arm_big_little.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. /*
  2. * ARM big.LITTLE Platforms CPUFreq support
  3. *
  4. * Copyright (C) 2013 ARM Ltd.
  5. * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
  6. *
  7. * Copyright (C) 2013 Linaro.
  8. * Viresh Kumar <viresh.kumar@linaro.org>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  15. * kind, whether express or implied; without even the implied warranty
  16. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20. #include <linux/clk.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpufreq.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/export.h>
  25. #include <linux/module.h>
  26. #include <linux/mutex.h>
  27. #include <linux/of_platform.h>
  28. #include <linux/pm_opp.h>
  29. #include <linux/slab.h>
  30. #include <linux/topology.h>
  31. #include <linux/types.h>
  32. #include "arm_big_little.h"
  33. /* Currently we support only two clusters */
  34. #define A15_CLUSTER 0
  35. #define A7_CLUSTER 1
  36. #define MAX_CLUSTERS 2
  37. #ifdef CONFIG_BL_SWITCHER
  38. #include <asm/bL_switcher.h>
  39. static bool bL_switching_enabled;
  40. #define is_bL_switching_enabled() bL_switching_enabled
  41. #define set_switching_enabled(x) (bL_switching_enabled = (x))
  42. #else
  43. #define is_bL_switching_enabled() false
  44. #define set_switching_enabled(x) do { } while (0)
  45. #define bL_switch_request(...) do { } while (0)
  46. #define bL_switcher_put_enabled() do { } while (0)
  47. #define bL_switcher_get_enabled() do { } while (0)
  48. #endif
  49. #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
  50. #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
  51. static struct cpufreq_arm_bL_ops *arm_bL_ops;
  52. static struct clk *clk[MAX_CLUSTERS];
  53. static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
  54. static atomic_t cluster_usage[MAX_CLUSTERS + 1];
  55. static unsigned int clk_big_min; /* (Big) clock frequencies */
  56. static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
  57. static DEFINE_PER_CPU(unsigned int, physical_cluster);
  58. static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
  59. static struct mutex cluster_lock[MAX_CLUSTERS];
  60. static inline int raw_cpu_to_cluster(int cpu)
  61. {
  62. return topology_physical_package_id(cpu);
  63. }
  64. static inline int cpu_to_cluster(int cpu)
  65. {
  66. return is_bL_switching_enabled() ?
  67. MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
  68. }
  69. static unsigned int find_cluster_maxfreq(int cluster)
  70. {
  71. int j;
  72. u32 max_freq = 0, cpu_freq;
  73. for_each_online_cpu(j) {
  74. cpu_freq = per_cpu(cpu_last_req_freq, j);
  75. if ((cluster == per_cpu(physical_cluster, j)) &&
  76. (max_freq < cpu_freq))
  77. max_freq = cpu_freq;
  78. }
  79. pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
  80. max_freq);
  81. return max_freq;
  82. }
  83. static unsigned int clk_get_cpu_rate(unsigned int cpu)
  84. {
  85. u32 cur_cluster = per_cpu(physical_cluster, cpu);
  86. u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
  87. /* For switcher we use virtual A7 clock rates */
  88. if (is_bL_switching_enabled())
  89. rate = VIRT_FREQ(cur_cluster, rate);
  90. pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
  91. cur_cluster, rate);
  92. return rate;
  93. }
  94. static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
  95. {
  96. if (is_bL_switching_enabled()) {
  97. pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
  98. cpu));
  99. return per_cpu(cpu_last_req_freq, cpu);
  100. } else {
  101. return clk_get_cpu_rate(cpu);
  102. }
  103. }
  104. static unsigned int
  105. bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
  106. {
  107. u32 new_rate, prev_rate;
  108. int ret;
  109. bool bLs = is_bL_switching_enabled();
  110. mutex_lock(&cluster_lock[new_cluster]);
  111. if (bLs) {
  112. prev_rate = per_cpu(cpu_last_req_freq, cpu);
  113. per_cpu(cpu_last_req_freq, cpu) = rate;
  114. per_cpu(physical_cluster, cpu) = new_cluster;
  115. new_rate = find_cluster_maxfreq(new_cluster);
  116. new_rate = ACTUAL_FREQ(new_cluster, new_rate);
  117. } else {
  118. new_rate = rate;
  119. }
  120. pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
  121. __func__, cpu, old_cluster, new_cluster, new_rate);
  122. ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
  123. if (WARN_ON(ret)) {
  124. pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
  125. new_cluster);
  126. if (bLs) {
  127. per_cpu(cpu_last_req_freq, cpu) = prev_rate;
  128. per_cpu(physical_cluster, cpu) = old_cluster;
  129. }
  130. mutex_unlock(&cluster_lock[new_cluster]);
  131. return ret;
  132. }
  133. mutex_unlock(&cluster_lock[new_cluster]);
  134. /* Recalc freq for old cluster when switching clusters */
  135. if (old_cluster != new_cluster) {
  136. pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
  137. __func__, cpu, old_cluster, new_cluster);
  138. /* Switch cluster */
  139. bL_switch_request(cpu, new_cluster);
  140. mutex_lock(&cluster_lock[old_cluster]);
  141. /* Set freq of old cluster if there are cpus left on it */
  142. new_rate = find_cluster_maxfreq(old_cluster);
  143. new_rate = ACTUAL_FREQ(old_cluster, new_rate);
  144. if (new_rate) {
  145. pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
  146. __func__, old_cluster, new_rate);
  147. if (clk_set_rate(clk[old_cluster], new_rate * 1000))
  148. pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
  149. __func__, ret, old_cluster);
  150. }
  151. mutex_unlock(&cluster_lock[old_cluster]);
  152. }
  153. /*
  154. * FIXME: clk_set_rate has to handle the case where clk_change_rate
  155. * can fail due to hardware or firmware issues. Until the clk core
  156. * layer is fixed, we can check here. In most of the cases we will
  157. * be reading only the cached value anyway. This needs to be removed
  158. * once clk core is fixed.
