node.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. /*
  2. * Basic Node interface support
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/mm.h>
  7. #include <linux/memory.h>
  8. #include <linux/vmstat.h>
  9. #include <linux/notifier.h>
  10. #include <linux/node.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/compaction.h>
  13. #include <linux/cpumask.h>
  14. #include <linux/topology.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/cpu.h>
  17. #include <linux/device.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. static struct bus_type node_subsys = {
  21. .name = "node",
  22. .dev_name = "node",
  23. };
  24. static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
  25. {
  26. struct node *node_dev = to_node(dev);
  27. const struct cpumask *mask = cpumask_of_node(node_dev->dev.id);
  28. /* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
  29. BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
  30. return cpumap_print_to_pagebuf(list, buf, mask);
  31. }
  32. static inline ssize_t node_read_cpumask(struct device *dev,
  33. struct device_attribute *attr, char *buf)
  34. {
  35. return node_read_cpumap(dev, false, buf);
  36. }
  37. static inline ssize_t node_read_cpulist(struct device *dev,
  38. struct device_attribute *attr, char *buf)
  39. {
  40. return node_read_cpumap(dev, true, buf);
  41. }
  42. static DEVICE_ATTR(cpumap, S_IRUGO, node_read_cpumask, NULL);
  43. static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
  44. #define K(x) ((x) << (PAGE_SHIFT - 10))
  45. static ssize_t node_read_meminfo(struct device *dev,
  46. struct device_attribute *attr, char *buf)
  47. {
  48. int n;
  49. int nid = dev->id;
  50. struct sysinfo i;
  51. si_meminfo_node(&i, nid);
  52. n = sprintf(buf,
  53. "Node %d MemTotal: %8lu kB\n"
  54. "Node %d MemFree: %8lu kB\n"
  55. "Node %d MemUsed: %8lu kB\n"
  56. "Node %d Active: %8lu kB\n"
  57. "Node %d Inactive: %8lu kB\n"
  58. "Node %d Active(anon): %8lu kB\n"
  59. "Node %d Inactive(anon): %8lu kB\n"
  60. "Node %d Active(file): %8lu kB\n"
  61. "Node %d Inactive(file): %8lu kB\n"
  62. "Node %d Unevictable: %8lu kB\n"
  63. "Node %d Mlocked: %8lu kB\n",
  64. nid, K(i.totalram),
  65. nid, K(i.freeram),
  66. nid, K(i.totalram - i.freeram),
  67. nid, K(node_page_state(nid, NR_ACTIVE_ANON) +
  68. node_page_state(nid, NR_ACTIVE_FILE)),
  69. nid, K(node_page_state(nid, NR_INACTIVE_ANON) +
  70. node_page_state(nid, NR_INACTIVE_FILE)),
  71. nid, K(node_page_state(nid, NR_ACTIVE_ANON)),
  72. nid, K(node_page_state(nid, NR_INACTIVE_ANON)),
  73. nid, K(node_page_state(nid, NR_ACTIVE_FILE)),
  74. nid, K(node_page_state(nid, NR_INACTIVE_FILE)),
  75. nid, K(node_page_state(nid, NR_UNEVICTABLE)),
  76. nid, K(node_page_state(nid, NR_MLOCK)));
  77. #ifdef CONFIG_HIGHMEM
  78. n += sprintf(buf + n,
  79. "Node %d HighTotal: %8lu kB\n"
  80. "Node %d HighFree: %8lu kB\n"
  81. "Node %d LowTotal: %8lu kB\n"
  82. "Node %d LowFree: %8lu kB\n",
  83. nid, K(i.totalhigh),
  84. nid, K(i.freehigh),
  85. nid, K(i.totalram - i.totalhigh),
  86. nid, K(i.freeram - i.freehigh));
  87. #endif
  88. n += sprintf(buf + n,
  89. "Node %d Dirty: %8lu kB\n"
  90. "Node %d Writeback: %8lu kB\n"
  91. "Node %d FilePages: %8lu kB\n"
  92. "Node %d Mapped: %8lu kB\n"
  93. "Node %d AnonPages: %8lu kB\n"
  94. "Node %d Shmem: %8lu kB\n"
  95. "Node %d KernelStack: %8lu kB\n"
  96. "Node %d PageTables: %8lu kB\n"
  97. "Node %d NFS_Unstable: %8lu kB\n"
  98. "Node %d Bounce: %8lu kB\n"
  99. "Node %d WritebackTmp: %8lu kB\n"
  100. "Node %d Slab: %8lu kB\n"
  101. "Node %d SReclaimable: %8lu kB\n"
  102. "Node %d SUnreclaim: %8lu kB\n"
  103. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  104. "Node %d AnonHugePages: %8lu kB\n"
