arm_arch_timer.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_address.h>
  22. #include <linux/io.h>
  23. #include <linux/slab.h>
  24. #include <linux/sched_clock.h>
  25. #include <linux/acpi.h>
  26. #include <asm/arch_timer.h>
  27. #include <asm/virt.h>
  28. #include <clocksource/arm_arch_timer.h>
  29. #define CNTTIDR 0x08
  30. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  31. #define CNTVCT_LO 0x08
  32. #define CNTVCT_HI 0x0c
  33. #define CNTFRQ 0x10
  34. #define CNTP_TVAL 0x28
  35. #define CNTP_CTL 0x2c
  36. #define CNTV_TVAL 0x38
  37. #define CNTV_CTL 0x3c
  38. #define ARCH_CP15_TIMER BIT(0)
  39. #define ARCH_MEM_TIMER BIT(1)
  40. static unsigned arch_timers_present __initdata;
  41. static void __iomem *arch_counter_base;
  42. struct arch_timer {
  43. void __iomem *base;
  44. struct clock_event_device evt;
  45. };
  46. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  47. static u32 arch_timer_rate;
  48. enum ppi_nr {
  49. PHYS_SECURE_PPI,
  50. PHYS_NONSECURE_PPI,
  51. VIRT_PPI,
  52. HYP_PPI,
  53. MAX_TIMER_PPI
  54. };
  55. static int arch_timer_ppi[MAX_TIMER_PPI];
  56. static struct clock_event_device __percpu *arch_timer_evt;
  57. static bool arch_timer_use_virtual = true;
  58. static bool arch_timer_c3stop;
  59. static bool arch_timer_mem_use_virtual;
  60. /*
  61. * Architected system timer support.
  62. */
  63. static __always_inline
  64. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  65. struct clock_event_device *clk)
  66. {
  67. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  68. struct arch_timer *timer = to_arch_timer(clk);
  69. switch (reg) {
  70. case ARCH_TIMER_REG_CTRL:
  71. writel_relaxed(val, timer->base + CNTP_CTL);
  72. break;
  73. case ARCH_TIMER_REG_TVAL:
  74. writel_relaxed(val, timer->base + CNTP_TVAL);
  75. break;
  76. }
  77. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  78. struct arch_timer *timer = to_arch_timer(clk);
  79. switch (reg) {
  80. case ARCH_TIMER_REG_CTRL:
  81. writel_relaxed(val, timer->base + CNTV_CTL);
  82. break;
  83. case ARCH_TIMER_REG_TVAL:
  84. writel_relaxed(val, timer->base + CNTV_TVAL);
  85. break;
  86. }
  87. } else {
  88. arch_timer_reg_write_cp15(access, reg, val);
  89. }
  90. }
  91. static __always_inline
  92. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  93. struct clock_event_device *clk)
  94. {
  95. u32 val;
  96. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  97. struct arch_timer *timer = to_arch_timer(clk);
  98. switch (reg) {
  99. case ARCH_TIMER_REG_CTRL:
  100. val = readl_relaxed(timer->base + CNTP_CTL);
  101. break;
  102. case ARCH_TIMER_REG_TVAL:
  103. val = readl_relaxed(timer->base + CNTP_TVAL);
  104. break;
  105. }
  106. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  107. struct arch_timer *timer = to_arch_timer(clk);
  108. switch (reg) {
  109. case ARCH_TIMER_REG_CTRL:
  110. val = readl_relaxed(timer->base + CNTV_CTL);
  111. break;
  112. case ARCH_TIMER_REG_TVAL:
  113. val = readl_relaxed(timer->base + CNTV_TVAL);
  114. break;
  115. }
  116. } else {
  117. val = arch_timer_reg_read_cp15(access, reg);
  118. }
  119. return val;
  120. }
  121. static __always_inline irqreturn_t timer_handler(const int access,
  122. struct clock_event_device *evt)
  123. {
  124. unsigned long ctrl;
  125. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  126. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  127. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  128. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  129. evt->event_handler(evt);
  130. return IRQ_HANDLED;
  131. }
  132. return IRQ_NONE;
  133. }
  134. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  135. {
  136. struct clock_event_device *evt = dev_id;
  137. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  138. }
  139. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  140. {
  141. struct clock_event_device *evt = dev_id;
  142. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  143. }
  144. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  145. {
  146. struct clock_event_device *evt = dev_id;
