nbpfaxi.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507
  1. /*
  2. * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
  3. * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/bitmap.h>
  10. #include <linux/bitops.h>
  11. #include <linux/clk.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/dmaengine.h>
  14. #include <linux/err.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/io.h>
  17. #include <linux/log2.h>
  18. #include <linux/module.h>
  19. #include <linux/of.h>
  20. #include <linux/of_device.h>
  21. #include <linux/of_dma.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <dt-bindings/dma/nbpfaxi.h>
  25. #include "dmaengine.h"
  26. #define NBPF_REG_CHAN_OFFSET 0
  27. #define NBPF_REG_CHAN_SIZE 0x40
  28. /* Channel Current Transaction Byte register */
  29. #define NBPF_CHAN_CUR_TR_BYTE 0x20
  30. /* Channel Status register */
  31. #define NBPF_CHAN_STAT 0x24
  32. #define NBPF_CHAN_STAT_EN 1
  33. #define NBPF_CHAN_STAT_TACT 4
  34. #define NBPF_CHAN_STAT_ERR 0x10
  35. #define NBPF_CHAN_STAT_END 0x20
  36. #define NBPF_CHAN_STAT_TC 0x40
  37. #define NBPF_CHAN_STAT_DER 0x400
  38. /* Channel Control register */
  39. #define NBPF_CHAN_CTRL 0x28
  40. #define NBPF_CHAN_CTRL_SETEN 1
  41. #define NBPF_CHAN_CTRL_CLREN 2
  42. #define NBPF_CHAN_CTRL_STG 4
  43. #define NBPF_CHAN_CTRL_SWRST 8
  44. #define NBPF_CHAN_CTRL_CLRRQ 0x10
  45. #define NBPF_CHAN_CTRL_CLREND 0x20
  46. #define NBPF_CHAN_CTRL_CLRTC 0x40
  47. #define NBPF_CHAN_CTRL_SETSUS 0x100
  48. #define NBPF_CHAN_CTRL_CLRSUS 0x200
  49. /* Channel Configuration register */
  50. #define NBPF_CHAN_CFG 0x2c
  51. #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
  52. #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
  53. #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  54. #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  55. #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  56. #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  57. #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  58. #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
  59. #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
  60. #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
  61. #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
  62. #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
  63. #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
  64. #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
  65. #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
  66. #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
  67. #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
  68. #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
  69. #define NBPF_CHAN_NXLA 0x38
  70. #define NBPF_CHAN_CRLA 0x3c
  71. /* Link Header field */
  72. #define NBPF_HEADER_LV 1
  73. #define NBPF_HEADER_LE 2
  74. #define NBPF_HEADER_WBD 4
  75. #define NBPF_HEADER_DIM 8
  76. #define NBPF_CTRL 0x300
  77. #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
  78. #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  79. #define NBPF_DSTAT_ER 0x314
  80. #define NBPF_DSTAT_END 0x318
  81. #define NBPF_DMA_BUSWIDTHS \
  82. (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  83. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  84. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  85. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  86. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
  87. struct nbpf_config {
  88. int num_channels;
  89. int buffer_size;
  90. };
  91. /*
  92. * We've got 3 types of objects, used to describe DMA transfers:
  93. * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
  94. * in it, used to communicate with the user
  95. * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
  96. * queuing, these must be DMAable, using either the streaming DMA API or
  97. * allocated from coherent memory - one per SG segment
  98. * 3. one per SG segment descriptors, used to manage HW link descriptors from
  99. * (2). They do not have to be DMAable. They can either be (a) allocated
  100. * together with link descriptors as mixed (DMA / CPU) objects, or (b)
  101. * separately. Even if allocated separately it would be best to link them
  102. * to link descriptors once during channel resource allocation and always
  103. * use them as a single object.
  104. * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
  105. * treated as a single SG segment descriptor.
  106. */
  107. struct nbpf_link_reg {
  108. u32 header;
  109. u32 src_addr;
  110. u32 dst_addr;
  111. u32 transaction_size;
  112. u32 config;
  113. u32 interval;
  114. u32 extension;
  115. u32 next;
  116. } __packed;
  117. struct nbpf_device;
  118. struct nbpf_channel;
  119. struct nbpf_desc;
  120. struct nbpf_link_desc {
  121. struct nbpf_link_reg *hwdesc;
  122. dma_addr_t hwdesc_dma_addr;
  123. struct nbpf_desc *desc;
  124. struct list_head node;
  125. };
  126. /**
  127. * struct nbpf_desc - DMA transfer descriptor
  128. * @async_tx: dmaengine object
  129. * @user_wait: waiting for a user ack
  130. * @length: total transfer length
  131. * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
  132. * @node: member in channel descriptor lists
  133. */
  134. struct nbpf_desc {
  135. struct dma_async_tx_descriptor async_tx;
  136. bool user_wait;
  137. size_t length;
  138. struct nbpf_channel *chan;
  139. struct list_head sg;
  140. struct list_head node;
  141. };
  142. /* Take a wild guess: allocate 4 segments per descriptor */
  143. #define NBPF_SEGMENTS_PER_DESC 4
  144. #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
  145. (sizeof(struct nbpf_desc) + \
  146. NBPF_SEGMENTS_PER_DESC * \
  147. (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
  148. #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
  149. struct nbpf_desc_page {
  150. struct list_head node;
  151. struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
  152. struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
  153. struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
  154. };
  155. /**
  156. * struct nbpf_channel - one DMAC channel
  157. * @dma_chan: standard dmaengine channel object
  158. * @base: register address base
  159. * @nbpf: DMAC
  160. * @name: IRQ name
  161. * @irq: IRQ number
  162. * @slave_addr: address for slave DMA
  163. * @slave_width:slave data size in bytes
  164. * @slave_burst:maximum slave burst size in bytes
  165. * @terminal: DMA terminal, assigned to this channel
  166. * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
  167. * @flags: configuration flags from DT
  168. * @lock: protect descriptor lists
  169. * @free_links: list of free link descriptors
  170. * @free: list of free descriptors
  171. * @queued: list of queued descriptors