  105. #endif
  106. ,
  107. nid, K(node_page_state(nid, NR_FILE_DIRTY)),
  108. nid, K(node_page_state(nid, NR_WRITEBACK)),
  109. nid, K(node_page_state(nid, NR_FILE_PAGES)),
  110. nid, K(node_page_state(nid, NR_FILE_MAPPED)),
  111. nid, K(node_page_state(nid, NR_ANON_PAGES)),
  112. nid, K(i.sharedram),
  113. nid, node_page_state(nid, NR_KERNEL_STACK) *
  114. THREAD_SIZE / 1024,
  115. nid, K(node_page_state(nid, NR_PAGETABLE)),
  116. nid, K(node_page_state(nid, NR_UNSTABLE_NFS)),
  117. nid, K(node_page_state(nid, NR_BOUNCE)),
  118. nid, K(node_page_state(nid, NR_WRITEBACK_TEMP)),
  119. nid, K(node_page_state(nid, NR_SLAB_RECLAIMABLE) +
  120. node_page_state(nid, NR_SLAB_UNRECLAIMABLE)),
  121. nid, K(node_page_state(nid, NR_SLAB_RECLAIMABLE)),
  122. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  123. nid, K(node_page_state(nid, NR_SLAB_UNRECLAIMABLE))
  124. , nid,
  125. K(node_page_state(nid, NR_ANON_TRANSPARENT_HUGEPAGES) *
  126. HPAGE_PMD_NR));
  127. #else
  128. nid, K(node_page_state(nid, NR_SLAB_UNRECLAIMABLE)));
  129. #endif
  130. n += hugetlb_report_node_meminfo(nid, buf + n);
  131. return n;
  132. }
  133. #undef K
  134. static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
  135. static ssize_t node_read_numastat(struct device *dev,
  136. struct device_attribute *attr, char *buf)
  137. {
  138. return sprintf(buf,
  139. "numa_hit %lu\n"
  140. "numa_miss %lu\n"
  141. "numa_foreign %lu\n"
  142. "interleave_hit %lu\n"
  143. "local_node %lu\n"
  144. "other_node %lu\n",
  145. node_page_state(dev->id, NUMA_HIT),
  146. node_page_state(dev->id, NUMA_MISS),
  147. node_page_state(dev->id, NUMA_FOREIGN),
  148. node_page_state(dev->id, NUMA_INTERLEAVE_HIT),
  149. node_page_state(dev->id, NUMA_LOCAL),
  150. node_page_state(dev->id, NUMA_OTHER));
  151. }
  152. static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
  153. static ssize_t node_read_vmstat(struct device *dev,
  154. struct device_attribute *attr, char *buf)
  155. {
  156. int nid = dev->id;
  157. int i;
  158. int n = 0;
  159. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  160. n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
  161. node_page_state(nid, i));
  162. return n;
  163. }
  164. static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
  165. static ssize_t node_read_distance(struct device *dev,
  166. struct device_attribute *attr, char *buf)
  167. {
  168. int nid = dev->id;
  169. int len = 0;
  170. int i;
  171. /*
  172. * buf is currently PAGE_SIZE in length and each node needs 4 chars
  173. * at the most (distance + space or newline).
  174. */
  175. BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
  176. for_each_online_node(i)
  177. len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
  178. len += sprintf(buf + len, "\n");
  179. return len;
  180. }
  181. static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
  182. static struct attribute *node_dev_attrs[] = {
  183. &dev_attr_cpumap.attr,
  184. &dev_attr_cpulist.attr,
  185. &dev_attr_meminfo.attr,
  186. &dev_attr_numastat.attr,
  187. &dev_attr_distance.attr,
  188. &dev_attr_vmstat.attr,
  189. NULL
  190. };
  191. ATTRIBUTE_GROUPS(node_dev);
  192. #ifdef CONFIG_HUGETLBFS
  193. /*
  194. * hugetlbfs per node attributes registration interface:
  195. * When/if hugetlb[fs] subsystem initializes [sometime after this module],
  196. * it will register its per node attributes for all online nodes with
  197. * memory. It will also call register_hugetlbfs_with_node(), below, to
  198. * register its attribute registration functions with this node driver.
  199. * Once these hooks have been initialized, the node driver will call into
  200. * the hugetlb module to [un]register attributes for hot-plugged nodes.