  147. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  148. }
  149. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  150. {
  151. struct clock_event_device *evt = dev_id;
  152. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  153. }
  154. static __always_inline void timer_set_mode(const int access, int mode,
  155. struct clock_event_device *clk)
  156. {
  157. unsigned long ctrl;
  158. switch (mode) {
  159. case CLOCK_EVT_MODE_UNUSED:
  160. case CLOCK_EVT_MODE_SHUTDOWN:
  161. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  162. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  163. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  164. break;
  165. default:
  166. break;
  167. }
  168. }
  169. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  170. struct clock_event_device *clk)
  171. {
  172. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  173. }
  174. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  175. struct clock_event_device *clk)
  176. {
  177. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  178. }
  179. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  180. struct clock_event_device *clk)
  181. {
  182. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  183. }
  184. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  185. struct clock_event_device *clk)
  186. {
  187. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  188. }
  189. static __always_inline void set_next_event(const int access, unsigned long evt,
  190. struct clock_event_device *clk)
  191. {
  192. unsigned long ctrl;
  193. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  194. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  195. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  196. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  197. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  198. }
  199. static int arch_timer_set_next_event_virt(unsigned long evt,
  200. struct clock_event_device *clk)
  201. {
  202. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  203. return 0;
  204. }
  205. static int arch_timer_set_next_event_phys(unsigned long evt,
  206. struct clock_event_device *clk)
  207. {
  208. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  209. return 0;
  210. }
  211. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  212. struct clock_event_device *clk)
  213. {
  214. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  215. return 0;
  216. }
  217. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  218. struct clock_event_device *clk)
  219. {
  220. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  221. return 0;
  222. }
  223. static void __arch_timer_setup(unsigned type,
  224. struct clock_event_device *clk)
  225. {
  226. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  227. if (type == ARCH_CP15_TIMER) {
  228. if (arch_timer_c3stop)
  229. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  230. clk->name = "arch_sys_timer";
  231. clk->rating = 450;
  232. clk->cpumask = cpumask_of(smp_processor_id());
  233. if (arch_timer_use_virtual) {
  234. clk->irq = arch_timer_ppi[VIRT_PPI];
  235. clk->set_mode = arch_timer_set_mode_virt;
  236. clk->set_next_event = arch_timer_set_next_event_virt;
  237. } else {
  238. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  239. clk->set_mode = arch_timer_set_mode_phys;
  240. clk->set_next_event = arch_timer_set_next_event_phys;
  241. }
  242. } else {
  243. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  244. clk->name = "arch_mem_timer";
  245. clk->rating = 400;
  246. clk->cpumask = cpu_all_mask;
  247. if (arch_timer_mem_use_virtual) {
  248. clk->set_mode = arch_timer_set_mode_virt_mem;
  249. clk->set_next_event =
  250. arch_timer_set_next_event_virt_mem;
  251. } else {
  252. clk->set_mode = arch_timer_set_mode_phys_mem;
  253. clk->set_next_event =
  254. arch_timer_set_next_event_phys_mem;
  255. }
  256. }
  257. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  258. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  259. }
  260. static void arch_timer_evtstrm_enable(int divider)