  172. * @active: list of descriptors, scheduled for processing
  173. * @done: list of completed descriptors, waiting post-processing
  174. * @desc_page: list of additionally allocated descriptor pages - if any
  175. */
  176. struct nbpf_channel {
  177. struct dma_chan dma_chan;
  178. struct tasklet_struct tasklet;
  179. void __iomem *base;
  180. struct nbpf_device *nbpf;
  181. char name[16];
  182. int irq;
  183. dma_addr_t slave_src_addr;
  184. size_t slave_src_width;
  185. size_t slave_src_burst;
  186. dma_addr_t slave_dst_addr;
  187. size_t slave_dst_width;
  188. size_t slave_dst_burst;
  189. unsigned int terminal;
  190. u32 dmarq_cfg;
  191. unsigned long flags;
  192. spinlock_t lock;
  193. struct list_head free_links;
  194. struct list_head free;
  195. struct list_head queued;
  196. struct list_head active;
  197. struct list_head done;
  198. struct list_head desc_page;
  199. struct nbpf_desc *running;
  200. bool paused;
  201. };
  202. struct nbpf_device {
  203. struct dma_device dma_dev;
  204. void __iomem *base;
  205. struct clk *clk;
  206. const struct nbpf_config *config;
  207. struct nbpf_channel chan[];
  208. };
  209. enum nbpf_model {
  210. NBPF1B4,
  211. NBPF1B8,
  212. NBPF1B16,
  213. NBPF4B4,
  214. NBPF4B8,
  215. NBPF4B16,
  216. NBPF8B4,
  217. NBPF8B8,
  218. NBPF8B16,
  219. };
  220. static struct nbpf_config nbpf_cfg[] = {
  221. [NBPF1B4] = {
  222. .num_channels = 1,
  223. .buffer_size = 4,
  224. },
  225. [NBPF1B8] = {
  226. .num_channels = 1,
  227. .buffer_size = 8,
  228. },
  229. [NBPF1B16] = {
  230. .num_channels = 1,
  231. .buffer_size = 16,
  232. },
  233. [NBPF4B4] = {
  234. .num_channels = 4,
  235. .buffer_size = 4,
  236. },
  237. [NBPF4B8] = {
  238. .num_channels = 4,
  239. .buffer_size = 8,
  240. },
  241. [NBPF4B16] = {
  242. .num_channels = 4,
  243. .buffer_size = 16,
  244. },
  245. [NBPF8B4] = {
  246. .num_channels = 8,
  247. .buffer_size = 4,
  248. },
  249. [NBPF8B8] = {
  250. .num_channels = 8,
  251. .buffer_size = 8,
  252. },
  253. [NBPF8B16] = {
  254. .num_channels = 8,
  255. .buffer_size = 16,
  256. },
  257. };
  258. #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
  259. /*
  260. * dmaengine drivers seem to have a lot in common and instead of sharing more
  261. * code, they reimplement those common algorithms independently. In this driver
  262. * we try to separate the hardware-specific part from the (largely) generic
  263. * part. This improves code readability and makes it possible in the future to
  264. * reuse the generic code in form of a helper library. That generic code should
  265. * be suitable for various DMA controllers, using transfer descriptors in RAM
  266. * and pushing one SG list at a time to the DMA controller.
  267. */
  268. /* Hardware-specific part */
  269. static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
  270. unsigned int offset)
  271. {
  272. u32 data = ioread32(chan->base + offset);
  273. dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
  274. __func__, chan->base, offset, data);
  275. return data;
  276. }
  277. static inline void nbpf_chan_write(struct nbpf_channel *chan,
  278. unsigned int offset, u32 data)
  279. {
  280. iowrite32(data, chan->base + offset);
  281. dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
  282. __func__, chan->base, offset, data);
  283. }
  284. static inline u32 nbpf_read(struct nbpf_device *nbpf,
  285. unsigned int offset)
  286. {
  287. u32 data = ioread32(nbpf->base + offset);
  288. dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
  289. __func__, nbpf->base, offset, data);
  290. return data;
  291. }
  292. static inline void nbpf_write(struct nbpf_device *nbpf,
  293. unsigned int offset, u32 data)
  294. {
  295. iowrite32(data, nbpf->base + offset);
  296. dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
  297. __func__, nbpf->base, offset, data);
  298. }
  299. static void nbpf_chan_halt(struct nbpf_channel *chan)
  300. {
  301. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
  302. }
  303. static bool nbpf_status_get(struct nbpf_channel *chan)
  304. {
  305. u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
  306. return status & BIT(chan - chan->nbpf->chan);
  307. }
  308. static void nbpf_status_ack(struct nbpf_channel *chan)
  309. {
  310. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
  311. }
  312. static u32 nbpf_error_get(struct nbpf_device *nbpf)
  313. {
  314. return nbpf_read(nbpf, NBPF_DSTAT_ER);
  315. }
  316. static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
  317. {
  318. return nbpf->chan + __ffs(error);
  319. }
  320. static void nbpf_error_clear(struct nbpf_channel *chan)
  321. {
  322. u32 status;
  323. int i;
  324. /* Stop the channel, make sure DMA has been aborted */
  325. nbpf_chan_halt(chan);
  326. for (i = 1000; i; i--) {
  327. status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
  328. if (!(status & NBPF_CHAN_STAT_TACT))
  329. break;
  330. cpu_relax();
  331. }
  332. if (!i)
  333. dev_err(chan->dma_chan.device->dev,
  334. "%s(): abort timeout, channel status 0x%x\n", __func__, status);
  335. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
  336. }
  337. static int nbpf_start(struct nbpf_desc *desc)
  338. {
  339. struct nbpf_channel *chan = desc->chan;
  340. struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
  341. nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
  342. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
  343. chan->paused = false;
  344. /* Software trigger MEMCPY - only MEMCPY uses the block mode */
  345. if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
  346. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
  347. dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
  348. nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
  349. return 0;
  350. }
  351. static void nbpf_chan_prepare(struct nbpf_channel *chan)
  352. {
  353. chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
  354. (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
  355. (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
  356. NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
  357. chan->terminal;
  358. }
  359. static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
  360. {
  361. /* Don't output DMAACK */
  362. chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
  363. chan->terminal = 0;
  364. chan->flags = 0;
  365. }
  366. static void nbpf_chan_configure(struct nbpf_channel *chan)
  367. {
  368. /*
  369. * We assume, that only the link mode and DMA request line configuration
  370. * have to be set in the configuration register manually. Dynamic
  371. * per-transfer configuration will be loaded from transfer descriptors.
