hash.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. /*
  2. * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
  3. *
  4. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  5. * Author: Arnaud Ebalard <arno@natisbad.org>
  6. *
  7. * This work is based on an initial version written by
  8. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. */
  14. #include <crypto/md5.h>
  15. #include <crypto/sha.h>
  16. #include "cesa.h"
  17. struct mv_cesa_ahash_dma_iter {
  18. struct mv_cesa_dma_iter base;
  19. struct mv_cesa_sg_dma_iter src;
  20. };
  21. static inline void
  22. mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
  23. struct ahash_request *req)
  24. {
  25. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  26. unsigned int len = req->nbytes;
  27. if (!creq->last_req)
  28. len = (len + creq->cache_ptr) & ~CESA_HASH_BLOCK_SIZE_MSK;
  29. mv_cesa_req_dma_iter_init(&iter->base, len);
  30. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  31. iter->src.op_offset = creq->cache_ptr;
  32. }
  33. static inline bool
  34. mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
  35. {
  36. iter->src.op_offset = 0;
  37. return mv_cesa_req_dma_iter_next_op(&iter->base);
  38. }
  39. static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_req *creq,
  40. gfp_t flags)
  41. {
  42. struct mv_cesa_ahash_dma_req *dreq = &creq->req.dma;
  43. creq->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
  44. &dreq->cache_dma);
  45. if (!creq->cache)
  46. return -ENOMEM;
  47. return 0;
  48. }
  49. static inline int mv_cesa_ahash_std_alloc_cache(struct mv_cesa_ahash_req *creq,
  50. gfp_t flags)
  51. {
  52. creq->cache = kzalloc(CESA_MAX_HASH_BLOCK_SIZE, flags);
  53. if (!creq->cache)
  54. return -ENOMEM;
  55. return 0;
  56. }
  57. static int mv_cesa_ahash_alloc_cache(struct ahash_request *req)
  58. {
  59. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  60. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  61. GFP_KERNEL : GFP_ATOMIC;
  62. int ret;
  63. if (creq->cache)
  64. return 0;
  65. if (creq->req.base.type == CESA_DMA_REQ)
  66. ret = mv_cesa_ahash_dma_alloc_cache(creq, flags);
  67. else
  68. ret = mv_cesa_ahash_std_alloc_cache(creq, flags);
  69. return ret;
  70. }
  71. static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_req *creq)
  72. {
  73. dma_pool_free(cesa_dev->dma->cache_pool, creq->cache,
  74. creq->req.dma.cache_dma);
  75. }
  76. static inline void mv_cesa_ahash_std_free_cache(struct mv_cesa_ahash_req *creq)
  77. {
  78. kfree(creq->cache);
  79. }
  80. static void mv_cesa_ahash_free_cache(struct mv_cesa_ahash_req *creq)
  81. {
  82. if (!creq->cache)
  83. return;
  84. if (creq->req.base.type == CESA_DMA_REQ)
  85. mv_cesa_ahash_dma_free_cache(creq);
  86. else
  87. mv_cesa_ahash_std_free_cache(creq);
  88. creq->cache = NULL;
  89. }
  90. static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
  91. gfp_t flags)
  92. {
  93. if (req->padding)
  94. return 0;
  95. req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
  96. &req->padding_dma);
  97. if (!req->padding)
  98. return -ENOMEM;
  99. return 0;
  100. }
  101. static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
  102. {
  103. if (!req->padding)
  104. return;
  105. dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
  106. req->padding_dma);
  107. req->padding = NULL;
  108. }
  109. static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
  110. {
  111. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  112. mv_cesa_ahash_dma_free_padding(&creq->req.dma);
  113. }
  114. static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
  115. {
  116. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  117. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  118. mv_cesa_dma_cleanup(&creq->req.dma.base);
  119. }
  120. static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
  121. {
  122. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  123. if (creq->req.base.type == CESA_DMA_REQ)
  124. mv_cesa_ahash_dma_cleanup(req);
  125. }
  126. static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
  127. {
  128. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  129. mv_cesa_ahash_free_cache(creq);
  130. if (creq->req.base.type == CESA_DMA_REQ)
  131. mv_cesa_ahash_dma_last_cleanup(req);
  132. }
  133. static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
  134. {
  135. unsigned int index, padlen;
  136. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  137. padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
  138. return padlen;
  139. }
  140. static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
  141. {
  142. __be64 bits = cpu_to_be64(creq->len << 3);
  143. unsigned int index, padlen;
  144. buf[0] = 0x80;
  145. /* Pad out to 56 mod 64 */
  146. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  147. padlen = mv_cesa_ahash_pad_len(creq);
  148. memset(buf + 1, 0, padlen - 1);
  149. memcpy(buf + padlen, &bits, sizeof(bits));
  150. return padlen + 8;
  151. }
  152. static void mv_cesa_ahash_std_step(struct ahash_request *req)
  153. {