  261. {
  262. u32 cntkctl = arch_timer_get_cntkctl();
  263. cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  264. /* Set the divider and enable virtual event stream */
  265. cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  266. | ARCH_TIMER_VIRT_EVT_EN;
  267. arch_timer_set_cntkctl(cntkctl);
  268. elf_hwcap |= HWCAP_EVTSTRM;
  269. #ifdef CONFIG_COMPAT
  270. compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  271. #endif
  272. }
  273. static void arch_timer_configure_evtstream(void)
  274. {
  275. int evt_stream_div, pos;
  276. /* Find the closest power of two to the divisor */
  277. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  278. pos = fls(evt_stream_div);
  279. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  280. pos--;
  281. /* enable event stream */
  282. arch_timer_evtstrm_enable(min(pos, 15));
  283. }
  284. static void arch_counter_set_user_access(void)
  285. {
  286. u32 cntkctl = arch_timer_get_cntkctl();
  287. /* Disable user access to the timers and the physical counter */
  288. /* Also disable virtual event stream */
  289. cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  290. | ARCH_TIMER_USR_VT_ACCESS_EN
  291. | ARCH_TIMER_VIRT_EVT_EN
  292. | ARCH_TIMER_USR_PCT_ACCESS_EN);
  293. /* Enable user access to the virtual counter */
  294. cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  295. arch_timer_set_cntkctl(cntkctl);
  296. }
  297. static int arch_timer_setup(struct clock_event_device *clk)
  298. {
  299. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  300. if (arch_timer_use_virtual)
  301. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  302. else {
  303. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  304. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  305. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  306. }
  307. arch_counter_set_user_access();
  308. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  309. arch_timer_configure_evtstream();
  310. return 0;
  311. }
  312. static void
  313. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  314. {
  315. /* Who has more than one independent system counter? */
  316. if (arch_timer_rate)
  317. return;
  318. /*
  319. * Try to determine the frequency from the device tree or CNTFRQ,
  320. * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
  321. */
  322. if (!acpi_disabled ||
  323. of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  324. if (cntbase)
  325. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  326. else
  327. arch_timer_rate = arch_timer_get_cntfrq();
  328. }
  329. /* Check the timer frequency. */
  330. if (arch_timer_rate == 0)
  331. pr_warn("Architected timer frequency not available\n");
  332. }
  333. static void arch_timer_banner(unsigned type)
  334. {
  335. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  336. type & ARCH_CP15_TIMER ? "cp15" : "",
  337. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  338. type & ARCH_MEM_TIMER ? "mmio" : "",
  339. (unsigned long)arch_timer_rate / 1000000,
  340. (unsigned long)(arch_timer_rate / 10000) % 100,
  341. type & ARCH_CP15_TIMER ?
  342. arch_timer_use_virtual ? "virt" : "phys" :
  343. "",
  344. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  345. type & ARCH_MEM_TIMER ?
  346. arch_timer_mem_use_virtual ? "virt" : "phys" :
  347. "");
  348. }
  349. u32 arch_timer_get_rate(void)
  350. {
  351. return arch_timer_rate;
  352. }
  353. static u64 arch_counter_get_cntvct_mem(void)
  354. {
  355. u32 vct_lo, vct_hi, tmp_hi;
  356. do {
  357. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  358. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  359. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  360. } while (vct_hi != tmp_hi);
  361. return ((u64) vct_hi << 32) | vct_lo;
  362. }
  363. /*
  364. * Default to cp15 based access because arm64 uses this function for
  365. * sched_clock() before DT is probed and the cp15 method is guaranteed
  366. * to exist on arm64. arm doesn't use this before DT is probed so even
  367. * if we don't have the cp15 accessors we won't have a problem.
