machine_kexec_64.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /*
  2. * handle transition of Linux booting another kernel
  3. * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #define pr_fmt(fmt) "kexec: " fmt
  9. #include <linux/mm.h>
  10. #include <linux/kexec.h>
  11. #include <linux/string.h>
  12. #include <linux/gfp.h>
  13. #include <linux/reboot.h>
  14. #include <linux/numa.h>
  15. #include <linux/ftrace.h>
  16. #include <linux/io.h>
  17. #include <linux/suspend.h>
  18. #include <linux/vmalloc.h>
  19. #include <asm/init.h>
  20. #include <asm/pgtable.h>
  21. #include <asm/tlbflush.h>
  22. #include <asm/mmu_context.h>
  23. #include <asm/io_apic.h>
  24. #include <asm/debugreg.h>
  25. #include <asm/kexec-bzimage64.h>
  26. #include <asm/setup.h>
  27. #ifdef CONFIG_KEXEC_FILE
  28. static struct kexec_file_ops *kexec_file_loaders[] = {
  29. &kexec_bzImage64_ops,
  30. };
  31. #endif
  32. static void free_transition_pgtable(struct kimage *image)
  33. {
  34. free_page((unsigned long)image->arch.pud);
  35. free_page((unsigned long)image->arch.pmd);
  36. free_page((unsigned long)image->arch.pte);
  37. }
  38. static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
  39. {
  40. pud_t *pud;
  41. pmd_t *pmd;
  42. pte_t *pte;
  43. unsigned long vaddr, paddr;
  44. int result = -ENOMEM;
  45. vaddr = (unsigned long)relocate_kernel;
  46. paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
  47. pgd += pgd_index(vaddr);
  48. if (!pgd_present(*pgd)) {
  49. pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
  50. if (!pud)
  51. goto err;
  52. image->arch.pud = pud;
  53. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  54. }
  55. pud = pud_offset(pgd, vaddr);
  56. if (!pud_present(*pud)) {
  57. pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
  58. if (!pmd)
  59. goto err;
  60. image->arch.pmd = pmd;
  61. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  62. }
  63. pmd = pmd_offset(pud, vaddr);
  64. if (!pmd_present(*pmd)) {
  65. pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
  66. if (!pte)
  67. goto err;
  68. image->arch.pte = pte;
  69. set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
  70. }
  71. pte = pte_offset_kernel(pmd, vaddr);
  72. set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
  73. return 0;
  74. err:
  75. free_transition_pgtable(image);
  76. return result;
  77. }
  78. static void *alloc_pgt_page(void *data)
  79. {
  80. struct kimage *image = (struct kimage *)data;
  81. struct page *page;
  82. void *p = NULL;
  83. page = kimage_alloc_control_pages(image, 0);
  84. if (page) {
  85. p = page_address(page);
  86. clear_page(p);
  87. }
  88. return p;
  89. }
  90. static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
  91. {
  92. struct x86_mapping_info info = {
  93. .alloc_pgt_page = alloc_pgt_page,
  94. .context = image,
  95. .pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
  96. };
  97. unsigned long mstart, mend;
  98. pgd_t *level4p;
  99. int result;
  100. int i;
  101. level4p = (pgd_t *)__va(start_pgtable);
  102. clear_page(level4p);
  103. for (i = 0; i < nr_pfn_mapped; i++) {
  104. mstart = pfn_mapped[i].start << PAGE_SHIFT;
  105. mend = pfn_mapped[i].end << PAGE_SHIFT;
  106. result = kernel_ident_mapping_init(&info,
  107. level4p, mstart, mend);
  108. if (result)
  109. return result;
  110. }
  111. /*
  112. * segments's mem ranges could be outside 0 ~ max_pfn,
  113. * for example when jump back to original kernel from kexeced kernel.
  114. * or first kernel is booted with user mem map, and second kernel
  115. * could be loaded out of that range.