  372. */
  373. nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
  374. }
  375. static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
  376. {
  377. /* Maximum supported bursts depend on the buffer size */
  378. return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
  379. }
  380. static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
  381. enum dma_slave_buswidth width, u32 burst)
  382. {
  383. size_t size;
  384. if (!burst)
  385. burst = 1;
  386. switch (width) {
  387. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  388. size = 8 * burst;
  389. break;
  390. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  391. size = 4 * burst;
  392. break;
  393. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  394. size = 2 * burst;
  395. break;
  396. default:
  397. pr_warn("%s(): invalid bus width %u\n", __func__, width);
  398. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  399. size = burst;
  400. }
  401. return nbpf_xfer_ds(nbpf, size);
  402. }
  403. /*
  404. * We need a way to recognise slaves, whose data is sent "raw" over the bus,
  405. * i.e. it isn't known in advance how many bytes will be received. Therefore
  406. * the slave driver has to provide a "large enough" buffer and either read the
  407. * buffer, when it is full, or detect, that some data has arrived, then wait for
  408. * a timeout, if no more data arrives - receive what's already there. We want to
  409. * handle such slaves in a special way to allow an optimised mode for other
  410. * users, for whom the amount of data is known in advance. So far there's no way
  411. * to recognise such slaves. We use a data-width check to distinguish between
  412. * the SD host and the PL011 UART.
  413. */
  414. static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
  415. enum dma_transfer_direction direction,
  416. dma_addr_t src, dma_addr_t dst, size_t size, bool last)
  417. {
  418. struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
  419. struct nbpf_desc *desc = ldesc->desc;
  420. struct nbpf_channel *chan = desc->chan;
  421. struct device *dev = chan->dma_chan.device->dev;
  422. size_t mem_xfer, slave_xfer;
  423. bool can_burst;
  424. hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
  425. (last ? NBPF_HEADER_LE : 0);
  426. hwdesc->src_addr = src;
  427. hwdesc->dst_addr = dst;
  428. hwdesc->transaction_size = size;
  429. /*
  430. * set config: SAD, DAD, DDS, SDS, etc.
  431. * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
  432. * but it is important to have transaction size a multiple of both
  433. * receiver and transmitter transfer sizes. It is also possible to use
  434. * different RAM and device transfer sizes, and it does work well with
  435. * some devices, e.g. with V08R07S01E SD host controllers, which can use
  436. * 128 byte transfers. But this doesn't work with other devices,
  437. * especially when the transaction size is unknown. This is the case,
  438. * e.g. with serial drivers like amba-pl011.c. For reception it sets up
  439. * the transaction size of 4K and if fewer bytes are received, it
  440. * pauses DMA and reads out data received via DMA as well as those left
  441. * in the Rx FIFO. For this to work with the RAM side using burst
  442. * transfers we enable the SBE bit and terminate the transfer in our
  443. * .device_pause handler.
  444. */
  445. mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
  446. switch (direction) {
  447. case DMA_DEV_TO_MEM:
  448. can_burst = chan->slave_src_width >= 3;
  449. slave_xfer = min(mem_xfer, can_burst ?
  450. chan->slave_src_burst : chan->slave_src_width);
  451. /*
  452. * Is the slave narrower than 64 bits, i.e. isn't using the full
  453. * bus width and cannot use bursts?