  159. */
  160. if (bL_cpufreq_get_rate(cpu) != new_rate)
  161. return -EIO;
  162. return 0;
  163. }
  164. /* Set clock frequency */
  165. static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
  166. unsigned int index)
  167. {
  168. u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
  169. unsigned int freqs_new;
  170. cur_cluster = cpu_to_cluster(cpu);
  171. new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
  172. freqs_new = freq_table[cur_cluster][index].frequency;
  173. if (is_bL_switching_enabled()) {
  174. if ((actual_cluster == A15_CLUSTER) &&
  175. (freqs_new < clk_big_min)) {
  176. new_cluster = A7_CLUSTER;
  177. } else if ((actual_cluster == A7_CLUSTER) &&
  178. (freqs_new > clk_little_max)) {
  179. new_cluster = A15_CLUSTER;
  180. }
  181. }
  182. return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
  183. }
  184. static inline u32 get_table_count(struct cpufreq_frequency_table *table)
  185. {
  186. int count;
  187. for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
  188. ;
  189. return count;
  190. }
  191. /* get the minimum frequency in the cpufreq_frequency_table */
  192. static inline u32 get_table_min(struct cpufreq_frequency_table *table)
  193. {
  194. struct cpufreq_frequency_table *pos;
  195. uint32_t min_freq = ~0;
  196. cpufreq_for_each_entry(pos, table)
  197. if (pos->frequency < min_freq)
  198. min_freq = pos->frequency;
  199. return min_freq;
  200. }
  201. /* get the maximum frequency in the cpufreq_frequency_table */
  202. static inline u32 get_table_max(struct cpufreq_frequency_table *table)
  203. {
  204. struct cpufreq_frequency_table *pos;
  205. uint32_t max_freq = 0;
  206. cpufreq_for_each_entry(pos, table)
  207. if (pos->frequency > max_freq)
  208. max_freq = pos->frequency;
  209. return max_freq;
  210. }
  211. static int merge_cluster_tables(void)
  212. {
  213. int i, j, k = 0, count = 1;
  214. struct cpufreq_frequency_table *table;
  215. for (i = 0; i < MAX_CLUSTERS; i++)
  216. count += get_table_count(freq_table[i]);
  217. table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
  218. if (!table)
  219. return -ENOMEM;
  220. freq_table[MAX_CLUSTERS] = table;
  221. /* Add in reverse order to get freqs in increasing order */
  222. for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
  223. for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
  224. j++) {
  225. table[k].frequency = VIRT_FREQ(i,
  226. freq_table[i][j].frequency);
  227. pr_debug("%s: index: %d, freq: %d\n", __func__, k,
  228. table[k].frequency);
  229. k++;
  230. }
  231. }
  232. table[k].driver_data = k;
  233. table[k].frequency = CPUFREQ_TABLE_END;
  234. pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
  235. return 0;
  236. }
  237. static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
  238. {
  239. u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
  240. if (!freq_table[cluster])
  241. return;
  242. clk_put(clk[cluster]);
  243. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
  244. if (arm_bL_ops->free_opp_table)
  245. arm_bL_ops->free_opp_table(cpu_dev);
  246. dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
  247. }
  248. static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
  249. {
  250. u32 cluster = cpu_to_cluster(cpu_dev->id);
  251. int i;
  252. if (atomic_dec_return(&cluster_usage[cluster]))
  253. return;
  254. if (cluster < MAX_CLUSTERS)
  255. return _put_cluster_clk_and_freq_table(cpu_dev);
  256. for_each_present_cpu(i) {
  257. struct device *cdev = get_cpu_device(i);
  258. if (!cdev) {
  259. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  260. return;
  261. }
  262. _put_cluster_clk_and_freq_table(cdev);
  263. }
  264. /* free virtual table */
  265. kfree(freq_table[cluster]);
  266. }
  267. static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
  268. {
  269. u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
  270. int ret;
  271. if (freq_table[cluster])
  272. return 0;
  273. ret = arm_bL_ops->init_opp_table(cpu_dev);
