tsc.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  23. EXPORT_SYMBOL(cpu_khz);
  24. unsigned int __read_mostly tsc_khz;
  25. EXPORT_SYMBOL(tsc_khz);
  26. /*
  27. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  28. */
  29. static int __read_mostly tsc_unstable;
  30. /* native_sched_clock() is called before tsc_init(), so
  31. we must start with the TSC soft disabled to prevent
  32. erroneous rdtsc usage on !cpu_has_tsc processors */
  33. static int __read_mostly tsc_disabled = -1;
  34. static struct static_key __use_tsc = STATIC_KEY_INIT;
  35. int tsc_clocksource_reliable;
  36. /*
  37. * Use a ring-buffer like data structure, where a writer advances the head by
  38. * writing a new data entry and a reader advances the tail when it observes a
  39. * new entry.
  40. *
  41. * Writers are made to wait on readers until there's space to write a new
  42. * entry.
  43. *
  44. * This means that we can always use an {offset, mul} pair to compute a ns
  45. * value that is 'roughly' in the right direction, even if we're writing a new
  46. * {offset, mul} pair during the clock read.
  47. *
  48. * The down-side is that we can no longer guarantee strict monotonicity anymore
  49. * (assuming the TSC was that to begin with), because while we compute the
  50. * intersection point of the two clock slopes and make sure the time is
  51. * continuous at the point of switching; we can no longer guarantee a reader is
  52. * strictly before or after the switch point.
  53. *
  54. * It does mean a reader no longer needs to disable IRQs in order to avoid
  55. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  56. * no longer run the risk of hitting half-written state.
  57. */
  58. struct cyc2ns {
  59. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  60. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  61. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  62. }; /* exactly fits one cacheline */
  63. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  64. struct cyc2ns_data *cyc2ns_read_begin(void)
  65. {
  66. struct cyc2ns_data *head;
  67. preempt_disable();
  68. head = this_cpu_read(cyc2ns.head);
  69. /*
  70. * Ensure we observe the entry when we observe the pointer to it.
  71. * matches the wmb from cyc2ns_write_end().
  72. */
  73. smp_read_barrier_depends();
  74. head->__count++;
  75. barrier();
  76. return head;
  77. }
  78. void cyc2ns_read_end(struct cyc2ns_data *head)
  79. {
  80. barrier();
  81. /*
  82. * If we're the outer most nested read; update the tail pointer
  83. * when we're done. This notifies possible pending writers
  84. * that we've observed the head pointer and that the other
  85. * entry is now free.
  86. */
  87. if (!--head->__count) {
  88. /*
  89. * x86-TSO does not reorder writes with older reads;
  90. * therefore once this write becomes visible to another
  91. * cpu, we must be finished reading the cyc2ns_data.
  92. *
  93. * matches with cyc2ns_write_begin().
  94. */
  95. this_cpu_write(cyc2ns.tail, head);
  96. }
  97. preempt_enable();
  98. }
  99. /*
  100. * Begin writing a new @data entry for @cpu.
  101. *
  102. * Assumes some sort of write side lock; currently 'provided' by the assumption
  103. * that cpufreq will call its notifiers sequentially.
  104. */
  105. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  106. {
  107. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  108. struct cyc2ns_data *data = c2n->data;
  109. if (data == c2n->head)
  110. data++;
  111. /* XXX send an IPI to @cpu in order to guarantee a read? */
  112. /*
  113. * When we observe the tail write from cyc2ns_read_end(),
  114. * the cpu must be done with that entry and its safe
  115. * to start writing to it.
  116. */
  117. while (c2n->tail == data)
  118. cpu_relax();
  119. return data;
  120. }
  121. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  122. {
  123. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  124. /*
  125. * Ensure the @data writes are visible before we publish the
  126. * entry. Matches the data-depencency in cyc2ns_read_begin().
  127. */
  128. smp_wmb();
  129. ACCESS_ONCE(c2n->head) = data;
  130. }
  131. /*
  132. * Accelerators for sched_clock()
  133. * convert from cycles(64bits) => nanoseconds (64bits)
  134. * basic equation:
  135. * ns = cycles / (freq / ns_per_sec)
  136. * ns = cycles * (ns_per_sec / freq)
  137. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  138. * ns = cycles * (10^6 / cpu_khz)
  139. *
  140. * Then we use scaling math (suggested by george@mvista.com) to get:
  141. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  142. * ns = cycles * cyc2ns_scale / SC
  143. *
  144. * And since SC is a constant power of two, we can convert the div
  145. * into a shift.