  154. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  155. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  156. struct mv_cesa_engine *engine = sreq->base.engine;
  157. struct mv_cesa_op_ctx *op;
  158. unsigned int new_cache_ptr = 0;
  159. u32 frag_mode;
  160. size_t len;
  161. if (creq->cache_ptr)
  162. memcpy(engine->sram + CESA_SA_DATA_SRAM_OFFSET, creq->cache,
  163. creq->cache_ptr);
  164. len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
  165. CESA_SA_SRAM_PAYLOAD_SIZE);
  166. if (!creq->last_req) {
  167. new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
  168. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  169. }
  170. if (len - creq->cache_ptr)
  171. sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
  172. engine->sram +
  173. CESA_SA_DATA_SRAM_OFFSET +
  174. creq->cache_ptr,
  175. len - creq->cache_ptr,
  176. sreq->offset);
  177. op = &creq->op_tmpl;
  178. frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
  179. if (creq->last_req && sreq->offset == req->nbytes &&
  180. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  181. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  182. frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
  183. else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
  184. frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
  185. }
  186. if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
  187. frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
  188. if (len &&
  189. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  190. mv_cesa_set_mac_op_total_len(op, creq->len);
  191. } else {
  192. int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
  193. if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
  194. len &= CESA_HASH_BLOCK_SIZE_MSK;
  195. new_cache_ptr = 64 - trailerlen;
  196. memcpy(creq->cache,
  197. engine->sram +
  198. CESA_SA_DATA_SRAM_OFFSET + len,
  199. new_cache_ptr);
  200. } else {
  201. len += mv_cesa_ahash_pad_req(creq,
  202. engine->sram + len +
  203. CESA_SA_DATA_SRAM_OFFSET);
  204. }
  205. if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
  206. frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
  207. else
  208. frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
  209. }
  210. }
  211. mv_cesa_set_mac_op_frag_len(op, len);
  212. mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
  213. /* FIXME: only update enc_len field */
  214. memcpy(engine->sram, op, sizeof(*op));
  215. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  216. mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
  217. CESA_SA_DESC_CFG_FRAG_MSK);
  218. creq->cache_ptr = new_cache_ptr;
  219. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  220. writel(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  221. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  222. }
  223. static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
  224. {
  225. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  226. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  227. if (sreq->offset < (req->nbytes - creq->cache_ptr))
  228. return -EINPROGRESS;
  229. return 0;
  230. }
  231. static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
  232. {
  233. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  234. struct mv_cesa_tdma_req *dreq = &creq->req.dma.base;
  235. mv_cesa_dma_prepare(dreq, dreq->base.engine);
  236. }
  237. static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
  238. {
  239. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  240. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  241. struct mv_cesa_engine *engine = sreq->base.engine;
  242. sreq->offset = 0;
  243. mv_cesa_adjust_op(engine, &creq->op_tmpl);
  244. memcpy(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
  245. }
  246. static void mv_cesa_ahash_step(struct crypto_async_request *req)
  247. {
  248. struct ahash_request *ahashreq = ahash_request_cast(req);
  249. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  250. if (creq->req.base.type == CESA_DMA_REQ)
  251. mv_cesa_dma_step(&creq->req.dma.base);
  252. else
  253. mv_cesa_ahash_std_step(ahashreq);
  254. }
  255. static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
  256. {
  257. struct ahash_request *ahashreq = ahash_request_cast(req);
  258. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  259. struct mv_cesa_engine *engine = creq->req.base.engine;
  260. unsigned int digsize;
  261. int ret, i;
  262. if (creq->req.base.type == CESA_DMA_REQ)
  263. ret = mv_cesa_dma_process(&creq->req.dma.base, status);
  264. else
  265. ret = mv_cesa_ahash_std_process(ahashreq, status);
  266. if (ret == -EINPROGRESS)
  267. return ret;
  268. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  269. for (i = 0; i < digsize / 4; i++)
  270. creq->state[i] = readl(engine->regs + CESA_IVDIG(i));
  271. if (creq->cache_ptr)
  272. sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
  273. creq->cache,
  274. creq->cache_ptr,
  275. ahashreq->nbytes - creq->cache_ptr);
  276. if (creq->last_req) {
  277. for (i = 0; i < digsize / 4; i++) {
  278. /*
  279. * Hardware provides MD5 digest in a different
  280. * endianness than SHA-1 and SHA-256 ones.
