brd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/major.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/bio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/mutex.h>
  18. #include <linux/radix-tree.h>
  19. #include <linux/fs.h>
  20. #include <linux/slab.h>
  21. #include <asm/uaccess.h>
  22. #define SECTOR_SHIFT 9
  23. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  24. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  25. /*
  26. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  27. * the pages containing the block device's contents. A brd page's ->index is
  28. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  29. * with, the kernel's pagecache or buffer cache (which sit above our block
  30. * device).
  31. */
  32. struct brd_device {
  33. int brd_number;
  34. struct request_queue *brd_queue;
  35. struct gendisk *brd_disk;
  36. struct list_head brd_list;
  37. /*
  38. * Backing store of pages and lock to protect it. This is the contents
  39. * of the block device.
  40. */
  41. spinlock_t brd_lock;
  42. struct radix_tree_root brd_pages;
  43. };
  44. /*
  45. * Look up and return a brd's page for a given sector.
  46. */
  47. static DEFINE_MUTEX(brd_mutex);
  48. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  49. {
  50. pgoff_t idx;
  51. struct page *page;
  52. /*
  53. * The page lifetime is protected by the fact that we have opened the
  54. * device node -- brd pages will never be deleted under us, so we
  55. * don't need any further locking or refcounting.
  56. *
  57. * This is strictly true for the radix-tree nodes as well (ie. we
  58. * don't actually need the rcu_read_lock()), however that is not a
  59. * documented feature of the radix-tree API so it is better to be
  60. * safe here (we don't have total exclusion from radix tree updates
  61. * here, only deletes).
  62. */
  63. rcu_read_lock();
  64. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  65. page = radix_tree_lookup(&brd->brd_pages, idx);
  66. rcu_read_unlock();
  67. BUG_ON(page && page->index != idx);
  68. return page;
  69. }
  70. /*
  71. * Look up and return a brd's page for a given sector.
  72. * If one does not exist, allocate an empty page, and insert that. Then
  73. * return it.
  74. */
  75. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  76. {
  77. pgoff_t idx;
  78. struct page *page;
  79. gfp_t gfp_flags;
  80. page = brd_lookup_page(brd, sector);
  81. if (page)
  82. return page;
  83. /*
  84. * Must use NOIO because we don't want to recurse back into the
  85. * block or filesystem layers from page reclaim.
  86. *
  87. * Cannot support DAX and highmem, because our ->direct_access
  88. * routine for DAX must return memory that is always addressable.
  89. * If DAX was reworked to use pfns and kmap throughout, this
  90. * restriction might be able to be lifted.
  91. */
  92. gfp_flags = GFP_NOIO | __GFP_ZERO;
  93. #ifndef CONFIG_BLK_DEV_RAM_DAX
  94. gfp_flags |= __GFP_HIGHMEM;
  95. #endif
  96. page = alloc_page(gfp_flags);
  97. if (!page)
  98. return NULL;
  99. if (radix_tree_preload(GFP_NOIO)) {
  100. __free_page(page);
  101. return NULL;
  102. }
  103. spin_lock(&brd->brd_lock);
  104. idx = sector >> PAGE_SECTORS_SHIFT;
  105. page->index = idx;
  106. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  107. __free_page(page);
  108. page = radix_tree_lookup(&brd->brd_pages, idx);
  109. BUG_ON(!page);
  110. BUG_ON(page->index != idx);
  111. }
  112. spin_unlock(&brd->brd_lock);
  113. radix_tree_preload_end();
  114. return page;
  115. }
  116. static void brd_free_page(struct brd_device *brd, sector_t sector)
  117. {
  118. struct page *page;
  119. pgoff_t idx;
  120. spin_lock(&brd->brd_lock);
  121. idx = sector >> PAGE_SECTORS_SHIFT;
  122. page = radix_tree_delete(&brd->brd_pages, idx);
  123. spin_unlock(&brd->brd_lock);
  124. if (page)
  125. __free_page(page);
  126. }
  127. static void brd_zero_page(struct brd_device *brd, sector_t sector)
  128. {
  129. struct page *page;
  130. page = brd_lookup_page(brd, sector);
  131. if (page)
  132. clear_highpage(page);
  133. }
  134. /*
  135. * Free all backing store pages and radix tree. This must only be called when
  136. * there are no other users of the device.