  454. */
  455. if (mem_xfer > chan->slave_src_burst && !can_burst)
  456. mem_xfer = chan->slave_src_burst;
  457. /* Device-to-RAM DMA is unreliable without REQD set */
  458. hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
  459. (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
  460. NBPF_CHAN_CFG_SBE;
  461. break;
  462. case DMA_MEM_TO_DEV:
  463. slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
  464. chan->slave_dst_burst : chan->slave_dst_width);
  465. hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
  466. (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
  467. break;
  468. case DMA_MEM_TO_MEM:
  469. hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
  470. (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
  471. (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
  472. break;
  473. default:
  474. return -EINVAL;
  475. }
  476. hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
  477. NBPF_CHAN_CFG_DMS;
  478. dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
  479. __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
  480. hwdesc->config, size, &src, &dst);
  481. dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
  482. DMA_TO_DEVICE);
  483. return 0;
  484. }
  485. static size_t nbpf_bytes_left(struct nbpf_channel *chan)
  486. {
  487. return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
  488. }
  489. static void nbpf_configure(struct nbpf_device *nbpf)
  490. {
  491. nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
  492. }
  493. /* Generic part */
  494. /* DMA ENGINE functions */
  495. static void nbpf_issue_pending(struct dma_chan *dchan)
  496. {
  497. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  498. unsigned long flags;
  499. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  500. spin_lock_irqsave(&chan->lock, flags);
  501. if (list_empty(&chan->queued))
  502. goto unlock;
  503. list_splice_tail_init(&chan->queued, &chan->active);
  504. if (!chan->running) {
  505. struct nbpf_desc *desc = list_first_entry(&chan->active,
  506. struct nbpf_desc, node);
  507. if (!nbpf_start(desc))
  508. chan->running = desc;
  509. }
  510. unlock:
  511. spin_unlock_irqrestore(&chan->lock, flags);
  512. }
  513. static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
  514. dma_cookie_t cookie, struct dma_tx_state *state)
  515. {
  516. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  517. enum dma_status status = dma_cookie_status(dchan, cookie, state);
  518. if (state) {
  519. dma_cookie_t running;
  520. unsigned long flags;
  521. spin_lock_irqsave(&chan->lock, flags);
  522. running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
  523. if (cookie == running) {
  524. state->residue = nbpf_bytes_left(chan);
  525. dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
  526. state->residue);
  527. } else if (status == DMA_IN_PROGRESS) {
  528. struct nbpf_desc *desc;
  529. bool found = false;
  530. list_for_each_entry(desc, &chan->active, node)
  531. if (desc->async_tx.cookie == cookie) {
  532. found = true;
  533. break;
  534. }
  535. if (!found)
  536. list_for_each_entry(desc, &chan->queued, node)
  537. if (desc->async_tx.cookie == cookie) {
  538. found = true;
  539. break;
  540. }
  541. state->residue = found ? desc->length : 0;
  542. }
  543. spin_unlock_irqrestore(&chan->lock, flags);
  544. }
  545. if (chan->paused)
  546. status = DMA_PAUSED;
  547. return status;
  548. }
  549. static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
  550. {
  551. struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
  552. struct nbpf_channel *chan = desc->chan;
  553. unsigned long flags;
  554. dma_cookie_t cookie;
  555. spin_lock_irqsave(&chan->lock, flags);
  556. cookie = dma_cookie_assign(tx);
  557. list_add_tail(&desc->node, &chan->queued);
  558. spin_unlock_irqrestore(&chan->lock, flags);
  559. dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
  560. return cookie;
  561. }
  562. static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
  563. {
  564. struct dma_chan *dchan = &chan->dma_chan;
  565. struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
  566. struct nbpf_link_desc *ldesc;
  567. struct nbpf_link_reg *hwdesc;
  568. struct nbpf_desc *desc;
  569. LIST_HEAD(head);
  570. LIST_HEAD(lhead);
  571. int i;
  572. struct device *dev = dchan->device->dev;
  573. if (!dpage)
  574. return -ENOMEM;
  575. dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
  576. __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
  577. for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
  578. i < ARRAY_SIZE(dpage->ldesc);
  579. i++, ldesc++, hwdesc++) {
  580. ldesc->hwdesc = hwdesc;
  581. list_add_tail(&ldesc->node, &lhead);
  582. ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
  583. hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
  584. dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
  585. hwdesc, &ldesc->hwdesc_dma_addr);
  586. }
  587. for (i = 0, desc = dpage->desc;
  588. i < ARRAY_SIZE(dpage->desc);
  589. i++, desc++) {
  590. dma_async_tx_descriptor_init(&desc->async_tx, dchan);
  591. desc->async_tx.tx_submit = nbpf_tx_submit;
  592. desc->chan = chan;
  593. INIT_LIST_HEAD(&desc->sg);
  594. list_add_tail(&desc->node, &head);
  595. }
  596. /*
  597. * This function cannot be called from interrupt context, so, no need to
  598. * save flags
  599. */
  600. spin_lock_irq(&chan->lock);
  601. list_splice_tail(&lhead, &chan->free_links);
  602. list_splice_tail(&head, &chan->free);
  603. list_add(&dpage->node, &chan->desc_page);
  604. spin_unlock_irq(&chan->lock);
  605. return ARRAY_SIZE(dpage->desc);
  606. }
  607. static void nbpf_desc_put(struct nbpf_desc *desc)
  608. {
  609. struct nbpf_channel *chan = desc->chan;
  610. struct nbpf_link_desc *ldesc, *tmp;
  611. unsigned long flags;
  612. spin_lock_irqsave(&chan->lock, flags);
  613. list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
  614. list_move(&ldesc->node, &chan->free_links);
  615. list_add(&desc->node, &chan->free);
  616. spin_unlock_irqrestore(&chan->lock, flags);
  617. }
  618. static void nbpf_scan_acked(struct nbpf_channel *chan)
  619. {
  620. struct nbpf_desc *desc, *tmp;
  621. unsigned long flags;
  622. LIST_HEAD(head);
  623. spin_lock_irqsave(&chan->lock, flags);
  624. list_for_each_entry_safe(desc, tmp, &chan->done, node)
  625. if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
  626. list_move(&desc->node, &head);
  627. desc->user_wait = false;
  628. }
  629. spin_unlock_irqrestore(&chan->lock, flags);
  630. list_for_each_entry_safe(desc, tmp, &head, node) {
  631. list_del(&desc->node);
  632. nbpf_desc_put(desc);
  633. }
  634. }
  635. /*
  636. * We have to allocate descriptors with the channel lock dropped. This means,
  637. * before we re-acquire the lock buffers can be taken already, so we have to
  638. * re-check after re-acquiring the lock and possibly retry, if buffers are gone
  639. * again.