  281. */
  282. if (digsize == MD5_DIGEST_SIZE)
  283. creq->state[i] = cpu_to_le32(creq->state[i]);
  284. else
  285. creq->state[i] = cpu_to_be32(creq->state[i]);
  286. }
  287. memcpy(ahashreq->result, creq->state, digsize);
  288. }
  289. return ret;
  290. }
  291. static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
  292. struct mv_cesa_engine *engine)
  293. {
  294. struct ahash_request *ahashreq = ahash_request_cast(req);
  295. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  296. unsigned int digsize;
  297. int i;
  298. creq->req.base.engine = engine;
  299. if (creq->req.base.type == CESA_DMA_REQ)
  300. mv_cesa_ahash_dma_prepare(ahashreq);
  301. else
  302. mv_cesa_ahash_std_prepare(ahashreq);
  303. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  304. for (i = 0; i < digsize / 4; i++)
  305. writel(creq->state[i],
  306. engine->regs + CESA_IVDIG(i));
  307. }
  308. static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
  309. {
  310. struct ahash_request *ahashreq = ahash_request_cast(req);
  311. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  312. if (creq->last_req)
  313. mv_cesa_ahash_last_cleanup(ahashreq);
  314. mv_cesa_ahash_cleanup(ahashreq);
  315. }
  316. static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
  317. .step = mv_cesa_ahash_step,
  318. .process = mv_cesa_ahash_process,
  319. .prepare = mv_cesa_ahash_prepare,
  320. .cleanup = mv_cesa_ahash_req_cleanup,
  321. };
  322. static int mv_cesa_ahash_init(struct ahash_request *req,
  323. struct mv_cesa_op_ctx *tmpl)
  324. {
  325. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  326. memset(creq, 0, sizeof(*creq));
  327. mv_cesa_update_op_cfg(tmpl,
  328. CESA_SA_DESC_CFG_OP_MAC_ONLY |
  329. CESA_SA_DESC_CFG_FIRST_FRAG,
  330. CESA_SA_DESC_CFG_OP_MSK |
  331. CESA_SA_DESC_CFG_FRAG_MSK);
  332. mv_cesa_set_mac_op_total_len(tmpl, 0);
  333. mv_cesa_set_mac_op_frag_len(tmpl, 0);
  334. creq->op_tmpl = *tmpl;
  335. creq->len = 0;
  336. return 0;
  337. }
  338. static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
  339. {
  340. struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  341. ctx->base.ops = &mv_cesa_ahash_req_ops;
  342. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  343. sizeof(struct mv_cesa_ahash_req));
  344. return 0;
  345. }
  346. static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
  347. {
  348. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  349. int ret;
  350. if (((creq->cache_ptr + req->nbytes) & CESA_HASH_BLOCK_SIZE_MSK) &&
  351. !creq->last_req) {
  352. ret = mv_cesa_ahash_alloc_cache(req);
  353. if (ret)
  354. return ret;
  355. }
  356. if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
  357. *cached = true;
  358. if (!req->nbytes)
  359. return 0;
  360. sg_pcopy_to_buffer(req->src, creq->src_nents,
  361. creq->cache + creq->cache_ptr,
  362. req->nbytes, 0);
  363. creq->cache_ptr += req->nbytes;
  364. }
  365. return 0;
  366. }
  367. static struct mv_cesa_op_ctx *
  368. mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
  369. struct mv_cesa_ahash_dma_iter *dma_iter,
  370. struct mv_cesa_ahash_req *creq,
  371. gfp_t flags)
  372. {
  373. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  374. struct mv_cesa_op_ctx *op = NULL;
  375. int ret;
  376. if (!creq->cache_ptr)
  377. return NULL;
  378. ret = mv_cesa_dma_add_data_transfer(chain,
  379. CESA_SA_DATA_SRAM_OFFSET,
  380. ahashdreq->cache_dma,
  381. creq->cache_ptr,
  382. CESA_TDMA_DST_IN_SRAM,
  383. flags);
  384. if (ret)
  385. return ERR_PTR(ret);
  386. if (!dma_iter->base.op_len) {
  387. op = mv_cesa_dma_add_op(chain, &creq->op_tmpl, false, flags);
  388. if (IS_ERR(op))
  389. return op;
  390. mv_cesa_set_mac_op_frag_len(op, creq->cache_ptr);
  391. /* Add dummy desc to launch crypto operation */
  392. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  393. if (ret)
  394. return ERR_PTR(ret);
  395. }
  396. return op;
  397. }
  398. static struct mv_cesa_op_ctx *
  399. mv_cesa_ahash_dma_add_data(struct mv_cesa_tdma_chain *chain,
  400. struct mv_cesa_ahash_dma_iter *dma_iter,
  401. struct mv_cesa_ahash_req *creq,
  402. gfp_t flags)
  403. {
  404. struct mv_cesa_op_ctx *op;
  405. int ret;
  406. op = mv_cesa_dma_add_op(chain, &creq->op_tmpl, false, flags);
  407. if (IS_ERR(op))
  408. return op;
  409. mv_cesa_set_mac_op_frag_len(op, dma_iter->base.op_len);
  410. if ((mv_cesa_get_op_cfg(&creq->op_tmpl) & CESA_SA_DESC_CFG_FRAG_MSK) ==
  411. CESA_SA_DESC_CFG_FIRST_FRAG)
  412. mv_cesa_update_op_cfg(&creq->op_tmpl,
  413. CESA_SA_DESC_CFG_MID_FRAG,
  414. CESA_SA_DESC_CFG_FRAG_MSK);
  415. /* Add input transfers */
  416. ret = mv_cesa_dma_add_op_transfers(chain, &dma_iter->base,
  417. &dma_iter->src, flags);
  418. if (ret)
  419. return ERR_PTR(ret);
  420. /* Add dummy desc to launch crypto operation */
  421. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  422. if (ret)