  116. */
  117. for (i = 0; i < image->nr_segments; i++) {
  118. mstart = image->segment[i].mem;
  119. mend = mstart + image->segment[i].memsz;
  120. result = kernel_ident_mapping_init(&info,
  121. level4p, mstart, mend);
  122. if (result)
  123. return result;
  124. }
  125. return init_transition_pgtable(image, level4p);
  126. }
  127. static void set_idt(void *newidt, u16 limit)
  128. {
  129. struct desc_ptr curidt;
  130. /* x86-64 supports unaliged loads & stores */
  131. curidt.size = limit;
  132. curidt.address = (unsigned long)newidt;
  133. __asm__ __volatile__ (
  134. "lidtq %0\n"
  135. : : "m" (curidt)
  136. );
  137. };
  138. static void set_gdt(void *newgdt, u16 limit)
  139. {
  140. struct desc_ptr curgdt;
  141. /* x86-64 supports unaligned loads & stores */
  142. curgdt.size = limit;
  143. curgdt.address = (unsigned long)newgdt;
  144. __asm__ __volatile__ (
  145. "lgdtq %0\n"
  146. : : "m" (curgdt)
  147. );
  148. };
  149. static void load_segments(void)
  150. {
  151. __asm__ __volatile__ (
  152. "\tmovl %0,%%ds\n"
  153. "\tmovl %0,%%es\n"
  154. "\tmovl %0,%%ss\n"
  155. "\tmovl %0,%%fs\n"
  156. "\tmovl %0,%%gs\n"
  157. : : "a" (__KERNEL_DS) : "memory"
  158. );
  159. }
  160. #ifdef CONFIG_KEXEC_FILE
  161. /* Update purgatory as needed after various image segments have been prepared */
  162. static int arch_update_purgatory(struct kimage *image)
  163. {
  164. int ret = 0;
  165. if (!image->file_mode)
  166. return 0;
  167. /* Setup copying of backup region */
  168. if (image->type == KEXEC_TYPE_CRASH) {
  169. ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
  170. &image->arch.backup_load_addr,
  171. sizeof(image->arch.backup_load_addr), 0);
  172. if (ret)
  173. return ret;
  174. ret = kexec_purgatory_get_set_symbol(image, "backup_src",
  175. &image->arch.backup_src_start,
  176. sizeof(image->arch.backup_src_start), 0);
  177. if (ret)
  178. return ret;
  179. ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
  180. &image->arch.backup_src_sz,
  181. sizeof(image->arch.backup_src_sz), 0);
  182. if (ret)
  183. return ret;
  184. }
  185. return ret;
  186. }
  187. #else /* !CONFIG_KEXEC_FILE */
  188. static inline int arch_update_purgatory(struct kimage *image)
  189. {
  190. return 0;
  191. }
  192. #endif /* CONFIG_KEXEC_FILE */
  193. int machine_kexec_prepare(struct kimage *image)
  194. {
  195. unsigned long start_pgtable;
  196. int result;
  197. /* Calculate the offsets */
  198. start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
  199. /* Setup the identity mapped 64bit page table */
  200. result = init_pgtable(image, start_pgtable);
  201. if (result)
  202. return result;
  203. /* update purgatory as needed */
  204. result = arch_update_purgatory(image);
  205. if (result)
  206. return result;
  207. return 0;
  208. }
  209. void machine_kexec_cleanup(struct kimage *image)
  210. {
  211. free_transition_pgtable(image);
  212. }
  213. /*
  214. * Do not allocate memory (or fail in any way) in machine_kexec().
  215. * We are past the point of no return, committed to rebooting now.
  216. */
  217. void machine_kexec(struct kimage *image)
  218. {
  219. unsigned long page_list[PAGES_NR];
  220. void *control_page;
  221. int save_ftrace_enabled;
  222. #ifdef CONFIG_KEXEC_JUMP
  223. if (image->preserve_context)
  224. save_processor_state();
  225. #endif
  226. save_ftrace_enabled = __ftrace_enabled_save();
  227. /* Interrupts aren't acceptable while we reboot */
  228. local_irq_disable();
  229. hw_breakpoint_disable();
  230. if (image->preserve_context) {
  231. #ifdef CONFIG_X86_IO_APIC
  232. /*
  233. * We need to put APICs in legacy mode so that we can
  234. * get timer interrupts in second kernel. kexec/kdump
  235. * paths already have calls to disable_IO_APIC() in
  236. * one form or other. kexec jump path also need
  237. * one.