  368. */
  369. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  370. static cycle_t arch_counter_read(struct clocksource *cs)
  371. {
  372. return arch_timer_read_counter();
  373. }
  374. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  375. {
  376. return arch_timer_read_counter();
  377. }
  378. static struct clocksource clocksource_counter = {
  379. .name = "arch_sys_counter",
  380. .rating = 400,
  381. .read = arch_counter_read,
  382. .mask = CLOCKSOURCE_MASK(56),
  383. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  384. };
  385. static struct cyclecounter cyclecounter = {
  386. .read = arch_counter_read_cc,
  387. .mask = CLOCKSOURCE_MASK(56),
  388. };
  389. static struct timecounter timecounter;
  390. struct timecounter *arch_timer_get_timecounter(void)
  391. {
  392. return &timecounter;
  393. }
  394. static void __init arch_counter_register(unsigned type)
  395. {
  396. u64 start_count;
  397. /* Register the CP15 based counter if we have one */
  398. if (type & ARCH_CP15_TIMER) {
  399. if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
  400. arch_timer_read_counter = arch_counter_get_cntvct;
  401. else
  402. arch_timer_read_counter = arch_counter_get_cntpct;
  403. } else {
  404. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  405. /* If the clocksource name is "arch_sys_counter" the
  406. * VDSO will attempt to read the CP15-based counter.
  407. * Ensure this does not happen when CP15-based
  408. * counter is not available.
  409. */
  410. clocksource_counter.name = "arch_mem_counter";
  411. }
  412. start_count = arch_timer_read_counter();
  413. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  414. cyclecounter.mult = clocksource_counter.mult;
  415. cyclecounter.shift = clocksource_counter.shift;
  416. timecounter_init(&timecounter, &cyclecounter, start_count);
  417. /* 56 bits minimum, so we assume worst case rollover */
  418. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  419. }
  420. static void arch_timer_stop(struct clock_event_device *clk)
  421. {
  422. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  423. clk->irq, smp_processor_id());
  424. if (arch_timer_use_virtual)
  425. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  426. else {
  427. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  428. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  429. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  430. }
  431. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  432. }
  433. static int arch_timer_cpu_notify(struct notifier_block *self,
  434. unsigned long action, void *hcpu)
  435. {
  436. /*
  437. * Grab cpu pointer in each case to avoid spurious
  438. * preemptible warnings
  439. */
  440. switch (action & ~CPU_TASKS_FROZEN) {
  441. case CPU_STARTING:
  442. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  443. break;
  444. case CPU_DYING:
  445. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  446. break;
  447. }
  448. return NOTIFY_OK;
  449. }
  450. static struct notifier_block arch_timer_cpu_nb = {
  451. .notifier_call = arch_timer_cpu_notify,
  452. };
  453. #ifdef CONFIG_CPU_PM
  454. static unsigned int saved_cntkctl;
  455. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  456. unsigned long action, void *hcpu)
  457. {
  458. if (action == CPU_PM_ENTER)
  459. saved_cntkctl = arch_timer_get_cntkctl();
  460. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  461. arch_timer_set_cntkctl(saved_cntkctl);
  462. return NOTIFY_OK;
  463. }
  464. static struct notifier_block arch_timer_cpu_pm_notifier = {
  465. .notifier_call = arch_timer_cpu_pm_notify,
  466. };
  467. static int __init arch_timer_cpu_pm_init(void)
  468. {
  469. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  470. }
  471. #else
  472. static int __init arch_timer_cpu_pm_init(void)
  473. {
  474. return 0;
  475. }
  476. #endif
  477. static int __init arch_timer_register(void)
  478. {
  479. int err;
  480. int ppi;
  481. arch_timer_evt = alloc_percpu(struct clock_event_device);
  482. if (!arch_timer_evt) {
  483. err = -ENOMEM;
  484. goto out;
  485. }
  486. if (arch_timer_use_virtual) {
  487. ppi = arch_timer_ppi[VIRT_PPI];
  488. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  489. "arch_timer", arch_timer_evt);
  490. } else {
  491. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  492. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  493. "arch_timer", arch_timer_evt);