  423. return ERR_PTR(ret);
  424. return op;
  425. }
  426. static struct mv_cesa_op_ctx *
  427. mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
  428. struct mv_cesa_ahash_dma_iter *dma_iter,
  429. struct mv_cesa_ahash_req *creq,
  430. struct mv_cesa_op_ctx *op,
  431. gfp_t flags)
  432. {
  433. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  434. unsigned int len, trailerlen, padoff = 0;
  435. int ret;
  436. if (!creq->last_req)
  437. return op;
  438. if (op && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  439. u32 frag = CESA_SA_DESC_CFG_NOT_FRAG;
  440. if ((mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK) !=
  441. CESA_SA_DESC_CFG_FIRST_FRAG)
  442. frag = CESA_SA_DESC_CFG_LAST_FRAG;
  443. mv_cesa_update_op_cfg(op, frag, CESA_SA_DESC_CFG_FRAG_MSK);
  444. return op;
  445. }
  446. ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
  447. if (ret)
  448. return ERR_PTR(ret);
  449. trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
  450. if (op) {
  451. len = min(CESA_SA_SRAM_PAYLOAD_SIZE - dma_iter->base.op_len,
  452. trailerlen);
  453. if (len) {
  454. ret = mv_cesa_dma_add_data_transfer(chain,
  455. CESA_SA_DATA_SRAM_OFFSET +
  456. dma_iter->base.op_len,
  457. ahashdreq->padding_dma,
  458. len, CESA_TDMA_DST_IN_SRAM,
  459. flags);
  460. if (ret)
  461. return ERR_PTR(ret);
  462. mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
  463. CESA_SA_DESC_CFG_FRAG_MSK);
  464. mv_cesa_set_mac_op_frag_len(op,
  465. dma_iter->base.op_len + len);
  466. padoff += len;
  467. }
  468. }
  469. if (padoff >= trailerlen)
  470. return op;
  471. if ((mv_cesa_get_op_cfg(&creq->op_tmpl) & CESA_SA_DESC_CFG_FRAG_MSK) !=
  472. CESA_SA_DESC_CFG_FIRST_FRAG)
  473. mv_cesa_update_op_cfg(&creq->op_tmpl,
  474. CESA_SA_DESC_CFG_MID_FRAG,
  475. CESA_SA_DESC_CFG_FRAG_MSK);
  476. op = mv_cesa_dma_add_op(chain, &creq->op_tmpl, false, flags);
  477. if (IS_ERR(op))
  478. return op;
  479. mv_cesa_set_mac_op_frag_len(op, trailerlen - padoff);
  480. ret = mv_cesa_dma_add_data_transfer(chain,
  481. CESA_SA_DATA_SRAM_OFFSET,
  482. ahashdreq->padding_dma +
  483. padoff,
  484. trailerlen - padoff,
  485. CESA_TDMA_DST_IN_SRAM,
  486. flags);
  487. if (ret)
  488. return ERR_PTR(ret);
  489. /* Add dummy desc to launch crypto operation */
  490. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  491. if (ret)
  492. return ERR_PTR(ret);
  493. return op;
  494. }
  495. static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
  496. {
  497. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  498. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  499. GFP_KERNEL : GFP_ATOMIC;
  500. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  501. struct mv_cesa_tdma_req *dreq = &ahashdreq->base;
  502. struct mv_cesa_tdma_chain chain;
  503. struct mv_cesa_ahash_dma_iter iter;
  504. struct mv_cesa_op_ctx *op = NULL;
  505. int ret;
  506. dreq->chain.first = NULL;
  507. dreq->chain.last = NULL;
  508. if (creq->src_nents) {
  509. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  510. DMA_TO_DEVICE);
  511. if (!ret) {
  512. ret = -ENOMEM;
  513. goto err;
  514. }
  515. }
  516. mv_cesa_tdma_desc_iter_init(&chain);
  517. mv_cesa_ahash_req_iter_init(&iter, req);
  518. op = mv_cesa_ahash_dma_add_cache(&chain, &iter,
  519. creq, flags);
  520. if (IS_ERR(op)) {
  521. ret = PTR_ERR(op);
  522. goto err_free_tdma;
  523. }
  524. do {
  525. if (!iter.base.op_len)
  526. break;
  527. op = mv_cesa_ahash_dma_add_data(&chain, &iter,
  528. creq, flags);
  529. if (IS_ERR(op)) {
  530. ret = PTR_ERR(op);
  531. goto err_free_tdma;
  532. }
  533. } while (mv_cesa_ahash_req_iter_next_op(&iter));
  534. op = mv_cesa_ahash_dma_last_req(&chain, &iter, creq, op, flags);
  535. if (IS_ERR(op)) {
  536. ret = PTR_ERR(op);
  537. goto err_free_tdma;
  538. }
  539. if (op) {
  540. /* Add dummy desc to wait for crypto operation end */
  541. ret = mv_cesa_dma_add_dummy_end(&chain, flags);
  542. if (ret)
  543. goto err_free_tdma;
  544. }
  545. if (!creq->last_req)
  546. creq->cache_ptr = req->nbytes + creq->cache_ptr -
  547. iter.base.len;
  548. else
  549. creq->cache_ptr = 0;
  550. dreq->chain = chain;
  551. return 0;
  552. err_free_tdma:
  553. mv_cesa_dma_cleanup(dreq);
  554. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  555. err:
  556. mv_cesa_ahash_last_cleanup(req);
  557. return ret;
  558. }
  559. static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
  560. {
  561. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  562. int ret;
  563. if (cesa_dev->caps->has_tdma)
  564. creq->req.base.type = CESA_DMA_REQ;
  565. else
  566. creq->req.base.type = CESA_STD_REQ;
  567. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  568. ret = mv_cesa_ahash_cache_req(req, cached);
  569. if (ret)
  570. return ret;
  571. if (*cached)
  572. return 0;