  137. */
  138. #define FREE_BATCH 16
  139. static void brd_free_pages(struct brd_device *brd)
  140. {
  141. unsigned long pos = 0;
  142. struct page *pages[FREE_BATCH];
  143. int nr_pages;
  144. do {
  145. int i;
  146. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  147. (void **)pages, pos, FREE_BATCH);
  148. for (i = 0; i < nr_pages; i++) {
  149. void *ret;
  150. BUG_ON(pages[i]->index < pos);
  151. pos = pages[i]->index;
  152. ret = radix_tree_delete(&brd->brd_pages, pos);
  153. BUG_ON(!ret || ret != pages[i]);
  154. __free_page(pages[i]);
  155. }
  156. pos++;
  157. /*
  158. * This assumes radix_tree_gang_lookup always returns as
  159. * many pages as possible. If the radix-tree code changes,
  160. * so will this have to.
  161. */
  162. } while (nr_pages == FREE_BATCH);
  163. }
  164. /*
  165. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  166. */
  167. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  168. {
  169. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  170. size_t copy;
  171. copy = min_t(size_t, n, PAGE_SIZE - offset);
  172. if (!brd_insert_page(brd, sector))
  173. return -ENOSPC;
  174. if (copy < n) {
  175. sector += copy >> SECTOR_SHIFT;
  176. if (!brd_insert_page(brd, sector))
  177. return -ENOSPC;
  178. }
  179. return 0;
  180. }
  181. static void discard_from_brd(struct brd_device *brd,
  182. sector_t sector, size_t n)
  183. {
  184. while (n >= PAGE_SIZE) {
  185. /*
  186. * Don't want to actually discard pages here because
  187. * re-allocating the pages can result in writeback
  188. * deadlocks under heavy load.
  189. */
  190. if (0)
  191. brd_free_page(brd, sector);
  192. else
  193. brd_zero_page(brd, sector);
  194. sector += PAGE_SIZE >> SECTOR_SHIFT;
  195. n -= PAGE_SIZE;
  196. }
  197. }
  198. /*
  199. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  200. */
  201. static void copy_to_brd(struct brd_device *brd, const void *src,
  202. sector_t sector, size_t n)
  203. {
  204. struct page *page;
  205. void *dst;
  206. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  207. size_t copy;
  208. copy = min_t(size_t, n, PAGE_SIZE - offset);
  209. page = brd_lookup_page(brd, sector);
  210. BUG_ON(!page);
  211. dst = kmap_atomic(page);
  212. memcpy(dst + offset, src, copy);
  213. kunmap_atomic(dst);
  214. if (copy < n) {
  215. src += copy;
  216. sector += copy >> SECTOR_SHIFT;
  217. copy = n - copy;
  218. page = brd_lookup_page(brd, sector);
  219. BUG_ON(!page);
  220. dst = kmap_atomic(page);
  221. memcpy(dst, src, copy);
  222. kunmap_atomic(dst);
  223. }
  224. }
  225. /*
  226. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  227. */
  228. static void copy_from_brd(void *dst, struct brd_device *brd,
  229. sector_t sector, size_t n)
  230. {
  231. struct page *page;
  232. void *src;
  233. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  234. size_t copy;
  235. copy = min_t(size_t, n, PAGE_SIZE - offset);
  236. page = brd_lookup_page(brd, sector);
  237. if (page) {
  238. src = kmap_atomic(page);
  239. memcpy(dst, src + offset, copy);
  240. kunmap_atomic(src);
  241. } else
  242. memset(dst, 0, copy);
  243. if (copy < n) {
  244. dst += copy;
  245. sector += copy >> SECTOR_SHIFT;
  246. copy = n - copy;
  247. page = brd_lookup_page(brd, sector);
  248. if (page) {
  249. src = kmap_atomic(page);
  250. memcpy(dst, src, copy);
  251. kunmap_atomic(src);
  252. } else
  253. memset(dst, 0, copy);
  254. }
  255. }
  256. /*
  257. * Process a single bvec of a bio.
