123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- /*
- * x86 FPU boot time init code:
- */
- #include <asm/fpu/internal.h>
- #include <asm/tlbflush.h>
- /*
- * Initialize the TS bit in CR0 according to the style of context-switches
- * we are using:
- */
- static void fpu__init_cpu_ctx_switch(void)
- {
- if (!cpu_has_eager_fpu)
- stts();
- else
- clts();
- }
- /*
- * Initialize the registers found in all CPUs, CR0 and CR4:
- */
- static void fpu__init_cpu_generic(void)
- {
- unsigned long cr0;
- unsigned long cr4_mask = 0;
- if (cpu_has_fxsr)
- cr4_mask |= X86_CR4_OSFXSR;
- if (cpu_has_xmm)
- cr4_mask |= X86_CR4_OSXMMEXCPT;
- if (cr4_mask)
- cr4_set_bits(cr4_mask);
- cr0 = read_cr0();
- cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
- if (!cpu_has_fpu)
- cr0 |= X86_CR0_EM;
- write_cr0(cr0);
- /* Flush out any pending x87 state: */
- asm volatile ("fninit");
- }
- /*
- * Enable all supported FPU features. Called when a CPU is brought online:
- */
- void fpu__init_cpu(void)
- {
- fpu__init_cpu_generic();
- fpu__init_cpu_xstate();
- fpu__init_cpu_ctx_switch();
- }
- /*
- * The earliest FPU detection code.
- *
- * Set the X86_FEATURE_FPU CPU-capability bit based on
- * trying to execute an actual sequence of FPU instructions:
- */
- static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
- {
- unsigned long cr0;
- u16 fsw, fcw;
- fsw = fcw = 0xffff;
- cr0 = read_cr0();
- cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
- write_cr0(cr0);
- asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
- : "+m" (fsw), "+m" (fcw));
- if (fsw == 0 && (fcw & 0x103f) == 0x003f)
- set_cpu_cap(c, X86_FEATURE_FPU);
- else
- clear_cpu_cap(c, X86_FEATURE_FPU);
- #ifndef CONFIG_MATH_EMULATION
- if (!cpu_has_fpu) {
- pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
- for (;;)
- asm volatile("hlt");
- }
- #endif
- }
- /*
- * Boot time FPU feature detection code:
- */
- unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
- static void __init fpu__init_system_mxcsr(void)
- {
- unsigned int mask = 0;
- if (cpu_has_fxsr) {
- /* Static because GCC does not get 16-byte stack alignment right: */
- static struct fxregs_state fxregs __initdata;
- asm volatile("fxsave %0" : "+m" (fxregs));
- mask = fxregs.mxcsr_mask;
- /*
- * If zero then use the default features mask,
- * which has all features set, except the
- * denormals-are-zero feature bit:
- */
- if (mask == 0)
- mask = 0x0000ffbf;
- }
- mxcsr_feature_mask &= mask;
- }
- /*
- * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
- */
- static void __init fpu__init_system_generic(void)
- {
- /*
- * Set up the legacy init FPU context. (xstate init might overwrite this
- * with a more modern format, if the CPU supports it.)
- */
- fpstate_init_fxstate(&init_fpstate.fxsave);
- fpu__init_system_mxcsr();
- }
- /*
- * Size of the FPU context state. All tasks in the system use the
- * same context size, regardless of what portion they use.
- * This is inherent to the XSAVE architecture which puts all state
- * components into a single, continuous memory block:
- */
- unsigned int xstate_size;
- EXPORT_SYMBOL_GPL(xstate_size);
- /*
- * Set up the xstate_size based on the legacy FPU context size.
- *
- * We set this up first, and later it will be overwritten by
- * fpu__init_system_xstate() if the CPU knows about xstates.
- */
- static void __init fpu__init_system_xstate_size_legacy(void)
- {
- static int on_boot_cpu = 1;
- WARN_ON_FPU(!on_boot_cpu);
- on_boot_cpu = 0;
- /*
- * Note that xstate_size might be overwriten later during
- * fpu__init_system_xstate().
- */
- if (!cpu_has_fpu) {
- /*
- * Disable xsave as we do not support it if i387
- * emulation is enabled.
- */
- setup_clear_cpu_cap(X86_FEATURE_XSAVE);
- setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
- xstate_size = sizeof(struct swregs_state);
- } else {
- if (cpu_has_fxsr)
- xstate_size = sizeof(struct fxregs_state);
- else
- xstate_size = sizeof(struct fregs_state);
- }
- /*
- * Quirk: we don't yet handle the XSAVES* instructions
- * correctly, as we don't correctly convert between
- * standard and compacted format when interfacing
- * with user-space - so disable it for now.
- *
- * The difference is small: with recent CPUs the
- * compacted format is only marginally smaller than
- * the standard FPU state format.
- *
- * ( This is easy to backport while we are fixing
- * XSAVES* support. )
- */
- setup_clear_cpu_cap(X86_FEATURE_XSAVES);
- }
- /*
- * FPU context switching strategies:
- *
- * Against popular belief, we don't do lazy FPU saves, due to the
- * task migration complications it brings on SMP - we only do
- * lazy FPU restores.