  573. if (creq->req.base.type == CESA_DMA_REQ)
  574. ret = mv_cesa_ahash_dma_req_init(req);
  575. return ret;
  576. }
  577. static int mv_cesa_ahash_update(struct ahash_request *req)
  578. {
  579. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  580. bool cached = false;
  581. int ret;
  582. creq->len += req->nbytes;
  583. ret = mv_cesa_ahash_req_init(req, &cached);
  584. if (ret)
  585. return ret;
  586. if (cached)
  587. return 0;
  588. ret = mv_cesa_queue_req(&req->base);
  589. if (ret && ret != -EINPROGRESS) {
  590. mv_cesa_ahash_cleanup(req);
  591. return ret;
  592. }
  593. return ret;
  594. }
  595. static int mv_cesa_ahash_final(struct ahash_request *req)
  596. {
  597. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  598. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  599. bool cached = false;
  600. int ret;
  601. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  602. creq->last_req = true;
  603. req->nbytes = 0;
  604. ret = mv_cesa_ahash_req_init(req, &cached);
  605. if (ret)
  606. return ret;
  607. if (cached)
  608. return 0;
  609. ret = mv_cesa_queue_req(&req->base);
  610. if (ret && ret != -EINPROGRESS)
  611. mv_cesa_ahash_cleanup(req);
  612. return ret;
  613. }
  614. static int mv_cesa_ahash_finup(struct ahash_request *req)
  615. {
  616. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  617. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  618. bool cached = false;
  619. int ret;
  620. creq->len += req->nbytes;
  621. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  622. creq->last_req = true;
  623. ret = mv_cesa_ahash_req_init(req, &cached);
  624. if (ret)
  625. return ret;
  626. if (cached)
  627. return 0;
  628. ret = mv_cesa_queue_req(&req->base);
  629. if (ret && ret != -EINPROGRESS)
  630. mv_cesa_ahash_cleanup(req);
  631. return ret;
  632. }
  633. static int mv_cesa_md5_init(struct ahash_request *req)
  634. {
  635. struct mv_cesa_op_ctx tmpl;
  636. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
  637. mv_cesa_ahash_init(req, &tmpl);
  638. return 0;
  639. }
  640. static int mv_cesa_md5_export(struct ahash_request *req, void *out)
  641. {
  642. struct md5_state *out_state = out;
  643. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  644. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  645. unsigned int digsize = crypto_ahash_digestsize(ahash);
  646. out_state->byte_count = creq->len;
  647. memcpy(out_state->hash, creq->state, digsize);
  648. memset(out_state->block, 0, sizeof(out_state->block));
  649. if (creq->cache)
  650. memcpy(out_state->block, creq->cache, creq->cache_ptr);
  651. return 0;
  652. }
  653. static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
  654. {
  655. const struct md5_state *in_state = in;
  656. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  657. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  658. unsigned int digsize = crypto_ahash_digestsize(ahash);
  659. unsigned int cache_ptr;
  660. int ret;
  661. creq->len = in_state->byte_count;
  662. memcpy(creq->state, in_state->hash, digsize);
  663. creq->cache_ptr = 0;
  664. cache_ptr = creq->len % sizeof(in_state->block);
  665. if (!cache_ptr)
  666. return 0;
  667. ret = mv_cesa_ahash_alloc_cache(req);
  668. if (ret)
  669. return ret;
  670. memcpy(creq->cache, in_state->block, cache_ptr);
  671. creq->cache_ptr = cache_ptr;
  672. return 0;
  673. }
  674. static int mv_cesa_md5_digest(struct ahash_request *req)
  675. {
  676. int ret;
  677. ret = mv_cesa_md5_init(req);
  678. if (ret)
  679. return ret;
  680. return mv_cesa_ahash_finup(req);
  681. }
  682. struct ahash_alg mv_md5_alg = {
  683. .init = mv_cesa_md5_init,
  684. .update = mv_cesa_ahash_update,
  685. .final = mv_cesa_ahash_final,
  686. .finup = mv_cesa_ahash_finup,
  687. .digest = mv_cesa_md5_digest,
  688. .export = mv_cesa_md5_export,
  689. .import = mv_cesa_md5_import,
  690. .halg = {
  691. .digestsize = MD5_DIGEST_SIZE,
  692. .base = {
  693. .cra_name = "md5",
  694. .cra_driver_name = "mv-md5",
  695. .cra_priority = 300,
  696. .cra_flags = CRYPTO_ALG_ASYNC |
  697. CRYPTO_ALG_KERN_DRIVER_ONLY,
  698. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  699. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  700. .cra_init = mv_cesa_ahash_cra_init,
  701. .cra_module = THIS_MODULE,
  702. }
  703. }
  704. };
  705. static int mv_cesa_sha1_init(struct ahash_request *req)
  706. {
  707. struct mv_cesa_op_ctx tmpl;
  708. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
  709. mv_cesa_ahash_init(req, &tmpl);
  710. return 0;
  711. }
  712. static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
  713. {
  714. struct sha1_state *out_state = out;
  715. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  716. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  717. unsigned int digsize = crypto_ahash_digestsize(ahash);
  718. out_state->count = creq->len;