  238. */
  239. disable_IO_APIC();
  240. #endif
  241. }
  242. control_page = page_address(image->control_code_page) + PAGE_SIZE;
  243. memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
  244. page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
  245. page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
  246. page_list[PA_TABLE_PAGE] =
  247. (unsigned long)__pa(page_address(image->control_code_page));
  248. if (image->type == KEXEC_TYPE_DEFAULT)
  249. page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
  250. << PAGE_SHIFT);
  251. /*
  252. * The segment registers are funny things, they have both a
  253. * visible and an invisible part. Whenever the visible part is
  254. * set to a specific selector, the invisible part is loaded
  255. * with from a table in memory. At no other time is the
  256. * descriptor table in memory accessed.
  257. *
  258. * I take advantage of this here by force loading the
  259. * segments, before I zap the gdt with an invalid value.
  260. */
  261. load_segments();
  262. /*
  263. * The gdt & idt are now invalid.
  264. * If you want to load them you must set up your own idt & gdt.
  265. */
  266. set_gdt(phys_to_virt(0), 0);
  267. set_idt(phys_to_virt(0), 0);
  268. /* now call it */
  269. image->start = relocate_kernel((unsigned long)image->head,
  270. (unsigned long)page_list,
  271. image->start,
  272. image->preserve_context);
  273. #ifdef CONFIG_KEXEC_JUMP
  274. if (image->preserve_context)
  275. restore_processor_state();
  276. #endif
  277. __ftrace_enabled_restore(save_ftrace_enabled);
  278. }
  279. void arch_crash_save_vmcoreinfo(void)
  280. {
  281. VMCOREINFO_SYMBOL(phys_base);
  282. VMCOREINFO_SYMBOL(init_level4_pgt);
  283. #ifdef CONFIG_NUMA
  284. VMCOREINFO_SYMBOL(node_data);
  285. VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
  286. #endif
  287. vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
  288. kaslr_offset());
  289. }
  290. /* arch-dependent functionality related to kexec file-based syscall */
  291. #ifdef CONFIG_KEXEC_FILE
  292. int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  293. unsigned long buf_len)
  294. {
  295. int i, ret = -ENOEXEC;
  296. struct kexec_file_ops *fops;
  297. for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
  298. fops = kexec_file_loaders[i];
  299. if (!fops || !fops->probe)
  300. continue;
  301. ret = fops->probe(buf, buf_len);
  302. if (!ret) {
  303. image->fops = fops;
  304. return ret;
  305. }
  306. }
  307. return ret;
  308. }
  309. void *arch_kexec_kernel_image_load(struct kimage *image)
  310. {
  311. vfree(image->arch.elf_headers);
  312. image->arch.elf_headers = NULL;
  313. if (!image->fops || !image->fops->load)
  314. return ERR_PTR(-ENOEXEC);
  315. return image->fops->load(image, image->kernel_buf,
  316. image->kernel_buf_len, image->initrd_buf,
  317. image->initrd_buf_len, image->cmdline_buf,
  318. image->cmdline_buf_len);
  319. }
  320. int arch_kimage_file_post_load_cleanup(struct kimage *image)
  321. {
  322. if (!image->fops || !image->fops->cleanup)
  323. return 0;
  324. return image->fops->cleanup(image->image_loader_data);
  325. }
  326. int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
  327. unsigned long kernel_len)
  328. {
  329. if (!image->fops || !image->fops->verify_sig) {
  330. pr_debug("kernel loader does not support signature verification.");
  331. return -EKEYREJECTED;
  332. }
  333. return image->fops->verify_sig(kernel, kernel_len);
  334. }
  335. /*
  336. * Apply purgatory relocations.
  337. *
  338. * ehdr: Pointer to elf headers
  339. * sechdrs: Pointer to section headers.
  340. * relsec: section index of SHT_RELA section.
  341. *
  342. * TODO: Some of the code belongs to generic code. Move that in kexec.c.