- *
- * 'lazy' is the traditional strategy, which is based on setting
- * CR0::TS to 1 during context-switch (instead of doing a full
- * restore of the FPU state), which causes the first FPU instruction
- * after the context switch (whenever it is executed) to fault - at
- * which point we lazily restore the FPU state into FPU registers.
- *
- * Tasks are of course under no obligation to execute FPU instructions,
- * so it can easily happen that another context-switch occurs without
- * a single FPU instruction being executed. If we eventually switch
- * back to the original task (that still owns the FPU) then we have
- * not only saved the restores along the way, but we also have the
- * FPU ready to be used for the original task.
- *
- * 'eager' switching is used on modern CPUs, there we switch the FPU
- * state during every context switch, regardless of whether the task
- * has used FPU instructions in that time slice or not. This is done
- * because modern FPU context saving instructions are able to optimize
- * state saving and restoration in hardware: they can detect both
- * unused and untouched FPU state and optimize accordingly.
- *
- * [ Note that even in 'lazy' mode we might optimize context switches
- * to use 'eager' restores, if we detect that a task is using the FPU
- * frequently. See the fpu->counter logic in fpu/internal.h for that. ]
- */
- static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
- static int __init eager_fpu_setup(char *s)
- {
- if (!strcmp(s, "on"))
- eagerfpu = ENABLE;
- else if (!strcmp(s, "off"))
- eagerfpu = DISABLE;
- else if (!strcmp(s, "auto"))
- eagerfpu = AUTO;
- return 1;
- }
- __setup("eagerfpu=", eager_fpu_setup);
- /*
- * Pick the FPU context switching strategy:
- */
- static void __init fpu__init_system_ctx_switch(void)
- {
- static bool on_boot_cpu = 1;
- WARN_ON_FPU(!on_boot_cpu);
- on_boot_cpu = 0;
- WARN_ON_FPU(current->thread.fpu.fpstate_active);
- current_thread_info()->status = 0;
- /* Auto enable eagerfpu for xsaveopt */
- if (cpu_has_xsaveopt && eagerfpu != DISABLE)
- eagerfpu = ENABLE;
- if (xfeatures_mask & XSTATE_EAGER) {
- if (eagerfpu == DISABLE) {
- pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
- xfeatures_mask & XSTATE_EAGER);
- xfeatures_mask &= ~XSTATE_EAGER;
- } else {
- eagerfpu = ENABLE;
- }
- }
- if (eagerfpu == ENABLE)
- setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
- printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
- }
- /*
- * Called on the boot CPU once per system bootup, to set up the initial
- * FPU state that is later cloned into all processes:
- */
- void __init fpu__init_system(struct cpuinfo_x86 *c)
- {
- fpu__init_system_early_generic(c);
- /*
- * The FPU has to be operational for some of the
- * later FPU init activities:
- */
- fpu__init_cpu();
- /*
- * But don't leave CR0::TS set yet, as some of the FPU setup
- * methods depend on being able to execute FPU instructions
- * that will fault on a set TS, such as the FXSAVE in
- * fpu__init_system_mxcsr().
- */
- clts();
- fpu__init_system_generic();
- fpu__init_system_xstate_size_legacy();
- fpu__init_system_xstate();
- fpu__init_system_ctx_switch();
- }
- /*
- * Boot parameter to turn off FPU support and fall back to math-emu:
- */
- static int __init no_387(char *s)
- {
- setup_clear_cpu_cap(X86_FEATURE_FPU);
- return 1;
- }
- __setup("no387", no_387);
- /*
- * Disable all xstate CPU features:
- */
- static int __init x86_noxsave_setup(char *s)
- {
- if (strlen(s))
- return 0;
- setup_clear_cpu_cap(X86_FEATURE_XSAVE);
- setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
- setup_clear_cpu_cap(X86_FEATURE_XSAVES);
- setup_clear_cpu_cap(X86_FEATURE_AVX);
- setup_clear_cpu_cap(X86_FEATURE_AVX2);
- return 1;
- }
- __setup("noxsave", x86_noxsave_setup);
- /*
- * Disable the XSAVEOPT instruction specifically:
- */
- static int __init x86_noxsaveopt_setup(char *s)
- {
- setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
- return 1;
- }
- __setup("noxsaveopt", x86_noxsaveopt_setup);
- /*
- * Disable the XSAVES instruction:
- */
- static int __init x86_noxsaves_setup(char *s)
- {
- setup_clear_cpu_cap(X86_FEATURE_XSAVES);
- return 1;
- }
- __setup("noxsaves", x86_noxsaves_setup);
- /*
- * Disable FX save/restore and SSE support:
- */
- static int __init x86_nofxsr_setup(char *s)
- {
- setup_clear_cpu_cap(X86_FEATURE_FXSR);
- setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
- setup_clear_cpu_cap(X86_FEATURE_XMM);
- return 1;
- }
- __setup("nofxsr", x86_nofxsr_setup);
|