  719. memcpy(out_state->state, creq->state, digsize);
  720. memset(out_state->buffer, 0, sizeof(out_state->buffer));
  721. if (creq->cache)
  722. memcpy(out_state->buffer, creq->cache, creq->cache_ptr);
  723. return 0;
  724. }
  725. static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
  726. {
  727. const struct sha1_state *in_state = in;
  728. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  729. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  730. unsigned int digsize = crypto_ahash_digestsize(ahash);
  731. unsigned int cache_ptr;
  732. int ret;
  733. creq->len = in_state->count;
  734. memcpy(creq->state, in_state->state, digsize);
  735. creq->cache_ptr = 0;
  736. cache_ptr = creq->len % SHA1_BLOCK_SIZE;
  737. if (!cache_ptr)
  738. return 0;
  739. ret = mv_cesa_ahash_alloc_cache(req);
  740. if (ret)
  741. return ret;
  742. memcpy(creq->cache, in_state->buffer, cache_ptr);
  743. creq->cache_ptr = cache_ptr;
  744. return 0;
  745. }
  746. static int mv_cesa_sha1_digest(struct ahash_request *req)
  747. {
  748. int ret;
  749. ret = mv_cesa_sha1_init(req);
  750. if (ret)
  751. return ret;
  752. return mv_cesa_ahash_finup(req);
  753. }
  754. struct ahash_alg mv_sha1_alg = {
  755. .init = mv_cesa_sha1_init,
  756. .update = mv_cesa_ahash_update,
  757. .final = mv_cesa_ahash_final,
  758. .finup = mv_cesa_ahash_finup,
  759. .digest = mv_cesa_sha1_digest,
  760. .export = mv_cesa_sha1_export,
  761. .import = mv_cesa_sha1_import,
  762. .halg = {
  763. .digestsize = SHA1_DIGEST_SIZE,
  764. .base = {
  765. .cra_name = "sha1",
  766. .cra_driver_name = "mv-sha1",
  767. .cra_priority = 300,
  768. .cra_flags = CRYPTO_ALG_ASYNC |
  769. CRYPTO_ALG_KERN_DRIVER_ONLY,
  770. .cra_blocksize = SHA1_BLOCK_SIZE,
  771. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  772. .cra_init = mv_cesa_ahash_cra_init,
  773. .cra_module = THIS_MODULE,
  774. }
  775. }
  776. };
  777. static int mv_cesa_sha256_init(struct ahash_request *req)
  778. {
  779. struct mv_cesa_op_ctx tmpl;
  780. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
  781. mv_cesa_ahash_init(req, &tmpl);
  782. return 0;
  783. }
  784. static int mv_cesa_sha256_digest(struct ahash_request *req)
  785. {
  786. int ret;
  787. ret = mv_cesa_sha256_init(req);
  788. if (ret)
  789. return ret;
  790. return mv_cesa_ahash_finup(req);
  791. }
  792. static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
  793. {
  794. struct sha256_state *out_state = out;
  795. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  796. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  797. unsigned int ds = crypto_ahash_digestsize(ahash);
  798. out_state->count = creq->len;
  799. memcpy(out_state->state, creq->state, ds);
  800. memset(out_state->buf, 0, sizeof(out_state->buf));
  801. if (creq->cache)
  802. memcpy(out_state->buf, creq->cache, creq->cache_ptr);
  803. return 0;
  804. }
  805. static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
  806. {
  807. const struct sha256_state *in_state = in;
  808. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  809. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  810. unsigned int digsize = crypto_ahash_digestsize(ahash);
  811. unsigned int cache_ptr;
  812. int ret;
  813. creq->len = in_state->count;
  814. memcpy(creq->state, in_state->state, digsize);
  815. creq->cache_ptr = 0;
  816. cache_ptr = creq->len % SHA256_BLOCK_SIZE;
  817. if (!cache_ptr)
  818. return 0;
  819. ret = mv_cesa_ahash_alloc_cache(req);
  820. if (ret)
  821. return ret;
  822. memcpy(creq->cache, in_state->buf, cache_ptr);
  823. creq->cache_ptr = cache_ptr;
  824. return 0;
  825. }
  826. struct ahash_alg mv_sha256_alg = {
  827. .init = mv_cesa_sha256_init,
  828. .update = mv_cesa_ahash_update,
  829. .final = mv_cesa_ahash_final,
  830. .finup = mv_cesa_ahash_finup,
  831. .digest = mv_cesa_sha256_digest,
  832. .export = mv_cesa_sha256_export,
  833. .import = mv_cesa_sha256_import,
  834. .halg = {
  835. .digestsize = SHA256_DIGEST_SIZE,
  836. .base = {
  837. .cra_name = "sha256",
  838. .cra_driver_name = "mv-sha256",
  839. .cra_priority = 300,
  840. .cra_flags = CRYPTO_ALG_ASYNC |
  841. CRYPTO_ALG_KERN_DRIVER_ONLY,
  842. .cra_blocksize = SHA256_BLOCK_SIZE,
  843. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  844. .cra_init = mv_cesa_ahash_cra_init,
  845. .cra_module = THIS_MODULE,
  846. }
  847. }
  848. };
  849. struct mv_cesa_ahash_result {
  850. struct completion completion;
  851. int error;
  852. };
  853. static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
  854. int error)
  855. {
  856. struct mv_cesa_ahash_result *result = req->data;
  857. if (error == -EINPROGRESS)
  858. return;
  859. result->error = error;
  860. complete(&result->completion);
  861. }
  862. static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
  863. void *state, unsigned int blocksize)