  274. if (ret) {
  275. dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
  276. __func__, cpu_dev->id, ret);
  277. goto out;
  278. }
  279. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
  280. if (ret) {
  281. dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
  282. __func__, cpu_dev->id, ret);
  283. goto free_opp_table;
  284. }
  285. clk[cluster] = clk_get(cpu_dev, NULL);
  286. if (!IS_ERR(clk[cluster])) {
  287. dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
  288. __func__, clk[cluster], freq_table[cluster],
  289. cluster);
  290. return 0;
  291. }
  292. dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
  293. __func__, cpu_dev->id, cluster);
  294. ret = PTR_ERR(clk[cluster]);
  295. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
  296. free_opp_table:
  297. if (arm_bL_ops->free_opp_table)
  298. arm_bL_ops->free_opp_table(cpu_dev);
  299. out:
  300. dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
  301. cluster);
  302. return ret;
  303. }
  304. static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
  305. {
  306. u32 cluster = cpu_to_cluster(cpu_dev->id);
  307. int i, ret;
  308. if (atomic_inc_return(&cluster_usage[cluster]) != 1)
  309. return 0;
  310. if (cluster < MAX_CLUSTERS) {
  311. ret = _get_cluster_clk_and_freq_table(cpu_dev);
  312. if (ret)
  313. atomic_dec(&cluster_usage[cluster]);
  314. return ret;
  315. }
  316. /*
  317. * Get data for all clusters and fill virtual cluster with a merge of
  318. * both
  319. */
  320. for_each_present_cpu(i) {
  321. struct device *cdev = get_cpu_device(i);
  322. if (!cdev) {
  323. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  324. return -ENODEV;
  325. }
  326. ret = _get_cluster_clk_and_freq_table(cdev);
  327. if (ret)
  328. goto put_clusters;
  329. }
  330. ret = merge_cluster_tables();
  331. if (ret)
  332. goto put_clusters;
  333. /* Assuming 2 cluster, set clk_big_min and clk_little_max */
  334. clk_big_min = get_table_min(freq_table[0]);
  335. clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
  336. pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
  337. __func__, cluster, clk_big_min, clk_little_max);
  338. return 0;
  339. put_clusters:
  340. for_each_present_cpu(i) {
  341. struct device *cdev = get_cpu_device(i);
  342. if (!cdev) {
  343. pr_err("%s: failed to get cpu%d device\n", __func__, i);
  344. return -ENODEV;
  345. }
  346. _put_cluster_clk_and_freq_table(cdev);
  347. }
  348. atomic_dec(&cluster_usage[cluster]);
  349. return ret;
  350. }
  351. /* Per-CPU initialization */
  352. static int bL_cpufreq_init(struct cpufreq_policy *policy)
  353. {
  354. u32 cur_cluster = cpu_to_cluster(policy->cpu);
  355. struct device *cpu_dev;
  356. int ret;
  357. cpu_dev = get_cpu_device(policy->cpu);
  358. if (!cpu_dev) {
  359. pr_err("%s: failed to get cpu%d device\n", __func__,
  360. policy->cpu);
  361. return -ENODEV;
  362. }
  363. ret = get_cluster_clk_and_freq_table(cpu_dev);
  364. if (ret)
  365. return ret;
  366. ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
  367. if (ret) {
  368. dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
  369. policy->cpu, cur_cluster);
  370. put_cluster_clk_and_freq_table(cpu_dev);
  371. return ret;
  372. }
  373. if (cur_cluster < MAX_CLUSTERS) {
  374. int cpu;
  375. cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
  376. for_each_cpu(cpu, policy->cpus)
  377. per_cpu(physical_cluster, cpu) = cur_cluster;
  378. } else {
  379. /* Assumption: during init, we are always running on A15 */
  380. per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
  381. }
  382. if (arm_bL_ops->get_transition_latency)
  383. policy->cpuinfo.transition_latency =
  384. arm_bL_ops->get_transition_latency(cpu_dev);
  385. else
  386. policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
  387. if (is_bL_switching_enabled())
  388. per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
  389. dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
  390. return 0;
  391. }