  146. *
  147. * We can use khz divisor instead of mhz to keep a better precision, since
  148. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  149. * (mathieu.desnoyers@polymtl.ca)
  150. *
  151. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  152. */
  153. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  154. static void cyc2ns_data_init(struct cyc2ns_data *data)
  155. {
  156. data->cyc2ns_mul = 0;
  157. data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
  158. data->cyc2ns_offset = 0;
  159. data->__count = 0;
  160. }
  161. static void cyc2ns_init(int cpu)
  162. {
  163. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  164. cyc2ns_data_init(&c2n->data[0]);
  165. cyc2ns_data_init(&c2n->data[1]);
  166. c2n->head = c2n->data;
  167. c2n->tail = c2n->data;
  168. }
  169. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  170. {
  171. struct cyc2ns_data *data, *tail;
  172. unsigned long long ns;
  173. /*
  174. * See cyc2ns_read_*() for details; replicated in order to avoid
  175. * an extra few instructions that came with the abstraction.
  176. * Notable, it allows us to only do the __count and tail update
  177. * dance when its actually needed.
  178. */
  179. preempt_disable_notrace();
  180. data = this_cpu_read(cyc2ns.head);
  181. tail = this_cpu_read(cyc2ns.tail);
  182. if (likely(data == tail)) {
  183. ns = data->cyc2ns_offset;
  184. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
  185. } else {
  186. data->__count++;
  187. barrier();
  188. ns = data->cyc2ns_offset;
  189. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
  190. barrier();
  191. if (!--data->__count)
  192. this_cpu_write(cyc2ns.tail, data);
  193. }
  194. preempt_enable_notrace();
  195. return ns;
  196. }
  197. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  198. {
  199. unsigned long long tsc_now, ns_now;
  200. struct cyc2ns_data *data;
  201. unsigned long flags;
  202. local_irq_save(flags);
  203. sched_clock_idle_sleep_event();
  204. if (!cpu_khz)
  205. goto done;
  206. data = cyc2ns_write_begin(cpu);
  207. rdtscll(tsc_now);
  208. ns_now = cycles_2_ns(tsc_now);
  209. /*
  210. * Compute a new multiplier as per the above comment and ensure our
  211. * time function is continuous; see the comment near struct
  212. * cyc2ns_data.
  213. */
  214. data->cyc2ns_mul =
  215. DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
  216. cpu_khz);
  217. data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
  218. data->cyc2ns_offset = ns_now -
  219. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
  220. cyc2ns_write_end(cpu, data);
  221. done:
  222. sched_clock_idle_wakeup_event(0);
  223. local_irq_restore(flags);
  224. }
  225. /*
  226. * Scheduler clock - returns current time in nanosec units.
  227. */
  228. u64 native_sched_clock(void)
  229. {
  230. u64 tsc_now;
  231. /*
  232. * Fall back to jiffies if there's no TSC available:
  233. * ( But note that we still use it if the TSC is marked
  234. * unstable. We do this because unlike Time Of Day,
  235. * the scheduler clock tolerates small errors and it's
  236. * very important for it to be as fast as the platform
  237. * can achieve it. )
  238. */
  239. if (!static_key_false(&__use_tsc)) {
  240. /* No locking but a rare wrong value is not a big deal: */
  241. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  242. }
  243. /* read the Time Stamp Counter: */
  244. rdtscll(tsc_now);
  245. /* return the value in ns */
  246. return cycles_2_ns(tsc_now);
  247. }
  248. /* We need to define a real function for sched_clock, to override the
  249. weak default version */
  250. #ifdef CONFIG_PARAVIRT
  251. unsigned long long sched_clock(void)
  252. {
  253. return paravirt_sched_clock();
  254. }
  255. #else
  256. unsigned long long
  257. sched_clock(void) __attribute__((alias("native_sched_clock")));
  258. #endif
  259. unsigned long long native_read_tsc(void)
  260. {
  261. return __native_read_tsc();
  262. }
  263. EXPORT_SYMBOL(native_read_tsc);
  264. int check_tsc_unstable(void)
  265. {
  266. return tsc_unstable;
  267. }
  268. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  269. int check_tsc_disabled(void)
  270. {
  271. return tsc_disabled;
  272. }