  864. {
  865. struct mv_cesa_ahash_result result;
  866. struct scatterlist sg;
  867. int ret;
  868. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  869. mv_cesa_hmac_ahash_complete, &result);
  870. sg_init_one(&sg, pad, blocksize);
  871. ahash_request_set_crypt(req, &sg, pad, blocksize);
  872. init_completion(&result.completion);
  873. ret = crypto_ahash_init(req);
  874. if (ret)
  875. return ret;
  876. ret = crypto_ahash_update(req);
  877. if (ret && ret != -EINPROGRESS)
  878. return ret;
  879. wait_for_completion_interruptible(&result.completion);
  880. if (result.error)
  881. return result.error;
  882. ret = crypto_ahash_export(req, state);
  883. if (ret)
  884. return ret;
  885. return 0;
  886. }
  887. static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
  888. const u8 *key, unsigned int keylen,
  889. u8 *ipad, u8 *opad,
  890. unsigned int blocksize)
  891. {
  892. struct mv_cesa_ahash_result result;
  893. struct scatterlist sg;
  894. int ret;
  895. int i;
  896. if (keylen <= blocksize) {
  897. memcpy(ipad, key, keylen);
  898. } else {
  899. u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
  900. if (!keydup)
  901. return -ENOMEM;
  902. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  903. mv_cesa_hmac_ahash_complete,
  904. &result);
  905. sg_init_one(&sg, keydup, keylen);
  906. ahash_request_set_crypt(req, &sg, ipad, keylen);
  907. init_completion(&result.completion);
  908. ret = crypto_ahash_digest(req);
  909. if (ret == -EINPROGRESS) {
  910. wait_for_completion_interruptible(&result.completion);
  911. ret = result.error;
  912. }
  913. /* Set the memory region to 0 to avoid any leak. */
  914. memset(keydup, 0, keylen);
  915. kfree(keydup);
  916. if (ret)
  917. return ret;
  918. keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  919. }
  920. memset(ipad + keylen, 0, blocksize - keylen);
  921. memcpy(opad, ipad, blocksize);
  922. for (i = 0; i < blocksize; i++) {
  923. ipad[i] ^= 0x36;
  924. opad[i] ^= 0x5c;
  925. }
  926. return 0;
  927. }
  928. static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
  929. const u8 *key, unsigned int keylen,
  930. void *istate, void *ostate)
  931. {
  932. struct ahash_request *req;
  933. struct crypto_ahash *tfm;
  934. unsigned int blocksize;
  935. u8 *ipad = NULL;
  936. u8 *opad;
  937. int ret;
  938. tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
  939. CRYPTO_ALG_TYPE_AHASH_MASK);
  940. if (IS_ERR(tfm))
  941. return PTR_ERR(tfm);
  942. req = ahash_request_alloc(tfm, GFP_KERNEL);
  943. if (!req) {
  944. ret = -ENOMEM;
  945. goto free_ahash;
  946. }
  947. crypto_ahash_clear_flags(tfm, ~0);
  948. blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  949. ipad = kzalloc(2 * blocksize, GFP_KERNEL);
  950. if (!ipad) {
  951. ret = -ENOMEM;
  952. goto free_req;
  953. }
  954. opad = ipad + blocksize;
  955. ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
  956. if (ret)
  957. goto free_ipad;
  958. ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
  959. if (ret)
  960. goto free_ipad;
  961. ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
  962. free_ipad:
  963. kfree(ipad);
  964. free_req:
  965. ahash_request_free(req);
  966. free_ahash:
  967. crypto_free_ahash(tfm);
  968. return ret;
  969. }
  970. static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
  971. {
  972. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
  973. ctx->base.ops = &mv_cesa_ahash_req_ops;
  974. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  975. sizeof(struct mv_cesa_ahash_req));
  976. return 0;
  977. }
  978. static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
  979. {
  980. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  981. struct mv_cesa_op_ctx tmpl;
  982. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
  983. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  984. mv_cesa_ahash_init(req, &tmpl);
  985. return 0;
  986. }
  987. static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
  988. unsigned int keylen)
  989. {
  990. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  991. struct md5_state istate, ostate;
  992. int ret, i;
  993. ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
  994. if (ret)
  995. return ret;
  996. for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
  997. ctx->iv[i] = be32_to_cpu(istate.hash[i]);
  998. for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
  999. ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
  1000. return 0;
  1001. }
  1002. static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
  1003. {
  1004. int ret;
  1005. ret = mv_cesa_ahmac_md5_init(req);
  1006. if (ret)
  1007. return ret;
  1008. return mv_cesa_ahash_finup(req);
  1009. }
  1010. struct ahash_alg mv_ahmac_md5_alg = {
  1011. .init = mv_cesa_ahmac_md5_init,
  1012. .update = mv_cesa_ahash_update,