  640. */
  641. static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
  642. {
  643. struct nbpf_desc *desc = NULL;
  644. struct nbpf_link_desc *ldesc, *prev = NULL;
  645. nbpf_scan_acked(chan);
  646. spin_lock_irq(&chan->lock);
  647. do {
  648. int i = 0, ret;
  649. if (list_empty(&chan->free)) {
  650. /* No more free descriptors */
  651. spin_unlock_irq(&chan->lock);
  652. ret = nbpf_desc_page_alloc(chan);
  653. if (ret < 0)
  654. return NULL;
  655. spin_lock_irq(&chan->lock);
  656. continue;
  657. }
  658. desc = list_first_entry(&chan->free, struct nbpf_desc, node);
  659. list_del(&desc->node);
  660. do {
  661. if (list_empty(&chan->free_links)) {
  662. /* No more free link descriptors */
  663. spin_unlock_irq(&chan->lock);
  664. ret = nbpf_desc_page_alloc(chan);
  665. if (ret < 0) {
  666. nbpf_desc_put(desc);
  667. return NULL;
  668. }
  669. spin_lock_irq(&chan->lock);
  670. continue;
  671. }
  672. ldesc = list_first_entry(&chan->free_links,
  673. struct nbpf_link_desc, node);
  674. ldesc->desc = desc;
  675. if (prev)
  676. prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
  677. prev = ldesc;
  678. list_move_tail(&ldesc->node, &desc->sg);
  679. i++;
  680. } while (i < len);
  681. } while (!desc);
  682. prev->hwdesc->next = 0;
  683. spin_unlock_irq(&chan->lock);
  684. return desc;
  685. }
  686. static void nbpf_chan_idle(struct nbpf_channel *chan)
  687. {
  688. struct nbpf_desc *desc, *tmp;
  689. unsigned long flags;
  690. LIST_HEAD(head);
  691. spin_lock_irqsave(&chan->lock, flags);
  692. list_splice_init(&chan->done, &head);
  693. list_splice_init(&chan->active, &head);
  694. list_splice_init(&chan->queued, &head);
  695. chan->running = NULL;
  696. spin_unlock_irqrestore(&chan->lock, flags);
  697. list_for_each_entry_safe(desc, tmp, &head, node) {
  698. dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
  699. __func__, desc, desc->async_tx.cookie);
  700. list_del(&desc->node);
  701. nbpf_desc_put(desc);
  702. }
  703. }
  704. static int nbpf_pause(struct dma_chan *dchan)
  705. {
  706. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  707. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  708. chan->paused = true;
  709. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
  710. /* See comment in nbpf_prep_one() */
  711. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
  712. return 0;
  713. }
  714. static int nbpf_terminate_all(struct dma_chan *dchan)
  715. {
  716. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  717. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  718. dev_dbg(dchan->device->dev, "Terminating\n");
  719. nbpf_chan_halt(chan);
  720. nbpf_chan_idle(chan);
  721. return 0;
  722. }
  723. static int nbpf_config(struct dma_chan *dchan,
  724. struct dma_slave_config *config)
  725. {
  726. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  727. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  728. /*
  729. * We could check config->slave_id to match chan->terminal here,
  730. * but with DT they would be coming from the same source, so
  731. * such a check would be superflous
  732. */
  733. chan->slave_dst_addr = config->dst_addr;
  734. chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
  735. config->dst_addr_width, 1);
  736. chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
  737. config->dst_addr_width,
  738. config->dst_maxburst);
  739. chan->slave_src_addr = config->src_addr;
  740. chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
  741. config->src_addr_width, 1);
  742. chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
  743. config->src_addr_width,
  744. config->src_maxburst);
  745. return 0;
  746. }
  747. static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
  748. struct scatterlist *src_sg, struct scatterlist *dst_sg,
  749. size_t len, enum dma_transfer_direction direction,
  750. unsigned long flags)
  751. {
  752. struct nbpf_link_desc *ldesc;
  753. struct scatterlist *mem_sg;
  754. struct nbpf_desc *desc;
  755. bool inc_src, inc_dst;
  756. size_t data_len = 0;
  757. int i = 0;
  758. switch (direction) {
  759. case DMA_DEV_TO_MEM:
  760. mem_sg = dst_sg;
  761. inc_src = false;
  762. inc_dst = true;
  763. break;
  764. case DMA_MEM_TO_DEV:
  765. mem_sg = src_sg;
  766. inc_src = true;
  767. inc_dst = false;
  768. break;
  769. default:
  770. case DMA_MEM_TO_MEM:
  771. mem_sg = src_sg;
  772. inc_src = true;
  773. inc_dst = true;
  774. }
  775. desc = nbpf_desc_get(chan, len);
  776. if (!desc)
  777. return NULL;
  778. desc->async_tx.flags = flags;
  779. desc->async_tx.cookie = -EBUSY;
  780. desc->user_wait = false;
  781. /*
  782. * This is a private descriptor list, and we own the descriptor. No need
  783. * to lock.