  273. EXPORT_SYMBOL_GPL(check_tsc_disabled);
  274. #ifdef CONFIG_X86_TSC
  275. int __init notsc_setup(char *str)
  276. {
  277. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  278. tsc_disabled = 1;
  279. return 1;
  280. }
  281. #else
  282. /*
  283. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  284. * in cpu/common.c
  285. */
  286. int __init notsc_setup(char *str)
  287. {
  288. setup_clear_cpu_cap(X86_FEATURE_TSC);
  289. return 1;
  290. }
  291. #endif
  292. __setup("notsc", notsc_setup);
  293. static int no_sched_irq_time;
  294. static int __init tsc_setup(char *str)
  295. {
  296. if (!strcmp(str, "reliable"))
  297. tsc_clocksource_reliable = 1;
  298. if (!strncmp(str, "noirqtime", 9))
  299. no_sched_irq_time = 1;
  300. return 1;
  301. }
  302. __setup("tsc=", tsc_setup);
  303. #define MAX_RETRIES 5
  304. #define SMI_TRESHOLD 50000
  305. /*
  306. * Read TSC and the reference counters. Take care of SMI disturbance
  307. */
  308. static u64 tsc_read_refs(u64 *p, int hpet)
  309. {
  310. u64 t1, t2;
  311. int i;
  312. for (i = 0; i < MAX_RETRIES; i++) {
  313. t1 = get_cycles();
  314. if (hpet)
  315. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  316. else
  317. *p = acpi_pm_read_early();
  318. t2 = get_cycles();
  319. if ((t2 - t1) < SMI_TRESHOLD)
  320. return t2;
  321. }
  322. return ULLONG_MAX;
  323. }
  324. /*
  325. * Calculate the TSC frequency from HPET reference
  326. */
  327. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  328. {
  329. u64 tmp;
  330. if (hpet2 < hpet1)
  331. hpet2 += 0x100000000ULL;
  332. hpet2 -= hpet1;
  333. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  334. do_div(tmp, 1000000);
  335. do_div(deltatsc, tmp);
  336. return (unsigned long) deltatsc;
  337. }
  338. /*
  339. * Calculate the TSC frequency from PMTimer reference
  340. */
  341. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  342. {
  343. u64 tmp;
  344. if (!pm1 && !pm2)
  345. return ULONG_MAX;
  346. if (pm2 < pm1)
  347. pm2 += (u64)ACPI_PM_OVRRUN;
  348. pm2 -= pm1;
  349. tmp = pm2 * 1000000000LL;
  350. do_div(tmp, PMTMR_TICKS_PER_SEC);
  351. do_div(deltatsc, tmp);
  352. return (unsigned long) deltatsc;
  353. }
  354. #define CAL_MS 10
  355. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  356. #define CAL_PIT_LOOPS 1000
  357. #define CAL2_MS 50
  358. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  359. #define CAL2_PIT_LOOPS 5000
  360. /*
  361. * Try to calibrate the TSC against the Programmable
  362. * Interrupt Timer and return the frequency of the TSC
  363. * in kHz.
  364. *
  365. * Return ULONG_MAX on failure to calibrate.
  366. */
  367. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  368. {
  369. u64 tsc, t1, t2, delta;
  370. unsigned long tscmin, tscmax;
  371. int pitcnt;
  372. /* Set the Gate high, disable speaker */
  373. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  374. /*
  375. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  376. * count mode), binary count. Set the latch register to 50ms
  377. * (LSB then MSB) to begin countdown.
  378. */
  379. outb(0xb0, 0x43);
  380. outb(latch & 0xff, 0x42);
  381. outb(latch >> 8, 0x42);
  382. tsc = t1 = t2 = get_cycles();
  383. pitcnt = 0;
  384. tscmax = 0;
  385. tscmin = ULONG_MAX;
  386. while ((inb(0x61) & 0x20) == 0) {
  387. t2 = get_cycles();
  388. delta = t2 - tsc;
  389. tsc = t2;
  390. if ((unsigned long) delta < tscmin)
  391. tscmin = (unsigned int) delta;
  392. if ((unsigned long) delta > tscmax)
  393. tscmax = (unsigned int) delta;
  394. pitcnt++;
  395. }
  396. /*
  397. * Sanity checks:
  398. *
  399. * If we were not able to read the PIT more than loopmin
  400. * times, then we have been hit by a massive SMI
  401. *
  402. * If the maximum is 10 times larger than the minimum,
  403. * then we got hit by an SMI as well.
  404. */
  405. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  406. return ULONG_MAX;
  407. /* Calculate the PIT value */
  408. delta = t2 - t1;
  409. do_div(delta, ms);
  410. return delta;
  411. }
  412. /*
  413. * This reads the current MSB of the PIT counter, and
  414. * checks if we are running on sufficiently fast and
  415. * non-virtualized hardware.