  343. */
  344. int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
  345. Elf64_Shdr *sechdrs, unsigned int relsec)
  346. {
  347. unsigned int i;
  348. Elf64_Rela *rel;
  349. Elf64_Sym *sym;
  350. void *location;
  351. Elf64_Shdr *section, *symtabsec;
  352. unsigned long address, sec_base, value;
  353. const char *strtab, *name, *shstrtab;
  354. /*
  355. * ->sh_offset has been modified to keep the pointer to section
  356. * contents in memory
  357. */
  358. rel = (void *)sechdrs[relsec].sh_offset;
  359. /* Section to which relocations apply */
  360. section = &sechdrs[sechdrs[relsec].sh_info];
  361. pr_debug("Applying relocate section %u to %u\n", relsec,
  362. sechdrs[relsec].sh_info);
  363. /* Associated symbol table */
  364. symtabsec = &sechdrs[sechdrs[relsec].sh_link];
  365. /* String table */
  366. if (symtabsec->sh_link >= ehdr->e_shnum) {
  367. /* Invalid strtab section number */
  368. pr_err("Invalid string table section index %d\n",
  369. symtabsec->sh_link);
  370. return -ENOEXEC;
  371. }
  372. strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
  373. /* section header string table */
  374. shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
  375. for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
  376. /*
  377. * rel[i].r_offset contains byte offset from beginning
  378. * of section to the storage unit affected.
  379. *
  380. * This is location to update (->sh_offset). This is temporary
  381. * buffer where section is currently loaded. This will finally
  382. * be loaded to a different address later, pointed to by
  383. * ->sh_addr. kexec takes care of moving it
  384. * (kexec_load_segment()).
  385. */
  386. location = (void *)(section->sh_offset + rel[i].r_offset);
  387. /* Final address of the location */
  388. address = section->sh_addr + rel[i].r_offset;
  389. /*
  390. * rel[i].r_info contains information about symbol table index
  391. * w.r.t which relocation must be made and type of relocation
  392. * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
  393. * these respectively.
  394. */
  395. sym = (Elf64_Sym *)symtabsec->sh_offset +
  396. ELF64_R_SYM(rel[i].r_info);
  397. if (sym->st_name)
  398. name = strtab + sym->st_name;
  399. else
  400. name = shstrtab + sechdrs[sym->st_shndx].sh_name;
  401. pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
  402. name, sym->st_info, sym->st_shndx, sym->st_value,
  403. sym->st_size);
  404. if (sym->st_shndx == SHN_UNDEF) {
  405. pr_err("Undefined symbol: %s\n", name);
  406. return -ENOEXEC;
  407. }
  408. if (sym->st_shndx == SHN_COMMON) {
  409. pr_err("symbol '%s' in common section\n", name);
  410. return -ENOEXEC;
  411. }
  412. if (sym->st_shndx == SHN_ABS)
  413. sec_base = 0;
  414. else if (sym->st_shndx >= ehdr->e_shnum) {
  415. pr_err("Invalid section %d for symbol %s\n",
  416. sym->st_shndx, name);
  417. return -ENOEXEC;
  418. } else
  419. sec_base = sechdrs[sym->st_shndx].sh_addr;
  420. value = sym->st_value;
  421. value += sec_base;
  422. value += rel[i].r_addend;
  423. switch (ELF64_R_TYPE(rel[i].r_info)) {
  424. case R_X86_64_NONE:
  425. break;
  426. case R_X86_64_64:
  427. *(u64 *)location = value;
  428. break;
  429. case R_X86_64_32:
  430. *(u32 *)location = value;
  431. if (value != *(u32 *)location)
  432. goto overflow;
  433. break;
  434. case R_X86_64_32S:
  435. *(s32 *)location = value;
  436. if ((s64)value != *(s32 *)location)
  437. goto overflow;
  438. break;
  439. case R_X86_64_PC32:
  440. value -= (u64)address;
  441. *(u32 *)location = value;
  442. break;
  443. default:
  444. pr_err("Unknown rela relocation: %llu\n",
  445. ELF64_R_TYPE(rel[i].r_info));
  446. return -ENOEXEC;
  447. }
  448. }
  449. return 0;
  450. overflow:
  451. pr_err("Overflow in relocation type %d value 0x%lx\n",
  452. (int)ELF64_R_TYPE(rel[i].r_info), value);
  453. return -ENOEXEC;
  454. }
  455. #endif /* CONFIG_KEXEC_FILE */