  1013. .final = mv_cesa_ahash_final,
  1014. .finup = mv_cesa_ahash_finup,
  1015. .digest = mv_cesa_ahmac_md5_digest,
  1016. .setkey = mv_cesa_ahmac_md5_setkey,
  1017. .export = mv_cesa_md5_export,
  1018. .import = mv_cesa_md5_import,
  1019. .halg = {
  1020. .digestsize = MD5_DIGEST_SIZE,
  1021. .statesize = sizeof(struct md5_state),
  1022. .base = {
  1023. .cra_name = "hmac(md5)",
  1024. .cra_driver_name = "mv-hmac-md5",
  1025. .cra_priority = 300,
  1026. .cra_flags = CRYPTO_ALG_ASYNC |
  1027. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1028. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1029. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1030. .cra_init = mv_cesa_ahmac_cra_init,
  1031. .cra_module = THIS_MODULE,
  1032. }
  1033. }
  1034. };
  1035. static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
  1036. {
  1037. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1038. struct mv_cesa_op_ctx tmpl;
  1039. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
  1040. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1041. mv_cesa_ahash_init(req, &tmpl);
  1042. return 0;
  1043. }
  1044. static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
  1045. unsigned int keylen)
  1046. {
  1047. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1048. struct sha1_state istate, ostate;
  1049. int ret, i;
  1050. ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
  1051. if (ret)
  1052. return ret;
  1053. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1054. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1055. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1056. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1057. return 0;
  1058. }
  1059. static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
  1060. {
  1061. int ret;
  1062. ret = mv_cesa_ahmac_sha1_init(req);
  1063. if (ret)
  1064. return ret;
  1065. return mv_cesa_ahash_finup(req);
  1066. }
  1067. struct ahash_alg mv_ahmac_sha1_alg = {
  1068. .init = mv_cesa_ahmac_sha1_init,
  1069. .update = mv_cesa_ahash_update,
  1070. .final = mv_cesa_ahash_final,
  1071. .finup = mv_cesa_ahash_finup,
  1072. .digest = mv_cesa_ahmac_sha1_digest,
  1073. .setkey = mv_cesa_ahmac_sha1_setkey,
  1074. .export = mv_cesa_sha1_export,
  1075. .import = mv_cesa_sha1_import,
  1076. .halg = {
  1077. .digestsize = SHA1_DIGEST_SIZE,
  1078. .statesize = sizeof(struct sha1_state),
  1079. .base = {
  1080. .cra_name = "hmac(sha1)",
  1081. .cra_driver_name = "mv-hmac-sha1",
  1082. .cra_priority = 300,
  1083. .cra_flags = CRYPTO_ALG_ASYNC |
  1084. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1085. .cra_blocksize = SHA1_BLOCK_SIZE,
  1086. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1087. .cra_init = mv_cesa_ahmac_cra_init,
  1088. .cra_module = THIS_MODULE,
  1089. }
  1090. }
  1091. };
  1092. static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
  1093. unsigned int keylen)
  1094. {
  1095. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1096. struct sha256_state istate, ostate;
  1097. int ret, i;
  1098. ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
  1099. if (ret)
  1100. return ret;
  1101. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1102. ctx->iv[i] = be32_to_cpu(istate.state[i]);
  1103. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1104. ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
  1105. return 0;
  1106. }
  1107. static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
  1108. {
  1109. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1110. struct mv_cesa_op_ctx tmpl;
  1111. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
  1112. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1113. mv_cesa_ahash_init(req, &tmpl);
  1114. return 0;
  1115. }
  1116. static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
  1117. {
  1118. int ret;
  1119. ret = mv_cesa_ahmac_sha256_init(req);
  1120. if (ret)
  1121. return ret;
  1122. return mv_cesa_ahash_finup(req);
  1123. }
  1124. struct ahash_alg mv_ahmac_sha256_alg = {
  1125. .init = mv_cesa_ahmac_sha256_init,
  1126. .update = mv_cesa_ahash_update,
  1127. .final = mv_cesa_ahash_final,
  1128. .finup = mv_cesa_ahash_finup,
  1129. .digest = mv_cesa_ahmac_sha256_digest,
  1130. .setkey = mv_cesa_ahmac_sha256_setkey,
  1131. .export = mv_cesa_sha256_export,
  1132. .import = mv_cesa_sha256_import,
  1133. .halg = {
  1134. .digestsize = SHA256_DIGEST_SIZE,
  1135. .statesize = sizeof(struct sha256_state),
  1136. .base = {
  1137. .cra_name = "hmac(sha256)",
  1138. .cra_driver_name = "mv-hmac-sha256",
  1139. .cra_priority = 300,
  1140. .cra_flags = CRYPTO_ALG_ASYNC |
  1141. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1142. .cra_blocksize = SHA256_BLOCK_SIZE,
  1143. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1144. .cra_init = mv_cesa_ahmac_cra_init,
  1145. .cra_module = THIS_MODULE,
  1146. }
  1147. }
  1148. };