  416. *
  417. * Our expectations are:
  418. *
  419. * - the PIT is running at roughly 1.19MHz
  420. *
  421. * - each IO is going to take about 1us on real hardware,
  422. * but we allow it to be much faster (by a factor of 10) or
  423. * _slightly_ slower (ie we allow up to a 2us read+counter
  424. * update - anything else implies a unacceptably slow CPU
  425. * or PIT for the fast calibration to work.
  426. *
  427. * - with 256 PIT ticks to read the value, we have 214us to
  428. * see the same MSB (and overhead like doing a single TSC
  429. * read per MSB value etc).
  430. *
  431. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  432. * them each to take about a microsecond on real hardware.
  433. * So we expect a count value of around 100. But we'll be
  434. * generous, and accept anything over 50.
  435. *
  436. * - if the PIT is stuck, and we see *many* more reads, we
  437. * return early (and the next caller of pit_expect_msb()
  438. * then consider it a failure when they don't see the
  439. * next expected value).
  440. *
  441. * These expectations mean that we know that we have seen the
  442. * transition from one expected value to another with a fairly
  443. * high accuracy, and we didn't miss any events. We can thus
  444. * use the TSC value at the transitions to calculate a pretty
  445. * good value for the TSC frequencty.
  446. */
  447. static inline int pit_verify_msb(unsigned char val)
  448. {
  449. /* Ignore LSB */
  450. inb(0x42);
  451. return inb(0x42) == val;
  452. }
  453. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  454. {
  455. int count;
  456. u64 tsc = 0, prev_tsc = 0;
  457. for (count = 0; count < 50000; count++) {
  458. if (!pit_verify_msb(val))
  459. break;
  460. prev_tsc = tsc;
  461. tsc = get_cycles();
  462. }
  463. *deltap = get_cycles() - prev_tsc;
  464. *tscp = tsc;
  465. /*
  466. * We require _some_ success, but the quality control
  467. * will be based on the error terms on the TSC values.
  468. */
  469. return count > 5;
  470. }
  471. /*
  472. * How many MSB values do we want to see? We aim for
  473. * a maximum error rate of 500ppm (in practice the
  474. * real error is much smaller), but refuse to spend
  475. * more than 50ms on it.
  476. */
  477. #define MAX_QUICK_PIT_MS 50
  478. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  479. static unsigned long quick_pit_calibrate(void)
  480. {
  481. int i;
  482. u64 tsc, delta;
  483. unsigned long d1, d2;
  484. /* Set the Gate high, disable speaker */
  485. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  486. /*
  487. * Counter 2, mode 0 (one-shot), binary count
  488. *
  489. * NOTE! Mode 2 decrements by two (and then the
  490. * output is flipped each time, giving the same
  491. * final output frequency as a decrement-by-one),
  492. * so mode 0 is much better when looking at the
  493. * individual counts.
  494. */
  495. outb(0xb0, 0x43);
  496. /* Start at 0xffff */
  497. outb(0xff, 0x42);
  498. outb(0xff, 0x42);
  499. /*
  500. * The PIT starts counting at the next edge, so we
  501. * need to delay for a microsecond. The easiest way
  502. * to do that is to just read back the 16-bit counter
  503. * once from the PIT.
  504. */
  505. pit_verify_msb(0);
  506. if (pit_expect_msb(0xff, &tsc, &d1)) {
  507. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  508. if (!pit_expect_msb(0xff-i, &delta, &d2))
  509. break;
  510. /*
  511. * Iterate until the error is less than 500 ppm
  512. */
  513. delta -= tsc;
  514. if (d1+d2 >= delta >> 11)
  515. continue;
  516. /*
  517. * Check the PIT one more time to verify that
  518. * all TSC reads were stable wrt the PIT.
  519. *
  520. * This also guarantees serialization of the
  521. * last cycle read ('d2') in pit_expect_msb.
  522. */
  523. if (!pit_verify_msb(0xfe - i))
  524. break;
  525. goto success;
  526. }
  527. }
  528. pr_info("Fast TSC calibration failed\n");
  529. return 0;
  530. success:
  531. /*
  532. * Ok, if we get here, then we've seen the
  533. * MSB of the PIT decrement 'i' times, and the
  534. * error has shrunk to less than 500 ppm.
  535. *
  536. * As a result, we can depend on there not being
  537. * any odd delays anywhere, and the TSC reads are
  538. * reliable (within the error).