  494. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  495. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  496. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  497. "arch_timer", arch_timer_evt);
  498. if (err)
  499. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  500. arch_timer_evt);
  501. }
  502. }
  503. if (err) {
  504. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  505. ppi, err);
  506. goto out_free;
  507. }
  508. err = register_cpu_notifier(&arch_timer_cpu_nb);
  509. if (err)
  510. goto out_free_irq;
  511. err = arch_timer_cpu_pm_init();
  512. if (err)
  513. goto out_unreg_notify;
  514. /* Immediately configure the timer on the boot CPU */
  515. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  516. return 0;
  517. out_unreg_notify:
  518. unregister_cpu_notifier(&arch_timer_cpu_nb);
  519. out_free_irq:
  520. if (arch_timer_use_virtual)
  521. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  522. else {
  523. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  524. arch_timer_evt);
  525. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  526. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  527. arch_timer_evt);
  528. }
  529. out_free:
  530. free_percpu(arch_timer_evt);
  531. out:
  532. return err;
  533. }
  534. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  535. {
  536. int ret;
  537. irq_handler_t func;
  538. struct arch_timer *t;
  539. t = kzalloc(sizeof(*t), GFP_KERNEL);
  540. if (!t)
  541. return -ENOMEM;
  542. t->base = base;
  543. t->evt.irq = irq;
  544. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  545. if (arch_timer_mem_use_virtual)
  546. func = arch_timer_handler_virt_mem;
  547. else
  548. func = arch_timer_handler_phys_mem;
  549. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  550. if (ret) {
  551. pr_err("arch_timer: Failed to request mem timer irq\n");
  552. kfree(t);
  553. }
  554. return ret;
  555. }
  556. static const struct of_device_id arch_timer_of_match[] __initconst = {
  557. { .compatible = "arm,armv7-timer", },
  558. { .compatible = "arm,armv8-timer", },
  559. {},
  560. };
  561. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  562. { .compatible = "arm,armv7-timer-mem", },
  563. {},
  564. };
  565. static bool __init
  566. arch_timer_needs_probing(int type, const struct of_device_id *matches)
  567. {
  568. struct device_node *dn;
  569. bool needs_probing = false;
  570. dn = of_find_matching_node(NULL, matches);
  571. if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  572. needs_probing = true;
  573. of_node_put(dn);
  574. return needs_probing;
  575. }
  576. static void __init arch_timer_common_init(void)
  577. {
  578. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  579. /* Wait until both nodes are probed if we have two timers */
  580. if ((arch_timers_present & mask) != mask) {
  581. if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  582. return;
  583. if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
  584. return;
  585. }
  586. arch_timer_banner(arch_timers_present);
  587. arch_counter_register(arch_timers_present);
  588. arch_timer_arch_init();
  589. }
  590. static void __init arch_timer_init(void)
  591. {
  592. /*
  593. * If HYP mode is available, we know that the physical timer
  594. * has been configured to be accessible from PL1. Use it, so
  595. * that a guest can use the virtual timer instead.
  596. *
  597. * If no interrupt provided for virtual timer, we'll have to
  598. * stick to the physical timer. It'd better be accessible...
  599. */
  600. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  601. arch_timer_use_virtual = false;
  602. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  603. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  604. pr_warn("arch_timer: No interrupt available, giving up\n");
  605. return;
  606. }
  607. }
  608. arch_timer_register();
  609. arch_timer_common_init();
  610. }
  611. static void __init arch_timer_of_init(struct device_node *np)
  612. {
  613. int i;
  614. if (arch_timers_present & ARCH_CP15_TIMER) {
  615. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  616. return;
  617. }
  618. arch_timers_present |= ARCH_CP15_TIMER;
  619. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  620. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  621. arch_timer_detect_rate(NULL, np);
  622. arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  623. /*
  624. * If we cannot rely on firmware initializing the timer registers then
  625. * we should use the physical timers instead.