  201. */
  202. static node_registration_func_t __hugetlb_register_node;
  203. static node_registration_func_t __hugetlb_unregister_node;
  204. static inline bool hugetlb_register_node(struct node *node)
  205. {
  206. if (__hugetlb_register_node &&
  207. node_state(node->dev.id, N_MEMORY)) {
  208. __hugetlb_register_node(node);
  209. return true;
  210. }
  211. return false;
  212. }
  213. static inline void hugetlb_unregister_node(struct node *node)
  214. {
  215. if (__hugetlb_unregister_node)
  216. __hugetlb_unregister_node(node);
  217. }
  218. void register_hugetlbfs_with_node(node_registration_func_t doregister,
  219. node_registration_func_t unregister)
  220. {
  221. __hugetlb_register_node = doregister;
  222. __hugetlb_unregister_node = unregister;
  223. }
  224. #else
  225. static inline void hugetlb_register_node(struct node *node) {}
  226. static inline void hugetlb_unregister_node(struct node *node) {}
  227. #endif
  228. static void node_device_release(struct device *dev)
  229. {
  230. struct node *node = to_node(dev);
  231. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
  232. /*
  233. * We schedule the work only when a memory section is
  234. * onlined/offlined on this node. When we come here,
  235. * all the memory on this node has been offlined,
  236. * so we won't enqueue new work to this work.
  237. *
  238. * The work is using node->node_work, so we should
  239. * flush work before freeing the memory.
  240. */
  241. flush_work(&node->node_work);
  242. #endif
  243. kfree(node);
  244. }
  245. /*
  246. * register_node - Setup a sysfs device for a node.
  247. * @num - Node number to use when creating the device.
  248. *
  249. * Initialize and register the node device.
  250. */
  251. static int register_node(struct node *node, int num, struct node *parent)
  252. {
  253. int error;
  254. node->dev.id = num;
  255. node->dev.bus = &node_subsys;
  256. node->dev.release = node_device_release;
  257. node->dev.groups = node_dev_groups;
  258. error = device_register(&node->dev);
  259. if (!error){
  260. hugetlb_register_node(node);
  261. compaction_register_node(node);
  262. }
  263. return error;
  264. }
  265. /**
  266. * unregister_node - unregister a node device
  267. * @node: node going away
  268. *
  269. * Unregisters a node device @node. All the devices on the node must be
  270. * unregistered before calling this function.
  271. */
  272. void unregister_node(struct node *node)
  273. {
  274. hugetlb_unregister_node(node); /* no-op, if memoryless node */
  275. device_unregister(&node->dev);
  276. }
  277. struct node *node_devices[MAX_NUMNODES];
  278. /*
  279. * register cpu under node
  280. */
  281. int register_cpu_under_node(unsigned int cpu, unsigned int nid)
  282. {
  283. int ret;
  284. struct device *obj;
  285. if (!node_online(nid))
  286. return 0;
  287. obj = get_cpu_device(cpu);
  288. if (!obj)
  289. return 0;
  290. ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
  291. &obj->kobj,
  292. kobject_name(&obj->kobj));
  293. if (ret)
  294. return ret;
  295. return sysfs_create_link(&obj->kobj,
  296. &node_devices[nid]->dev.kobj,
  297. kobject_name(&node_devices[nid]->dev.kobj));
  298. }
  299. int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
  300. {
  301. struct device *obj;
  302. if (!node_online(nid))
  303. return 0;
  304. obj = get_cpu_device(cpu);
  305. if (!obj)
  306. return 0;
  307. sysfs_remove_link(&node_devices[nid]->dev.kobj,
  308. kobject_name(&obj->kobj));
  309. sysfs_remove_link(&obj->kobj,
  310. kobject_name(&node_devices[nid]->dev.kobj));
  311. return 0;
  312. }
  313. #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
  314. #define page_initialized(page) (page->lru.next)
  315. static int __init_refok get_nid_for_pfn(unsigned long pfn)
  316. {
  317. struct page *page;
  318. if (!pfn_valid_within(pfn))
  319. return -1;
  320. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  321. if (system_state == SYSTEM_BOOTING)
  322. return early_pfn_to_nid(pfn);
  323. #endif
  324. page = pfn_to_page(pfn);
  325. if (!page_initialized(page))
  326. return -1;
  327. return pfn_to_nid(pfn);
  328. }
  329. /* register memory section under specified node if it spans that node */
  330. int register_mem_sect_under_node(struct memory_block *mem_blk, int nid)
  331. {
  332. int ret;