  258. */
  259. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  260. unsigned int len, unsigned int off, int rw,
  261. sector_t sector)
  262. {
  263. void *mem;
  264. int err = 0;
  265. if (rw != READ) {
  266. err = copy_to_brd_setup(brd, sector, len);
  267. if (err)
  268. goto out;
  269. }
  270. mem = kmap_atomic(page);
  271. if (rw == READ) {
  272. copy_from_brd(mem + off, brd, sector, len);
  273. flush_dcache_page(page);
  274. } else {
  275. flush_dcache_page(page);
  276. copy_to_brd(brd, mem + off, sector, len);
  277. }
  278. kunmap_atomic(mem);
  279. out:
  280. return err;
  281. }
  282. static void brd_make_request(struct request_queue *q, struct bio *bio)
  283. {
  284. struct block_device *bdev = bio->bi_bdev;
  285. struct brd_device *brd = bdev->bd_disk->private_data;
  286. int rw;
  287. struct bio_vec bvec;
  288. sector_t sector;
  289. struct bvec_iter iter;
  290. int err = -EIO;
  291. sector = bio->bi_iter.bi_sector;
  292. if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
  293. goto out;
  294. if (unlikely(bio->bi_rw & REQ_DISCARD)) {
  295. err = 0;
  296. discard_from_brd(brd, sector, bio->bi_iter.bi_size);
  297. goto out;
  298. }
  299. rw = bio_rw(bio);
  300. if (rw == READA)
  301. rw = READ;
  302. bio_for_each_segment(bvec, bio, iter) {
  303. unsigned int len = bvec.bv_len;
  304. err = brd_do_bvec(brd, bvec.bv_page, len,
  305. bvec.bv_offset, rw, sector);
  306. if (err)
  307. break;
  308. sector += len >> SECTOR_SHIFT;
  309. }
  310. out:
  311. bio_endio(bio, err);
  312. }
  313. static int brd_rw_page(struct block_device *bdev, sector_t sector,
  314. struct page *page, int rw)
  315. {
  316. struct brd_device *brd = bdev->bd_disk->private_data;
  317. int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
  318. page_endio(page, rw & WRITE, err);
  319. return err;
  320. }
  321. #ifdef CONFIG_BLK_DEV_RAM_DAX
  322. static long brd_direct_access(struct block_device *bdev, sector_t sector,
  323. void **kaddr, unsigned long *pfn, long size)
  324. {
  325. struct brd_device *brd = bdev->bd_disk->private_data;
  326. struct page *page;
  327. if (!brd)
  328. return -ENODEV;
  329. page = brd_insert_page(brd, sector);
  330. if (!page)
  331. return -ENOSPC;
  332. *kaddr = page_address(page);
  333. *pfn = page_to_pfn(page);
  334. /*
  335. * TODO: If size > PAGE_SIZE, we could look to see if the next page in
  336. * the file happens to be mapped to the next page of physical RAM.
  337. */
  338. return PAGE_SIZE;
  339. }
  340. #else
  341. #define brd_direct_access NULL
  342. #endif
  343. static int brd_ioctl(struct block_device *bdev, fmode_t mode,
  344. unsigned int cmd, unsigned long arg)
  345. {
  346. int error;
  347. struct brd_device *brd = bdev->bd_disk->private_data;
  348. if (cmd != BLKFLSBUF)
  349. return -ENOTTY;
  350. /*
  351. * ram device BLKFLSBUF has special semantics, we want to actually
  352. * release and destroy the ramdisk data.
  353. */
  354. mutex_lock(&brd_mutex);
  355. mutex_lock(&bdev->bd_mutex);
  356. error = -EBUSY;
  357. if (bdev->bd_openers <= 1) {
  358. /*
  359. * Kill the cache first, so it isn't written back to the
  360. * device.
  361. *
  362. * Another thread might instantiate more buffercache here,
  363. * but there is not much we can do to close that race.
  364. */
  365. kill_bdev(bdev);
  366. brd_free_pages(brd);
  367. error = 0;
  368. }
  369. mutex_unlock(&bdev->bd_mutex);
  370. mutex_unlock(&brd_mutex);
  371. return error;
  372. }
  373. static const struct block_device_operations brd_fops = {
  374. .owner = THIS_MODULE,
  375. .rw_page = brd_rw_page,
  376. .ioctl = brd_ioctl,
  377. .direct_access = brd_direct_access,
  378. };
  379. /*
  380. * And now the modules code and kernel interface.
  381. */
  382. static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
  383. module_param(rd_nr, int, S_IRUGO);
  384. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  385. int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  386. module_param(rd_size, int, S_IRUGO);
  387. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  388. static int max_part = 1;
  389. module_param(max_part, int, S_IRUGO);
  390. MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
  391. MODULE_LICENSE("GPL");
  392. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  393. MODULE_ALIAS("rd");
  394. #ifndef MODULE
  395. /* Legacy boot options - nonmodular */
  396. static int __init ramdisk_size(char *str)
  397. {
  398. rd_size = simple_strtol(str, NULL, 0);
  399. return 1;
  400. }
  401. __setup("ramdisk_size=", ramdisk_size);
  402. #endif
  403. /*
  404. * The device scheme is derived from loop.c. Keep them in synch where possible
  405. * (should share code eventually).