  784. */
  785. list_for_each_entry(ldesc, &desc->sg, node) {
  786. int ret = nbpf_prep_one(ldesc, direction,
  787. sg_dma_address(src_sg),
  788. sg_dma_address(dst_sg),
  789. sg_dma_len(mem_sg),
  790. i == len - 1);
  791. if (ret < 0) {
  792. nbpf_desc_put(desc);
  793. return NULL;
  794. }
  795. data_len += sg_dma_len(mem_sg);
  796. if (inc_src)
  797. src_sg = sg_next(src_sg);
  798. if (inc_dst)
  799. dst_sg = sg_next(dst_sg);
  800. mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
  801. i++;
  802. }
  803. desc->length = data_len;
  804. /* The user has to return the descriptor to us ASAP via .tx_submit() */
  805. return &desc->async_tx;
  806. }
  807. static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
  808. struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
  809. size_t len, unsigned long flags)
  810. {
  811. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  812. struct scatterlist dst_sg;
  813. struct scatterlist src_sg;
  814. sg_init_table(&dst_sg, 1);
  815. sg_init_table(&src_sg, 1);
  816. sg_dma_address(&dst_sg) = dst;
  817. sg_dma_address(&src_sg) = src;
  818. sg_dma_len(&dst_sg) = len;
  819. sg_dma_len(&src_sg) = len;
  820. dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
  821. __func__, len, &src, &dst);
  822. return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
  823. DMA_MEM_TO_MEM, flags);
  824. }
  825. static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
  826. struct dma_chan *dchan,
  827. struct scatterlist *dst_sg, unsigned int dst_nents,
  828. struct scatterlist *src_sg, unsigned int src_nents,
  829. unsigned long flags)
  830. {
  831. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  832. if (dst_nents != src_nents)
  833. return NULL;
  834. return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
  835. DMA_MEM_TO_MEM, flags);
  836. }
  837. static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
  838. struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
  839. enum dma_transfer_direction direction, unsigned long flags, void *context)
  840. {
  841. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  842. struct scatterlist slave_sg;
  843. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  844. sg_init_table(&slave_sg, 1);
  845. switch (direction) {
  846. case DMA_MEM_TO_DEV:
  847. sg_dma_address(&slave_sg) = chan->slave_dst_addr;
  848. return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
  849. direction, flags);
  850. case DMA_DEV_TO_MEM:
  851. sg_dma_address(&slave_sg) = chan->slave_src_addr;
  852. return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
  853. direction, flags);
  854. default:
  855. return NULL;
  856. }
  857. }
  858. static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
  859. {
  860. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  861. int ret;
  862. INIT_LIST_HEAD(&chan->free);
  863. INIT_LIST_HEAD(&chan->free_links);
  864. INIT_LIST_HEAD(&chan->queued);
  865. INIT_LIST_HEAD(&chan->active);
  866. INIT_LIST_HEAD(&chan->done);
  867. ret = nbpf_desc_page_alloc(chan);
  868. if (ret < 0)
  869. return ret;
  870. dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
  871. chan->terminal);
  872. nbpf_chan_configure(chan);
  873. return ret;
  874. }
  875. static void nbpf_free_chan_resources(struct dma_chan *dchan)
  876. {
  877. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  878. struct nbpf_desc_page *dpage, *tmp;
  879. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  880. nbpf_chan_halt(chan);
  881. nbpf_chan_idle(chan);
  882. /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
  883. nbpf_chan_prepare_default(chan);
  884. list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
  885. struct nbpf_link_desc *ldesc;
  886. int i;
  887. list_del(&dpage->node);
  888. for (i = 0, ldesc = dpage->ldesc;
  889. i < ARRAY_SIZE(dpage->ldesc);
  890. i++, ldesc++)
  891. dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
  892. sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
  893. free_page((unsigned long)dpage);
  894. }
  895. }
  896. static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
  897. struct of_dma *ofdma)
  898. {
  899. struct nbpf_device *nbpf = ofdma->of_dma_data;
  900. struct dma_chan *dchan;
  901. struct nbpf_channel *chan;
  902. if (dma_spec->args_count != 2)
  903. return NULL;
  904. dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
  905. if (!dchan)
  906. return NULL;
  907. dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
  908. dma_spec->np->name);
  909. chan = nbpf_to_chan(dchan);
  910. chan->terminal = dma_spec->args[0];
  911. chan->flags = dma_spec->args[1];
  912. nbpf_chan_prepare(chan);
  913. nbpf_chan_configure(chan);
  914. return dchan;
  915. }
  916. static void nbpf_chan_tasklet(unsigned long data)
  917. {
  918. struct nbpf_channel *chan = (struct nbpf_channel *)data;
  919. struct nbpf_desc *desc, *tmp;
  920. dma_async_tx_callback callback;
  921. void *param;
  922. while (!list_empty(&chan->done)) {
  923. bool found = false, must_put, recycling = false;
  924. spin_lock_irq(&chan->lock);
  925. list_for_each_entry_safe(desc, tmp, &chan->done, node) {
  926. if (!desc->user_wait) {
  927. /* Newly completed descriptor, have to process */
  928. found = true;
  929. break;
  930. } else if (async_tx_test_ack(&desc->async_tx)) {
  931. /*
  932. * This descriptor was waiting for a user ACK,
  933. * it can be recycled now.