  539. *
  540. * kHz = ticks / time-in-seconds / 1000;
  541. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  542. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  543. */
  544. delta *= PIT_TICK_RATE;
  545. do_div(delta, i*256*1000);
  546. pr_info("Fast TSC calibration using PIT\n");
  547. return delta;
  548. }
  549. /**
  550. * native_calibrate_tsc - calibrate the tsc on boot
  551. */
  552. unsigned long native_calibrate_tsc(void)
  553. {
  554. u64 tsc1, tsc2, delta, ref1, ref2;
  555. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  556. unsigned long flags, latch, ms, fast_calibrate;
  557. int hpet = is_hpet_enabled(), i, loopmin;
  558. /* Calibrate TSC using MSR for Intel Atom SoCs */
  559. local_irq_save(flags);
  560. fast_calibrate = try_msr_calibrate_tsc();
  561. local_irq_restore(flags);
  562. if (fast_calibrate)
  563. return fast_calibrate;
  564. local_irq_save(flags);
  565. fast_calibrate = quick_pit_calibrate();
  566. local_irq_restore(flags);
  567. if (fast_calibrate)
  568. return fast_calibrate;
  569. /*
  570. * Run 5 calibration loops to get the lowest frequency value
  571. * (the best estimate). We use two different calibration modes
  572. * here:
  573. *
  574. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  575. * load a timeout of 50ms. We read the time right after we
  576. * started the timer and wait until the PIT count down reaches
  577. * zero. In each wait loop iteration we read the TSC and check
  578. * the delta to the previous read. We keep track of the min
  579. * and max values of that delta. The delta is mostly defined
  580. * by the IO time of the PIT access, so we can detect when a
  581. * SMI/SMM disturbance happened between the two reads. If the
  582. * maximum time is significantly larger than the minimum time,
  583. * then we discard the result and have another try.
  584. *
  585. * 2) Reference counter. If available we use the HPET or the
  586. * PMTIMER as a reference to check the sanity of that value.
  587. * We use separate TSC readouts and check inside of the
  588. * reference read for a SMI/SMM disturbance. We dicard
  589. * disturbed values here as well. We do that around the PIT
  590. * calibration delay loop as we have to wait for a certain
  591. * amount of time anyway.
  592. */
  593. /* Preset PIT loop values */
  594. latch = CAL_LATCH;
  595. ms = CAL_MS;
  596. loopmin = CAL_PIT_LOOPS;
  597. for (i = 0; i < 3; i++) {
  598. unsigned long tsc_pit_khz;
  599. /*
  600. * Read the start value and the reference count of
  601. * hpet/pmtimer when available. Then do the PIT
  602. * calibration, which will take at least 50ms, and
  603. * read the end value.
  604. */
  605. local_irq_save(flags);
  606. tsc1 = tsc_read_refs(&ref1, hpet);
  607. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  608. tsc2 = tsc_read_refs(&ref2, hpet);
  609. local_irq_restore(flags);
  610. /* Pick the lowest PIT TSC calibration so far */
  611. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  612. /* hpet or pmtimer available ? */
  613. if (ref1 == ref2)
  614. continue;
  615. /* Check, whether the sampling was disturbed by an SMI */
  616. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  617. continue;
  618. tsc2 = (tsc2 - tsc1) * 1000000LL;
  619. if (hpet)
  620. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  621. else
  622. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  623. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  624. /* Check the reference deviation */
  625. delta = ((u64) tsc_pit_min) * 100;
  626. do_div(delta, tsc_ref_min);
  627. /*
  628. * If both calibration results are inside a 10% window
  629. * then we can be sure, that the calibration
  630. * succeeded. We break out of the loop right away. We
  631. * use the reference value, as it is more precise.
  632. */
  633. if (delta >= 90 && delta <= 110) {
  634. pr_info("PIT calibration matches %s. %d loops\n",
  635. hpet ? "HPET" : "PMTIMER", i + 1);
  636. return tsc_ref_min;
  637. }
  638. /*
  639. * Check whether PIT failed more than once. This
  640. * happens in virtualized environments. We need to
  641. * give the virtual PC a slightly longer timeframe for
  642. * the HPET/PMTIMER to make the result precise.
  643. */
  644. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  645. latch = CAL2_LATCH;
  646. ms = CAL2_MS;
  647. loopmin = CAL2_PIT_LOOPS;
  648. }
  649. }
  650. /*
  651. * Now check the results.
