->desc_node, &pd_chan->free_list);
  420. spin_unlock(&pd_chan->lock);
  421. }
  422. }
  423. static int pd_alloc_chan_resources(struct dma_chan *chan)
  424. {
  425. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  426. struct pch_dma_desc *desc;
  427. LIST_HEAD(tmp_list);
  428. int i;
  429. if (!pdc_is_idle(pd_chan)) {
  430. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  431. return -EIO;
  432. }
  433. if (!list_empty(&pd_chan->free_list))
  434. return pd_chan->descs_allocated;
  435. for (i = 0; i < init_nr_desc_per_channel; i++) {
  436. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  437. if (!desc) {
  438. dev_warn(chan2dev(chan),
  439. "Only allocated %d initial descriptors\n", i);
  440. break;
  441. }
  442. list_add_tail(&desc->desc_node, &tmp_list);
  443. }
  444. spin_lock_irq(&pd_chan->lock);
  445. list_splice(&tmp_list, &pd_chan->free_list);
  446. pd_chan->descs_allocated = i;
  447. dma_cookie_init(chan);
  448. spin_unlock_irq(&pd_chan->lock);
  449. pdc_enable_irq(chan, 1);
  450. return pd_chan->descs_allocated;
  451. }
  452. static void pd_free_chan_resources(struct dma_chan *chan)
  453. {
  454. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  455. struct pch_dma *pd = to_pd(chan->device);
  456. struct pch_dma_desc *desc, *_d;
  457. LIST_HEAD(tmp_list);
  458. BUG_ON(!pdc_is_idle(pd_chan));
  459. BUG_ON(!list_empty(&pd_chan->active_list));
  460. BUG_ON(!list_empty(&pd_chan->queue));
  461. spin_lock_irq(&pd_chan->lock);
  462. list_splice_init(&pd_chan->free_list, &tmp_list);
  463. pd_chan->descs_allocated = 0;
  464. spin_unlock_irq(&pd_chan->lock);
  465. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  466. pci_pool_free(pd->pool, desc, desc->txd.phys);
  467. pdc_enable_irq(chan, 0);
  468. }
  469. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  470. struct dma_tx_state *txstate)
  471. {
  472. return dma_cookie_status(chan, cookie, txstate);
  473. }
  474. static void pd_issue_pending(struct dma_chan *chan)
  475. {
  476. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  477. if (pdc_is_idle(pd_chan)) {
  478. spin_lock(&pd_chan->lock);
  479. pdc_advance_work(pd_chan);
  480. spin_unlock(&pd_chan->lock);
  481. }
  482. }
  483. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  484. struct scatterlist *sgl, unsigned int sg_len,
  485. enum dma_transfer_direction direction, unsigned long flags,
  486. void *context)
  487. {
  488. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  489. struct pch_dma_slave *pd_slave = chan->private;
  490. struct pch_dma_desc *first = NULL;
  491. struct pch_dma_desc *prev = NULL;
  492. struct pch_dma_desc *desc = NULL;
  493. struct scatterlist *sg;
  494. dma_addr_t reg;
  495. int i;
  496. if (unlikely(!sg_len)) {
  497. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  498. return NULL;
  499. }
  500. if (direction == DMA_DEV_TO_MEM)
  501. reg = pd_slave->rx_reg;
  502. else if (direction == DMA_MEM_TO_DEV)
  503. reg = pd_slave->tx_reg;
  504. else
  505. return NULL;
  506. pd_chan->dir = direction;
  507. pdc_set_dir(chan);
  508. for_each_sg(sgl, sg, sg_len, i) {
  509. desc = pdc_desc_get(pd_chan);
  510. if (!desc)
  511. goto err_desc_get;
  512. desc->regs.dev_addr = reg;
  513. desc->regs.mem_addr = sg_dma_address(sg);
  514. desc->regs.size = sg_dma_len(sg);
  515. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  516. switch (pd_slave->width) {
  517. case PCH_DMA_WIDTH_1_BYTE:
  518. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  519. goto err_desc_get;
  520. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  521. break;
  522. case PCH_DMA_WIDTH_2_BYTES:
  523. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  524. goto err_desc_get;
  525. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  526. break;
  527. case PCH_DMA_WIDTH_4_BYTES:
  528. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  529. goto err_desc_get;
  530. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  531. break;
  532. default:
  533. goto err_desc_get;
  534. }
  535. if (!first) {
  536. first = desc;
  537. } else {
  538. prev->regs.next |= desc->txd.phys;
  539. list_add_tail(&desc->desc_node, &first->tx_list);
  540. }
  541. prev = desc;
  542. }
  543. if (flags & DMA_PREP_INTERRUPT)
  544. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  545. else
  546. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  547. first->txd.cookie = -EBUSY;
  548. desc->txd.flags = flags;
  549. return &first->txd;
  550. err_desc_get:
  551. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  552. pdc_desc_put(pd_chan, first);
  553. return NULL;
  554. }
  555. static int pd_device_terminate_all(struct dma_chan *chan)
  556. {
  557. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  558. struct pch_dma_desc *desc, *_d;
  559. LIST_HEAD(list);
  560. spin_lock_irq(&pd_chan->lock);
  561. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  562. list_splice_init(&pd_chan->active_list, &list);
  563. list_splice_init(&pd_chan->queue, &list);