  406. */
  407. static LIST_HEAD(brd_devices);
  408. static DEFINE_MUTEX(brd_devices_mutex);
  409. static struct brd_device *brd_alloc(int i)
  410. {
  411. struct brd_device *brd;
  412. struct gendisk *disk;
  413. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  414. if (!brd)
  415. goto out;
  416. brd->brd_number = i;
  417. spin_lock_init(&brd->brd_lock);
  418. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  419. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  420. if (!brd->brd_queue)
  421. goto out_free_dev;
  422. blk_queue_make_request(brd->brd_queue, brd_make_request);
  423. blk_queue_max_hw_sectors(brd->brd_queue, 1024);
  424. blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
  425. /* This is so fdisk will align partitions on 4k, because of
  426. * direct_access API needing 4k alignment, returning a PFN
  427. * (This is only a problem on very small devices <= 4M,
  428. * otherwise fdisk will align on 1M. Regardless this call
  429. * is harmless)
  430. */
  431. blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
  432. brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
  433. brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
  434. brd->brd_queue->limits.discard_zeroes_data = 1;
  435. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
  436. disk = brd->brd_disk = alloc_disk(max_part);
  437. if (!disk)
  438. goto out_free_queue;
  439. disk->major = RAMDISK_MAJOR;
  440. disk->first_minor = i * max_part;
  441. disk->fops = &brd_fops;
  442. disk->private_data = brd;
  443. disk->queue = brd->brd_queue;
  444. disk->flags = GENHD_FL_EXT_DEVT;
  445. sprintf(disk->disk_name, "ram%d", i);
  446. set_capacity(disk, rd_size * 2);
  447. return brd;
  448. out_free_queue:
  449. blk_cleanup_queue(brd->brd_queue);
  450. out_free_dev:
  451. kfree(brd);
  452. out:
  453. return NULL;
  454. }
  455. static void brd_free(struct brd_device *brd)
  456. {
  457. put_disk(brd->brd_disk);
  458. blk_cleanup_queue(brd->brd_queue);
  459. brd_free_pages(brd);
  460. kfree(brd);
  461. }
  462. static struct brd_device *brd_init_one(int i, bool *new)
  463. {
  464. struct brd_device *brd;
  465. *new = false;
  466. list_for_each_entry(brd, &brd_devices, brd_list) {
  467. if (brd->brd_number == i)
  468. goto out;
  469. }
  470. brd = brd_alloc(i);
  471. if (brd) {
  472. add_disk(brd->brd_disk);
  473. list_add_tail(&brd->brd_list, &brd_devices);
  474. }
  475. *new = true;
  476. out:
  477. return brd;
  478. }
  479. static void brd_del_one(struct brd_device *brd)
  480. {
  481. list_del(&brd->brd_list);
  482. del_gendisk(brd->brd_disk);
  483. brd_free(brd);
  484. }
  485. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  486. {
  487. struct brd_device *brd;
  488. struct kobject *kobj;
  489. bool new;
  490. mutex_lock(&brd_devices_mutex);
  491. brd = brd_init_one(MINOR(dev) / max_part, &new);
  492. kobj = brd ? get_disk(brd->brd_disk) : NULL;
  493. mutex_unlock(&brd_devices_mutex);
  494. if (new)
  495. *part = 0;
  496. return kobj;
  497. }
  498. static int __init brd_init(void)
  499. {
  500. struct brd_device *brd, *next;
  501. int i;
  502. /*
  503. * brd module now has a feature to instantiate underlying device
  504. * structure on-demand, provided that there is an access dev node.
  505. *
  506. * (1) if rd_nr is specified, create that many upfront. else
  507. * it defaults to CONFIG_BLK_DEV_RAM_COUNT
  508. * (2) User can further extend brd devices by create dev node themselves
  509. * and have kernel automatically instantiate actual device
  510. * on-demand. Example:
  511. * mknod /path/devnod_name b 1 X # 1 is the rd major
  512. * fdisk -l /path/devnod_name
  513. * If (X / max_part) was not already created it will be created
  514. * dynamically.
  515. */
  516. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  517. return -EIO;
  518. if (unlikely(!max_part))
  519. max_part = 1;
  520. for (i = 0; i < rd_nr; i++) {
  521. brd = brd_alloc(i);
  522. if (!brd)
  523. goto out_free;
  524. list_add_tail(&brd->brd_list, &brd_devices);
  525. }
  526. /* point of no return */
  527. list_for_each_entry(brd, &brd_devices, brd_list)
  528. add_disk(brd->brd_disk);
  529. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
  530. THIS_MODULE, brd_probe, NULL, NULL);
  531. pr_info("brd: module loaded\n");
  532. return 0;
  533. out_free:
  534. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  535. list_del(&brd->brd_list);
  536. brd_free(brd);
  537. }
  538. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  539. pr_info("brd: module NOT loaded !!!\n");
  540. return -ENOMEM;
  541. }
  542. static void __exit brd_exit(void)
  543. {
  544. struct brd_device *brd, *next;
  545. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  546. brd_del_one(brd);
  547. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
  548. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  549. pr_info("brd: module unloaded\n");
  550. }
  551. module_init(brd_init);
  552. module_exit(brd_exit);