  934. */
  935. list_del(&desc->node);
  936. spin_unlock_irq(&chan->lock);
  937. nbpf_desc_put(desc);
  938. recycling = true;
  939. break;
  940. }
  941. }
  942. if (recycling)
  943. continue;
  944. if (!found) {
  945. /* This can happen if TERMINATE_ALL has been called */
  946. spin_unlock_irq(&chan->lock);
  947. break;
  948. }
  949. dma_cookie_complete(&desc->async_tx);
  950. /*
  951. * With released lock we cannot dereference desc, maybe it's
  952. * still on the "done" list
  953. */
  954. if (async_tx_test_ack(&desc->async_tx)) {
  955. list_del(&desc->node);
  956. must_put = true;
  957. } else {
  958. desc->user_wait = true;
  959. must_put = false;
  960. }
  961. callback = desc->async_tx.callback;
  962. param = desc->async_tx.callback_param;
  963. /* ack and callback completed descriptor */
  964. spin_unlock_irq(&chan->lock);
  965. if (callback)
  966. callback(param);
  967. if (must_put)
  968. nbpf_desc_put(desc);
  969. }
  970. }
  971. static irqreturn_t nbpf_chan_irq(int irq, void *dev)
  972. {
  973. struct nbpf_channel *chan = dev;
  974. bool done = nbpf_status_get(chan);
  975. struct nbpf_desc *desc;
  976. irqreturn_t ret;
  977. bool bh = false;
  978. if (!done)
  979. return IRQ_NONE;
  980. nbpf_status_ack(chan);
  981. dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
  982. spin_lock(&chan->lock);
  983. desc = chan->running;
  984. if (WARN_ON(!desc)) {
  985. ret = IRQ_NONE;
  986. goto unlock;
  987. } else {
  988. ret = IRQ_HANDLED;
  989. bh = true;
  990. }
  991. list_move_tail(&desc->node, &chan->done);
  992. chan->running = NULL;
  993. if (!list_empty(&chan->active)) {
  994. desc = list_first_entry(&chan->active,
  995. struct nbpf_desc, node);
  996. if (!nbpf_start(desc))
  997. chan->running = desc;
  998. }
  999. unlock:
  1000. spin_unlock(&chan->lock);
  1001. if (bh)
  1002. tasklet_schedule(&chan->tasklet);
  1003. return ret;
  1004. }
  1005. static irqreturn_t nbpf_err_irq(int irq, void *dev)
  1006. {
  1007. struct nbpf_device *nbpf = dev;
  1008. u32 error = nbpf_error_get(nbpf);
  1009. dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
  1010. if (!error)
  1011. return IRQ_NONE;
  1012. do {
  1013. struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
  1014. /* On error: abort all queued transfers, no callback */
  1015. nbpf_error_clear(chan);
  1016. nbpf_chan_idle(chan);
  1017. error = nbpf_error_get(nbpf);
  1018. } while (error);
  1019. return IRQ_HANDLED;
  1020. }
  1021. static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
  1022. {
  1023. struct dma_device *dma_dev = &nbpf->dma_dev;
  1024. struct nbpf_channel *chan = nbpf->chan + n;
  1025. int ret;
  1026. chan->nbpf = nbpf;
  1027. chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
  1028. INIT_LIST_HEAD(&chan->desc_page);
  1029. spin_lock_init(&chan->lock);
  1030. chan->dma_chan.device = dma_dev;
  1031. dma_cookie_init(&chan->dma_chan);
  1032. nbpf_chan_prepare_default(chan);
  1033. dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
  1034. snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
  1035. tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
  1036. ret = devm_request_irq(dma_dev->dev, chan->irq,
  1037. nbpf_chan_irq, IRQF_SHARED,
  1038. chan->name, chan);
  1039. if (ret < 0)
  1040. return ret;
  1041. /* Add the channel to DMA device channel list */
  1042. list_add_tail(&chan->dma_chan.device_node,
  1043. &dma_dev->channels);
  1044. return 0;
  1045. }
  1046. static const struct of_device_id nbpf_match[] = {
  1047. {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
  1048. {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
  1049. {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
  1050. {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
  1051. {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
  1052. {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
  1053. {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
  1054. {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
  1055. {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
  1056. {}
  1057. };
  1058. MODULE_DEVICE_TABLE(of, nbpf_match);
  1059. static int nbpf_probe(struct platform_device *pdev)
  1060. {
  1061. struct device *dev = &pdev->dev;
  1062. const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
  1063. struct device_node *np = dev->of_node;
  1064. struct nbpf_device *nbpf;
  1065. struct dma_device *dma_dev;
  1066. struct resource *iomem, *irq_res;
  1067. const struct nbpf_config *cfg;
  1068. int num_channels;
  1069. int ret, irq, eirq, i;
  1070. int irqbuf[9] /* maximum 8 channels + error IRQ */;
  1071. unsigned int irqs = 0;
  1072. BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
  1073. /* DT only */
  1074. if (!np || !of_id || !of_id->data)
  1075. return -ENODEV;
  1076. cfg = of_id->data;
  1077. num_channels = cfg->num_channels;
  1078. nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
  1079. sizeof(nbpf->chan[0]), GFP_KERNEL);
  1080. if (!nbpf) {
  1081. dev_err(dev, "Memory allocation failed\n");
  1082. return -ENOMEM;
  1083. }
  1084. dma_dev = &nbpf->dma_dev;
  1085. dma_dev->dev = dev;
  1086. iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1087. nbpf->base = devm_ioremap_resource(dev, iomem);
  1088. if (IS_ERR(nbpf->base))
  1089. return PTR_ERR(nbpf->base);
  1090. nbpf->clk = devm_clk_get(dev, NULL);
  1091. if (IS_ERR(nbpf->clk))
  1092. return PTR_ERR(nbpf->clk);
  1093. nbpf->config = cfg;
  1094. for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
  1095. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