  652. */
  653. if (tsc_pit_min == ULONG_MAX) {
  654. /* PIT gave no useful value */
  655. pr_warn("Unable to calibrate against PIT\n");
  656. /* We don't have an alternative source, disable TSC */
  657. if (!hpet && !ref1 && !ref2) {
  658. pr_notice("No reference (HPET/PMTIMER) available\n");
  659. return 0;
  660. }
  661. /* The alternative source failed as well, disable TSC */
  662. if (tsc_ref_min == ULONG_MAX) {
  663. pr_warn("HPET/PMTIMER calibration failed\n");
  664. return 0;
  665. }
  666. /* Use the alternative source */
  667. pr_info("using %s reference calibration\n",
  668. hpet ? "HPET" : "PMTIMER");
  669. return tsc_ref_min;
  670. }
  671. /* We don't have an alternative source, use the PIT calibration value */
  672. if (!hpet && !ref1 && !ref2) {
  673. pr_info("Using PIT calibration value\n");
  674. return tsc_pit_min;
  675. }
  676. /* The alternative source failed, use the PIT calibration value */
  677. if (tsc_ref_min == ULONG_MAX) {
  678. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  679. return tsc_pit_min;
  680. }
  681. /*
  682. * The calibration values differ too much. In doubt, we use
  683. * the PIT value as we know that there are PMTIMERs around
  684. * running at double speed. At least we let the user know:
  685. */
  686. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  687. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  688. pr_info("Using PIT calibration value\n");
  689. return tsc_pit_min;
  690. }
  691. int recalibrate_cpu_khz(void)
  692. {
  693. #ifndef CONFIG_SMP
  694. unsigned long cpu_khz_old = cpu_khz;
  695. if (cpu_has_tsc) {
  696. tsc_khz = x86_platform.calibrate_tsc();
  697. cpu_khz = tsc_khz;
  698. cpu_data(0).loops_per_jiffy =
  699. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  700. cpu_khz_old, cpu_khz);
  701. return 0;
  702. } else
  703. return -ENODEV;
  704. #else
  705. return -ENODEV;
  706. #endif
  707. }
  708. EXPORT_SYMBOL(recalibrate_cpu_khz);
  709. static unsigned long long cyc2ns_suspend;
  710. void tsc_save_sched_clock_state(void)
  711. {
  712. if (!sched_clock_stable())
  713. return;
  714. cyc2ns_suspend = sched_clock();
  715. }
  716. /*
  717. * Even on processors with invariant TSC, TSC gets reset in some the
  718. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  719. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  720. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  721. * that sched_clock() continues from the point where it was left off during
  722. * suspend.
  723. */
  724. void tsc_restore_sched_clock_state(void)
  725. {
  726. unsigned long long offset;
  727. unsigned long flags;
  728. int cpu;
  729. if (!sched_clock_stable())
  730. return;
  731. local_irq_save(flags);
  732. /*
  733. * We're comming out of suspend, there's no concurrency yet; don't
  734. * bother being nice about the RCU stuff, just write to both
  735. * data fields.
  736. */
  737. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  738. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  739. offset = cyc2ns_suspend - sched_clock();
  740. for_each_possible_cpu(cpu) {
  741. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  742. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  743. }
  744. local_irq_restore(flags);
  745. }
  746. #ifdef CONFIG_CPU_FREQ
  747. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  748. * changes.
  749. *
  750. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  751. * not that important because current Opteron setups do not support
  752. * scaling on SMP anyroads.
  753. *
  754. * Should fix up last_tsc too. Currently gettimeofday in the
  755. * first tick after the change will be slightly wrong.