  392. static int bL_cpufreq_exit(struct cpufreq_policy *policy)
  393. {
  394. struct device *cpu_dev;
  395. cpu_dev = get_cpu_device(policy->cpu);
  396. if (!cpu_dev) {
  397. pr_err("%s: failed to get cpu%d device\n", __func__,
  398. policy->cpu);
  399. return -ENODEV;
  400. }
  401. put_cluster_clk_and_freq_table(cpu_dev);
  402. dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
  403. return 0;
  404. }
  405. static struct cpufreq_driver bL_cpufreq_driver = {
  406. .name = "arm-big-little",
  407. .flags = CPUFREQ_STICKY |
  408. CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
  409. CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  410. .verify = cpufreq_generic_frequency_table_verify,
  411. .target_index = bL_cpufreq_set_target,
  412. .get = bL_cpufreq_get_rate,
  413. .init = bL_cpufreq_init,
  414. .exit = bL_cpufreq_exit,
  415. .attr = cpufreq_generic_attr,
  416. };
  417. #ifdef CONFIG_BL_SWITCHER
  418. static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
  419. unsigned long action, void *_arg)
  420. {
  421. pr_debug("%s: action: %ld\n", __func__, action);
  422. switch (action) {
  423. case BL_NOTIFY_PRE_ENABLE:
  424. case BL_NOTIFY_PRE_DISABLE:
  425. cpufreq_unregister_driver(&bL_cpufreq_driver);
  426. break;
  427. case BL_NOTIFY_POST_ENABLE:
  428. set_switching_enabled(true);
  429. cpufreq_register_driver(&bL_cpufreq_driver);
  430. break;
  431. case BL_NOTIFY_POST_DISABLE:
  432. set_switching_enabled(false);
  433. cpufreq_register_driver(&bL_cpufreq_driver);
  434. break;
  435. default:
  436. return NOTIFY_DONE;
  437. }
  438. return NOTIFY_OK;
  439. }
  440. static struct notifier_block bL_switcher_notifier = {
  441. .notifier_call = bL_cpufreq_switcher_notifier,
  442. };
  443. static int __bLs_register_notifier(void)
  444. {
  445. return bL_switcher_register_notifier(&bL_switcher_notifier);
  446. }
  447. static int __bLs_unregister_notifier(void)
  448. {
  449. return bL_switcher_unregister_notifier(&bL_switcher_notifier);
  450. }
  451. #else
  452. static int __bLs_register_notifier(void) { return 0; }
  453. static int __bLs_unregister_notifier(void) { return 0; }
  454. #endif
  455. int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
  456. {
  457. int ret, i;
  458. if (arm_bL_ops) {
  459. pr_debug("%s: Already registered: %s, exiting\n", __func__,
  460. arm_bL_ops->name);
  461. return -EBUSY;
  462. }
  463. if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
  464. pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
  465. return -ENODEV;
  466. }
  467. arm_bL_ops = ops;
  468. set_switching_enabled(bL_switcher_get_enabled());
  469. for (i = 0; i < MAX_CLUSTERS; i++)
  470. mutex_init(&cluster_lock[i]);
  471. ret = cpufreq_register_driver(&bL_cpufreq_driver);
  472. if (ret) {
  473. pr_info("%s: Failed registering platform driver: %s, err: %d\n",
  474. __func__, ops->name, ret);
  475. arm_bL_ops = NULL;
  476. } else {
  477. ret = __bLs_register_notifier();
  478. if (ret) {
  479. cpufreq_unregister_driver(&bL_cpufreq_driver);
  480. arm_bL_ops = NULL;
  481. } else {
  482. pr_info("%s: Registered platform driver: %s\n",
  483. __func__, ops->name);
  484. }
  485. }
  486. bL_switcher_put_enabled();
  487. return ret;
  488. }
  489. EXPORT_SYMBOL_GPL(bL_cpufreq_register);
  490. void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
  491. {
  492. if (arm_bL_ops != ops) {
  493. pr_err("%s: Registered with: %s, can't unregister, exiting\n",
  494. __func__, arm_bL_ops->name);
  495. return;
  496. }
  497. bL_switcher_get_enabled();
  498. __bLs_unregister_notifier();
  499. cpufreq_unregister_driver(&bL_cpufreq_driver);
  500. bL_switcher_put_enabled();
  501. pr_info("%s: Un-registered platform driver: %s\n", __func__,
  502. arm_bL_ops->name);
  503. arm_bL_ops = NULL;
  504. }
  505. EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);
  506. MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
  507. MODULE_DESCRIPTION("Generic ARM big LITTLE cpufreq driver");
  508. MODULE_LICENSE("GPL v2");