  1096. if (!irq_res)
  1097. break;
  1098. for (irq = irq_res->start; irq <= irq_res->end;
  1099. irq++, irqs++)
  1100. irqbuf[irqs] = irq;
  1101. }
  1102. /*
  1103. * 3 IRQ resource schemes are supported:
  1104. * 1. 1 shared IRQ for error and all channels
  1105. * 2. 2 IRQs: one for error and one shared for all channels
  1106. * 3. 1 IRQ for error and an own IRQ for each channel
  1107. */
  1108. if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
  1109. return -ENXIO;
  1110. if (irqs == 1) {
  1111. eirq = irqbuf[0];
  1112. for (i = 0; i <= num_channels; i++)
  1113. nbpf->chan[i].irq = irqbuf[0];
  1114. } else {
  1115. eirq = platform_get_irq_byname(pdev, "error");
  1116. if (eirq < 0)
  1117. return eirq;
  1118. if (irqs == num_channels + 1) {
  1119. struct nbpf_channel *chan;
  1120. for (i = 0, chan = nbpf->chan; i <= num_channels;
  1121. i++, chan++) {
  1122. /* Skip the error IRQ */
  1123. if (irqbuf[i] == eirq)
  1124. i++;
  1125. chan->irq = irqbuf[i];
  1126. }
  1127. if (chan != nbpf->chan + num_channels)
  1128. return -EINVAL;
  1129. } else {
  1130. /* 2 IRQs and more than one channel */
  1131. if (irqbuf[0] == eirq)
  1132. irq = irqbuf[1];
  1133. else
  1134. irq = irqbuf[0];
  1135. for (i = 0; i <= num_channels; i++)
  1136. nbpf->chan[i].irq = irq;
  1137. }
  1138. }
  1139. ret = devm_request_irq(dev, eirq, nbpf_err_irq,
  1140. IRQF_SHARED, "dma error", nbpf);
  1141. if (ret < 0)
  1142. return ret;
  1143. INIT_LIST_HEAD(&dma_dev->channels);
  1144. /* Create DMA Channel */
  1145. for (i = 0; i < num_channels; i++) {
  1146. ret = nbpf_chan_probe(nbpf, i);
  1147. if (ret < 0)
  1148. return ret;
  1149. }
  1150. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  1151. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  1152. dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
  1153. dma_cap_set(DMA_SG, dma_dev->cap_mask);
  1154. /* Common and MEMCPY operations */
  1155. dma_dev->device_alloc_chan_resources
  1156. = nbpf_alloc_chan_resources;
  1157. dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
  1158. dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
  1159. dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
  1160. dma_dev->device_tx_status = nbpf_tx_status;
  1161. dma_dev->device_issue_pending = nbpf_issue_pending;
  1162. /*
  1163. * If we drop support for unaligned MEMCPY buffer addresses and / or
  1164. * lengths by setting
  1165. * dma_dev->copy_align = 4;
  1166. * then we can set transfer length to 4 bytes in nbpf_prep_one() for
  1167. * DMA_MEM_TO_MEM
  1168. */
  1169. /* Compulsory for DMA_SLAVE fields */
  1170. dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
  1171. dma_dev->device_config = nbpf_config;
  1172. dma_dev->device_pause = nbpf_pause;
  1173. dma_dev->device_terminate_all = nbpf_terminate_all;
  1174. dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
  1175. dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
  1176. dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1177. platform_set_drvdata(pdev, nbpf);
  1178. ret = clk_prepare_enable(nbpf->clk);
  1179. if (ret < 0)
  1180. return ret;
  1181. nbpf_configure(nbpf);
  1182. ret = dma_async_device_register(dma_dev);
  1183. if (ret < 0)
  1184. goto e_clk_off;
  1185. ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
  1186. if (ret < 0)
  1187. goto e_dma_dev_unreg;
  1188. return 0;
  1189. e_dma_dev_unreg:
  1190. dma_async_device_unregister(dma_dev);
  1191. e_clk_off:
  1192. clk_disable_unprepare(nbpf->clk);
  1193. return ret;
  1194. }
  1195. static int nbpf_remove(struct platform_device *pdev)
  1196. {
  1197. struct nbpf_device *nbpf = platform_get_drvdata(pdev);
  1198. of_dma_controller_free(pdev->dev.of_node);
  1199. dma_async_device_unregister(&nbpf->dma_dev);
  1200. clk_disable_unprepare(nbpf->clk);
  1201. return 0;
  1202. }
  1203. static const struct platform_device_id nbpf_ids[] = {
  1204. {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
  1205. {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
  1206. {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
  1207. {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
  1208. {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
  1209. {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
  1210. {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
  1211. {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
  1212. {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
  1213. {},
  1214. };
  1215. MODULE_DEVICE_TABLE(platform, nbpf_ids);
  1216. #ifdef CONFIG_PM
  1217. static int nbpf_runtime_suspend(struct device *dev)
  1218. {
  1219. struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
  1220. clk_disable_unprepare(nbpf->clk);
  1221. return 0;
  1222. }
  1223. static int nbpf_runtime_resume(struct device *dev)
  1224. {
  1225. struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
  1226. return clk_prepare_enable(nbpf->clk);
  1227. }
  1228. #endif
  1229. static const struct dev_pm_ops nbpf_pm_ops = {
  1230. SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
  1231. };
  1232. static struct platform_driver nbpf_driver = {
  1233. .driver = {
  1234. .name = "dma-nbpf",
  1235. .of_match_table = nbpf_match,
  1236. .pm = &nbpf_pm_ops,
  1237. },
  1238. .id_table = nbpf_ids,
  1239. .probe = nbpf_probe,
  1240. .remove = nbpf_remove,
  1241. };
  1242. module_platform_driver(nbpf_driver);
  1243. MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
  1244. MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
  1245. MODULE_LICENSE("GPL v2");