  756. */
  757. static unsigned int ref_freq;
  758. static unsigned long loops_per_jiffy_ref;
  759. static unsigned long tsc_khz_ref;
  760. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  761. void *data)
  762. {
  763. struct cpufreq_freqs *freq = data;
  764. unsigned long *lpj;
  765. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  766. return 0;
  767. lpj = &boot_cpu_data.loops_per_jiffy;
  768. #ifdef CONFIG_SMP
  769. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  770. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  771. #endif
  772. if (!ref_freq) {
  773. ref_freq = freq->old;
  774. loops_per_jiffy_ref = *lpj;
  775. tsc_khz_ref = tsc_khz;
  776. }
  777. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  778. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  779. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  780. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  781. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  782. mark_tsc_unstable("cpufreq changes");
  783. set_cyc2ns_scale(tsc_khz, freq->cpu);
  784. }
  785. return 0;
  786. }
  787. static struct notifier_block time_cpufreq_notifier_block = {
  788. .notifier_call = time_cpufreq_notifier
  789. };
  790. static int __init cpufreq_tsc(void)
  791. {
  792. if (!cpu_has_tsc)
  793. return 0;
  794. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  795. return 0;
  796. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  797. CPUFREQ_TRANSITION_NOTIFIER);
  798. return 0;
  799. }
  800. core_initcall(cpufreq_tsc);
  801. #endif /* CONFIG_CPU_FREQ */
  802. /* clocksource code */
  803. static struct clocksource clocksource_tsc;
  804. /*
  805. * We used to compare the TSC to the cycle_last value in the clocksource
  806. * structure to avoid a nasty time-warp. This can be observed in a
  807. * very small window right after one CPU updated cycle_last under
  808. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  809. * is smaller than the cycle_last reference value due to a TSC which
  810. * is slighty behind. This delta is nowhere else observable, but in
  811. * that case it results in a forward time jump in the range of hours
  812. * due to the unsigned delta calculation of the time keeping core
  813. * code, which is necessary to support wrapping clocksources like pm
  814. * timer.
  815. *
  816. * This sanity check is now done in the core timekeeping code.
  817. * checking the result of read_tsc() - cycle_last for being negative.
  818. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  819. */
  820. static cycle_t read_tsc(struct clocksource *cs)
  821. {
  822. return (cycle_t)get_cycles();
  823. }
  824. /*
  825. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  826. */
  827. static struct clocksource clocksource_tsc = {
  828. .name = "tsc",
  829. .rating = 300,
  830. .read = read_tsc,
  831. .mask = CLOCKSOURCE_MASK(64),
  832. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  833. CLOCK_SOURCE_MUST_VERIFY,
  834. .archdata = { .vclock_mode = VCLOCK_TSC },
  835. };
  836. void mark_tsc_unstable(char *reason)
  837. {
  838. if (!tsc_unstable) {
  839. tsc_unstable = 1;
  840. clear_sched_clock_stable();
  841. disable_sched_clock_irqtime();
  842. pr_info("Marking TSC unstable due to %s\n", reason);
  843. /* Change only the rating, when not registered */
  844. if (clocksource_tsc.mult)
  845. clocksource_mark_unstable(&clocksource_tsc);
  846. else {
  847. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  848. clocksource_tsc.rating = 0;
  849. }
  850. }
  851. }
  852. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  853. static void __init check_system_tsc_reliable(void)
  854. {
  855. #ifdef CONFIG_MGEODE_LX
  856. /* RTSC counts during suspend */
  857. #define RTSC_SUSP 0x100
  858. unsigned long res_low, res_high;
  859. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  860. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  861. if (res_low & RTSC_SUSP)
  862. tsc_clocksource_reliable = 1;
  863. #endif
  864. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  865. tsc_clocksource_reliable = 1;
  866. }
  867. /*
  868. * Make an educated guess if the TSC is trustworthy and synchronized
  869. * over all CPUs.
  870. */
  871. int unsynchronized_tsc(void)
  872. {
  873. if (!cpu_has_tsc || tsc_unstable)
  874. return 1;
  875. #ifdef CONFIG_SMP
  876. if (apic_is_clustered_box())
  877. return 1;
  878. #endif
  879. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  880. return 0;
  881. if (tsc_clocksource_reliable)
  882. return 0;
  883. /*
  884. * Intel systems are normally all synchronized.
  885. * Exceptions must mark TSC as unstable:
  886. */
  887. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  888. /* assume multi socket systems are not synchronized: */
  889. if (num_possible_cpus() > 1)
  890. return 1;
  891. }
  892. return 0;
  893. }
  894. static void tsc_refine_calibration_work(struct work_struct *work);
  895. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  896. /**
  897. * tsc_refine_calibration_work - Further refine tsc freq calibration
  898. * @work - ignored.
  899. *
  900. * This functions uses delayed work over a period of a
  901. * second to further refine the TSC freq value. Since this is
  902. * timer based, instead of loop based, we don't block the boot
  903. * process while this longer calibration is done.
  904. *
  905. * If there are any calibration anomalies (too many SMIs, etc),
  906. * or the refined calibration is off by 1% of the fast early
  907. * calibration, we throw out the new calibration and use the
  908. * early calibration.
  909. */
  910. static void tsc_refine_calibration_work(struct work_struct *work)
  911. {
  912. static u64 tsc_start = -1, ref_start;
  913. static int hpet;
  914. u64 tsc_stop, ref_stop, delta;
  915. unsigned long freq;
  916. /* Don't bother refining TSC on unstable systems */
  917. if (check_tsc_unstable())
  918. goto out;
  919. /*
  920. * Since the work is started early in boot, we may be
  921. * delayed the first time we expire. So set the workqueue
  922. * again once we know timers are working.