  564. list_for_each_entry_safe(desc, _d, &list, desc_node)
  565. pdc_chain_complete(pd_chan, desc);
  566. spin_unlock_irq(&pd_chan->lock);
  567. return 0;
  568. }
  569. static void pdc_tasklet(unsigned long data)
  570. {
  571. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  572. unsigned long flags;
  573. if (!pdc_is_idle(pd_chan)) {
  574. dev_err(chan2dev(&pd_chan->chan),
  575. "BUG: handle non-idle channel in tasklet\n");
  576. return;
  577. }
  578. spin_lock_irqsave(&pd_chan->lock, flags);
  579. if (test_and_clear_bit(0, &pd_chan->err_status))
  580. pdc_handle_error(pd_chan);
  581. else
  582. pdc_advance_work(pd_chan);
  583. spin_unlock_irqrestore(&pd_chan->lock, flags);
  584. }
  585. static irqreturn_t pd_irq(int irq, void *devid)
  586. {
  587. struct pch_dma *pd = (struct pch_dma *)devid;
  588. struct pch_dma_chan *pd_chan;
  589. u32 sts0;
  590. u32 sts2;
  591. int i;
  592. int ret0 = IRQ_NONE;
  593. int ret2 = IRQ_NONE;
  594. sts0 = dma_readl(pd, STS0);
  595. sts2 = dma_readl(pd, STS2);
  596. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  597. for (i = 0; i < pd->dma.chancnt; i++) {
  598. pd_chan = &pd->channels[i];
  599. if (i < 8) {
  600. if (sts0 & DMA_STATUS_IRQ(i)) {
  601. if (sts0 & DMA_STATUS0_ERR(i))
  602. set_bit(0, &pd_chan->err_status);
  603. tasklet_schedule(&pd_chan->tasklet);
  604. ret0 = IRQ_HANDLED;
  605. }
  606. } else {
  607. if (sts2 & DMA_STATUS_IRQ(i - 8)) {
  608. if (sts2 & DMA_STATUS2_ERR(i))
  609. set_bit(0, &pd_chan->err_status);
  610. tasklet_schedule(&pd_chan->tasklet);
  611. ret2 = IRQ_HANDLED;
  612. }
  613. }
  614. }
  615. /* clear interrupt bits in status register */
  616. if (ret0)
  617. dma_writel(pd, STS0, sts0);
  618. if (ret2)
  619. dma_writel(pd, STS2, sts2);
  620. return ret0 | ret2;
  621. }
  622. #ifdef CONFIG_PM
  623. static void pch_dma_save_regs(struct pch_dma *pd)
  624. {
  625. struct pch_dma_chan *pd_chan;
  626. struct dma_chan *chan, *_c;
  627. int i = 0;
  628. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  629. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  630. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  631. pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
  632. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  633. pd_chan = to_pd_chan(chan);
  634. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  635. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  636. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  637. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  638. i++;
  639. }
  640. }
  641. static void pch_dma_restore_regs(struct pch_dma *pd)
  642. {
  643. struct pch_dma_chan *pd_chan;
  644. struct dma_chan *chan, *_c;
  645. int i = 0;
  646. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  647. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  648. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  649. dma_writel(pd, CTL3, pd->regs.dma_ctl3);
  650. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  651. pd_chan = to_pd_chan(chan);
  652. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  653. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  654. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  655. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  656. i++;
  657. }
  658. }
  659. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  660. {
  661. struct pch_dma *pd = pci_get_drvdata(pdev);
  662. if (pd)
  663. pch_dma_save_regs(pd);
  664. pci_save_state(pdev);
  665. pci_disable_device(pdev);
  666. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  667. return 0;
  668. }
  669. static int pch_dma_resume(struct pci_dev *pdev)
  670. {
  671. struct pch_dma *pd = pci_get_drvdata(pdev);
  672. int err;
  673. pci_set_power_state(pdev, PCI_D0);
  674. pci_restore_state(pdev);
  675. err = pci_enable_device(pdev);
  676. if (err) {
  677. dev_dbg(&pdev->dev, "failed to enable device\n");
  678. return err;
  679. }
  680. if (pd)
  681. pch_dma_restore_regs(pd);
  682. return 0;
  683. }
  684. #endif
  685. static int pch_dma_probe(struct pci_dev *pdev,
  686. const struct pci_device_id *id)
  687. {
  688. struct pch_dma *pd;
  689. struct pch_dma_regs *regs;
  690. unsigned int nr_channels;
  691. int err;
  692. int i;
  693. nr_channels = id->driver_data;
  694. pd = kzalloc(sizeof(*pd), GFP_KERNEL);
  695. if (!pd)
  696. return -ENOMEM;
  697. pci_set_drvdata(pdev, pd);
  698. err = pci_enable_device(pdev);
  699. if (err) {
  700. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  701. goto err_free_mem;
  702. }
  703. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  704. dev_err(&pdev->dev, "Cannot find proper base address\n");
  705. err = -ENODEV;
  706. goto err_disable_pdev;
  707. }
  708. err = pci_request_regions(pdev, DRV_NAME);
  709. if (err) {
  710. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  711. goto err_disable_pdev;
  712. }
  713. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  714. if (err) {
  715. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  716. goto err_free_res;