  333. unsigned long pfn, sect_start_pfn, sect_end_pfn;
  334. if (!mem_blk)
  335. return -EFAULT;
  336. if (!node_online(nid))
  337. return 0;
  338. sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
  339. sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
  340. sect_end_pfn += PAGES_PER_SECTION - 1;
  341. for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
  342. int page_nid;
  343. page_nid = get_nid_for_pfn(pfn);
  344. if (page_nid < 0)
  345. continue;
  346. if (page_nid != nid)
  347. continue;
  348. ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
  349. &mem_blk->dev.kobj,
  350. kobject_name(&mem_blk->dev.kobj));
  351. if (ret)
  352. return ret;
  353. return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
  354. &node_devices[nid]->dev.kobj,
  355. kobject_name(&node_devices[nid]->dev.kobj));
  356. }
  357. /* mem section does not span the specified node */
  358. return 0;
  359. }
  360. /* unregister memory section under all nodes that it spans */
  361. int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
  362. unsigned long phys_index)
  363. {
  364. NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
  365. unsigned long pfn, sect_start_pfn, sect_end_pfn;
  366. if (!mem_blk) {
  367. NODEMASK_FREE(unlinked_nodes);
  368. return -EFAULT;
  369. }
  370. if (!unlinked_nodes)
  371. return -ENOMEM;
  372. nodes_clear(*unlinked_nodes);
  373. sect_start_pfn = section_nr_to_pfn(phys_index);
  374. sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
  375. for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
  376. int nid;
  377. nid = get_nid_for_pfn(pfn);
  378. if (nid < 0)
  379. continue;
  380. if (!node_online(nid))
  381. continue;
  382. if (node_test_and_set(nid, *unlinked_nodes))
  383. continue;
  384. sysfs_remove_link(&node_devices[nid]->dev.kobj,
  385. kobject_name(&mem_blk->dev.kobj));
  386. sysfs_remove_link(&mem_blk->dev.kobj,
  387. kobject_name(&node_devices[nid]->dev.kobj));
  388. }
  389. NODEMASK_FREE(unlinked_nodes);
  390. return 0;
  391. }
  392. static int link_mem_sections(int nid)
  393. {
  394. unsigned long start_pfn = NODE_DATA(nid)->node_start_pfn;
  395. unsigned long end_pfn = start_pfn + NODE_DATA(nid)->node_spanned_pages;
  396. unsigned long pfn;
  397. struct memory_block *mem_blk = NULL;
  398. int err = 0;
  399. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  400. unsigned long section_nr = pfn_to_section_nr(pfn);
  401. struct mem_section *mem_sect;
  402. int ret;
  403. if (!present_section_nr(section_nr))
  404. continue;
  405. mem_sect = __nr_to_section(section_nr);
  406. /* same memblock ? */
  407. if (mem_blk)
  408. if ((section_nr >= mem_blk->start_section_nr) &&
  409. (section_nr <= mem_blk->end_section_nr))
  410. continue;
  411. mem_blk = find_memory_block_hinted(mem_sect, mem_blk);
  412. ret = register_mem_sect_under_node(mem_blk, nid);
  413. if (!err)
  414. err = ret;
  415. /* discard ref obtained in find_memory_block() */
  416. }
  417. if (mem_blk)
  418. kobject_put(&mem_blk->dev.kobj);
  419. return err;
  420. }
  421. #ifdef CONFIG_HUGETLBFS
  422. /*
  423. * Handle per node hstate attribute [un]registration on transistions
  424. * to/from memoryless state.
  425. */
  426. static void node_hugetlb_work(struct work_struct *work)
  427. {
  428. struct node *node = container_of(work, struct node, node_work);
  429. /*
  430. * We only get here when a node transitions to/from memoryless state.
  431. * We can detect which transition occurred by examining whether the
  432. * node has memory now. hugetlb_register_node() already check this
  433. * so we try to register the attributes. If that fails, then the
  434. * node has transitioned to memoryless, try to unregister the
  435. * attributes.
  436. */
  437. if (!hugetlb_register_node(node))
  438. hugetlb_unregister_node(node);
  439. }
  440. static void init_node_hugetlb_work(int nid)
  441. {
  442. INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
  443. }
  444. static int node_memory_callback(struct notifier_block *self,
  445. unsigned long action, void *arg)
  446. {
  447. struct memory_notify *mnb = arg;
  448. int nid = mnb->status_change_nid;
  449. switch (action) {
  450. case MEM_ONLINE:
  451. case MEM_OFFLINE:
  452. /*
  453. * offload per node hstate [un]registration to a work thread
  454. * when transitioning to/from memoryless state.