  626. */
  627. if (IS_ENABLED(CONFIG_ARM) &&
  628. of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
  629. arch_timer_use_virtual = false;
  630. arch_timer_init();
  631. }
  632. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
  633. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
  634. static void __init arch_timer_mem_init(struct device_node *np)
  635. {
  636. struct device_node *frame, *best_frame = NULL;
  637. void __iomem *cntctlbase, *base;
  638. unsigned int irq;
  639. u32 cnttidr;
  640. arch_timers_present |= ARCH_MEM_TIMER;
  641. cntctlbase = of_iomap(np, 0);
  642. if (!cntctlbase) {
  643. pr_err("arch_timer: Can't find CNTCTLBase\n");
  644. return;
  645. }
  646. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  647. iounmap(cntctlbase);
  648. /*
  649. * Try to find a virtual capable frame. Otherwise fall back to a
  650. * physical capable frame.
  651. */
  652. for_each_available_child_of_node(np, frame) {
  653. int n;
  654. if (of_property_read_u32(frame, "frame-number", &n)) {
  655. pr_err("arch_timer: Missing frame-number\n");
  656. of_node_put(best_frame);
  657. of_node_put(frame);
  658. return;
  659. }
  660. if (cnttidr & CNTTIDR_VIRT(n)) {
  661. of_node_put(best_frame);
  662. best_frame = frame;
  663. arch_timer_mem_use_virtual = true;
  664. break;
  665. }
  666. of_node_put(best_frame);
  667. best_frame = of_node_get(frame);
  668. }
  669. base = arch_counter_base = of_iomap(best_frame, 0);
  670. if (!base) {
  671. pr_err("arch_timer: Can't map frame's registers\n");
  672. of_node_put(best_frame);
  673. return;
  674. }
  675. if (arch_timer_mem_use_virtual)
  676. irq = irq_of_parse_and_map(best_frame, 1);
  677. else
  678. irq = irq_of_parse_and_map(best_frame, 0);
  679. of_node_put(best_frame);
  680. if (!irq) {
  681. pr_err("arch_timer: Frame missing %s irq",
  682. arch_timer_mem_use_virtual ? "virt" : "phys");
  683. return;
  684. }
  685. arch_timer_detect_rate(base, np);
  686. arch_timer_mem_register(base, irq);
  687. arch_timer_common_init();
  688. }
  689. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  690. arch_timer_mem_init);
  691. #ifdef CONFIG_ACPI
  692. static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
  693. {
  694. int trigger, polarity;
  695. if (!interrupt)
  696. return 0;
  697. trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
  698. : ACPI_LEVEL_SENSITIVE;
  699. polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
  700. : ACPI_ACTIVE_HIGH;
  701. return acpi_register_gsi(NULL, interrupt, trigger, polarity);
  702. }
  703. /* Initialize per-processor generic timer */
  704. static int __init arch_timer_acpi_init(struct acpi_table_header *table)
  705. {
  706. struct acpi_table_gtdt *gtdt;
  707. if (arch_timers_present & ARCH_CP15_TIMER) {
  708. pr_warn("arch_timer: already initialized, skipping\n");
  709. return -EINVAL;
  710. }
  711. gtdt = container_of(table, struct acpi_table_gtdt, header);
  712. arch_timers_present |= ARCH_CP15_TIMER;
  713. arch_timer_ppi[PHYS_SECURE_PPI] =
  714. map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
  715. gtdt->secure_el1_flags);
  716. arch_timer_ppi[PHYS_NONSECURE_PPI] =
  717. map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
  718. gtdt->non_secure_el1_flags);
  719. arch_timer_ppi[VIRT_PPI] =
  720. map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
  721. gtdt->virtual_timer_flags);
  722. arch_timer_ppi[HYP_PPI] =
  723. map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
  724. gtdt->non_secure_el2_flags);
  725. /* Get the frequency from CNTFRQ */
  726. arch_timer_detect_rate(NULL, NULL);
  727. /* Always-on capability */
  728. arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
  729. arch_timer_init();
  730. return 0;
  731. }
  732. /* Initialize all the generic timers presented in GTDT */
  733. void __init acpi_generic_timer_init(void)
  734. {
  735. if (acpi_disabled)
  736. return;
  737. acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init);
  738. }
  739. #endif