  717. }
  718. regs = pd->membase = pci_iomap(pdev, 1, 0);
  719. if (!pd->membase) {
  720. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  721. err = -ENOMEM;
  722. goto err_free_res;
  723. }
  724. pci_set_master(pdev);
  725. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  726. if (err) {
  727. dev_err(&pdev->dev, "Failed to request IRQ\n");
  728. goto err_iounmap;
  729. }
  730. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  731. sizeof(struct pch_dma_desc), 4, 0);
  732. if (!pd->pool) {
  733. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  734. err = -ENOMEM;
  735. goto err_free_irq;
  736. }
  737. pd->dma.dev = &pdev->dev;
  738. INIT_LIST_HEAD(&pd->dma.channels);
  739. for (i = 0; i < nr_channels; i++) {
  740. struct pch_dma_chan *pd_chan = &pd->channels[i];
  741. pd_chan->chan.device = &pd->dma;
  742. dma_cookie_init(&pd_chan->chan);
  743. pd_chan->membase = &regs->desc[i];
  744. spin_lock_init(&pd_chan->lock);
  745. INIT_LIST_HEAD(&pd_chan->active_list);
  746. INIT_LIST_HEAD(&pd_chan->queue);
  747. INIT_LIST_HEAD(&pd_chan->free_list);
  748. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  749. (unsigned long)pd_chan);
  750. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  751. }
  752. dma_cap_zero(pd->dma.cap_mask);
  753. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  754. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  755. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  756. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  757. pd->dma.device_tx_status = pd_tx_status;
  758. pd->dma.device_issue_pending = pd_issue_pending;
  759. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  760. pd->dma.device_terminate_all = pd_device_terminate_all;
  761. err = dma_async_device_register(&pd->dma);
  762. if (err) {
  763. dev_err(&pdev->dev, "Failed to register DMA device\n");
  764. goto err_free_pool;
  765. }
  766. return 0;
  767. err_free_pool:
  768. pci_pool_destroy(pd->pool);
  769. err_free_irq:
  770. free_irq(pdev->irq, pd);
  771. err_iounmap:
  772. pci_iounmap(pdev, pd->membase);
  773. err_free_res:
  774. pci_release_regions(pdev);
  775. err_disable_pdev:
  776. pci_disable_device(pdev);
  777. err_free_mem:
  778. kfree(pd);
  779. return err;
  780. }
  781. static void pch_dma_remove(struct pci_dev *pdev)
  782. {
  783. struct pch_dma *pd = pci_get_drvdata(pdev);
  784. struct pch_dma_chan *pd_chan;
  785. struct dma_chan *chan, *_c;
  786. if (pd) {
  787. dma_async_device_unregister(&pd->dma);
  788. free_irq(pdev->irq, pd);
  789. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  790. device_node) {
  791. pd_chan = to_pd_chan(chan);
  792. tasklet_kill(&pd_chan->tasklet);
  793. }
  794. pci_pool_destroy(pd->pool);
  795. pci_iounmap(pdev, pd->membase);
  796. pci_release_regions(pdev);
  797. pci_disable_device(pdev);
  798. kfree(pd);
  799. }
  800. }
  801. /* PCI Device ID of DMA device */
  802. #define PCI_VENDOR_ID_ROHM 0x10DB
  803. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  804. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  805. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  806. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  807. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  808. #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
  809. #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
  810. #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
  811. #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
  812. #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
  813. #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
  814. #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
  815. static const struct pci_device_id pch_dma_id_table[] = {
  816. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  817. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  818. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  819. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  820. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  821. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
  822. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
  823. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
  824. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
  825. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
  826. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
  827. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
  828. { 0, },
  829. };
  830. static struct pci_driver pch_dma_driver = {
  831. .name = DRV_NAME,
  832. .id_table = pch_dma_id_table,
  833. .probe = pch_dma_probe,
  834. .remove = pch_dma_remove,
  835. #ifdef CONFIG_PM
  836. .suspend = pch_dma_suspend,
  837. .resume = pch_dma_resume,
  838. #endif
  839. };
  840. module_pci_driver(pch_dma_driver);
  841. MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
  842. "DMA controller driver");
  843. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  844. MODULE_LICENSE("GPL v2");
  845. MODULE_DEVICE_TABLE(pci, pch_dma_id_table);