  923. */
  924. if (tsc_start == -1) {
  925. /*
  926. * Only set hpet once, to avoid mixing hardware
  927. * if the hpet becomes enabled later.
  928. */
  929. hpet = is_hpet_enabled();
  930. schedule_delayed_work(&tsc_irqwork, HZ);
  931. tsc_start = tsc_read_refs(&ref_start, hpet);
  932. return;
  933. }
  934. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  935. /* hpet or pmtimer available ? */
  936. if (ref_start == ref_stop)
  937. goto out;
  938. /* Check, whether the sampling was disturbed by an SMI */
  939. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  940. goto out;
  941. delta = tsc_stop - tsc_start;
  942. delta *= 1000000LL;
  943. if (hpet)
  944. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  945. else
  946. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  947. /* Make sure we're within 1% */
  948. if (abs(tsc_khz - freq) > tsc_khz/100)
  949. goto out;
  950. tsc_khz = freq;
  951. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  952. (unsigned long)tsc_khz / 1000,
  953. (unsigned long)tsc_khz % 1000);
  954. out:
  955. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  956. }
  957. static int __init init_tsc_clocksource(void)
  958. {
  959. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  960. return 0;
  961. if (tsc_clocksource_reliable)
  962. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  963. /* lower the rating if we already know its unstable: */
  964. if (check_tsc_unstable()) {
  965. clocksource_tsc.rating = 0;
  966. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  967. }
  968. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  969. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  970. /*
  971. * Trust the results of the earlier calibration on systems
  972. * exporting a reliable TSC.
  973. */
  974. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  975. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  976. return 0;
  977. }
  978. schedule_delayed_work(&tsc_irqwork, 0);
  979. return 0;
  980. }
  981. /*
  982. * We use device_initcall here, to ensure we run after the hpet
  983. * is fully initialized, which may occur at fs_initcall time.
  984. */
  985. device_initcall(init_tsc_clocksource);
  986. void __init tsc_init(void)
  987. {
  988. u64 lpj;
  989. int cpu;
  990. x86_init.timers.tsc_pre_init();
  991. if (!cpu_has_tsc) {
  992. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  993. return;
  994. }
  995. tsc_khz = x86_platform.calibrate_tsc();
  996. cpu_khz = tsc_khz;
  997. if (!tsc_khz) {
  998. mark_tsc_unstable("could not calculate TSC khz");
  999. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1000. return;
  1001. }
  1002. pr_info("Detected %lu.%03lu MHz processor\n",
  1003. (unsigned long)cpu_khz / 1000,
  1004. (unsigned long)cpu_khz % 1000);
  1005. /*
  1006. * Secondary CPUs do not run through tsc_init(), so set up
  1007. * all the scale factors for all CPUs, assuming the same
  1008. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1009. * up if their speed diverges)
  1010. */
  1011. for_each_possible_cpu(cpu) {
  1012. cyc2ns_init(cpu);
  1013. set_cyc2ns_scale(cpu_khz, cpu);
  1014. }
  1015. if (tsc_disabled > 0)
  1016. return;
  1017. /* now allow native_sched_clock() to use rdtsc */
  1018. tsc_disabled = 0;
  1019. static_key_slow_inc(&__use_tsc);
  1020. if (!no_sched_irq_time)
  1021. enable_sched_clock_irqtime();
  1022. lpj = ((u64)tsc_khz * 1000);
  1023. do_div(lpj, HZ);
  1024. lpj_fine = lpj;
  1025. use_tsc_delay();
  1026. if (unsynchronized_tsc())
  1027. mark_tsc_unstable("TSCs unsynchronized");
  1028. check_system_tsc_reliable();
  1029. }
  1030. #ifdef CONFIG_SMP
  1031. /*
  1032. * If we have a constant TSC and are using the TSC for the delay loop,
  1033. * we can skip clock calibration if another cpu in the same socket has already
  1034. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1035. * cpus in the socket - this should be a safe assumption.
  1036. */
  1037. unsigned long calibrate_delay_is_known(void)
  1038. {
  1039. int i, cpu = smp_processor_id();
  1040. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1041. return 0;
  1042. for_each_online_cpu(i)
  1043. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  1044. return cpu_data(i).loops_per_jiffy;
  1045. return 0;
  1046. }
  1047. #endif