  455. */
  456. if (nid != NUMA_NO_NODE)
  457. schedule_work(&node_devices[nid]->node_work);
  458. break;
  459. case MEM_GOING_ONLINE:
  460. case MEM_GOING_OFFLINE:
  461. case MEM_CANCEL_ONLINE:
  462. case MEM_CANCEL_OFFLINE:
  463. default:
  464. break;
  465. }
  466. return NOTIFY_OK;
  467. }
  468. #endif /* CONFIG_HUGETLBFS */
  469. #else /* !CONFIG_MEMORY_HOTPLUG_SPARSE */
  470. static int link_mem_sections(int nid) { return 0; }
  471. #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
  472. #if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
  473. !defined(CONFIG_HUGETLBFS)
  474. static inline int node_memory_callback(struct notifier_block *self,
  475. unsigned long action, void *arg)
  476. {
  477. return NOTIFY_OK;
  478. }
  479. static void init_node_hugetlb_work(int nid) { }
  480. #endif
  481. int register_one_node(int nid)
  482. {
  483. int error = 0;
  484. int cpu;
  485. if (node_online(nid)) {
  486. int p_node = parent_node(nid);
  487. struct node *parent = NULL;
  488. if (p_node != nid)
  489. parent = node_devices[p_node];
  490. node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
  491. if (!node_devices[nid])
  492. return -ENOMEM;
  493. error = register_node(node_devices[nid], nid, parent);
  494. /* link cpu under this node */
  495. for_each_present_cpu(cpu) {
  496. if (cpu_to_node(cpu) == nid)
  497. register_cpu_under_node(cpu, nid);
  498. }
  499. /* link memory sections under this node */
  500. error = link_mem_sections(nid);
  501. /* initialize work queue for memory hot plug */
  502. init_node_hugetlb_work(nid);
  503. }
  504. return error;
  505. }
  506. void unregister_one_node(int nid)
  507. {
  508. if (!node_devices[nid])
  509. return;
  510. unregister_node(node_devices[nid]);
  511. node_devices[nid] = NULL;
  512. }
  513. /*
  514. * node states attributes
  515. */
  516. static ssize_t print_nodes_state(enum node_states state, char *buf)
  517. {
  518. int n;
  519. n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
  520. nodemask_pr_args(&node_states[state]));
  521. buf[n++] = '\n';
  522. buf[n] = '\0';
  523. return n;
  524. }
  525. struct node_attr {
  526. struct device_attribute attr;
  527. enum node_states state;
  528. };
  529. static ssize_t show_node_state(struct device *dev,
  530. struct device_attribute *attr, char *buf)
  531. {
  532. struct node_attr *na = container_of(attr, struct node_attr, attr);
  533. return print_nodes_state(na->state, buf);
  534. }
  535. #define _NODE_ATTR(name, state) \
  536. { __ATTR(name, 0444, show_node_state, NULL), state }
  537. static struct node_attr node_state_attr[] = {
  538. [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
  539. [N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
  540. [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
  541. #ifdef CONFIG_HIGHMEM
  542. [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
  543. #endif
  544. #ifdef CONFIG_MOVABLE_NODE
  545. [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
  546. #endif
  547. [N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
  548. };
  549. static struct attribute *node_state_attrs[] = {
  550. &node_state_attr[N_POSSIBLE].attr.attr,
  551. &node_state_attr[N_ONLINE].attr.attr,
  552. &node_state_attr[N_NORMAL_MEMORY].attr.attr,
  553. #ifdef CONFIG_HIGHMEM
  554. &node_state_attr[N_HIGH_MEMORY].attr.attr,
  555. #endif
  556. #ifdef CONFIG_MOVABLE_NODE
  557. &node_state_attr[N_MEMORY].attr.attr,
  558. #endif
  559. &node_state_attr[N_CPU].attr.attr,
  560. NULL
  561. };
  562. static struct attribute_group memory_root_attr_group = {
  563. .attrs = node_state_attrs,
  564. };
  565. static const struct attribute_group *cpu_root_attr_groups[] = {
  566. &memory_root_attr_group,
  567. NULL,
  568. };
  569. #define NODE_CALLBACK_PRI 2 /* lower than SLAB */
  570. static int __init register_node_type(void)
  571. {
  572. int ret;
  573. BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
  574. BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
  575. ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
  576. if (!ret) {
  577. static struct notifier_block node_memory_callback_nb = {
  578. .notifier_call = node_memory_callback,
  579. .priority = NODE_CALLBACK_PRI,
  580. };
  581. register_hotmemory_notifier(&node_memory_callback_nb);
  582. }
  583. /*
  584. * Note: we're not going to unregister the node class if we fail
  585. * to register the node state class attribute files.
  586. */
  587. return ret;
  588. }
  589. postcore_initcall(register_node_type);