ip27-timer.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. * Copytight (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org)
  3. * Copytight (C) 1999, 2000 Silicon Graphics, Inc.
  4. */
  5. #include <linux/bcd.h>
  6. #include <linux/clockchips.h>
  7. #include <linux/init.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched_clock.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/param.h>
  14. #include <linux/smp.h>
  15. #include <linux/time.h>
  16. #include <linux/timex.h>
  17. #include <linux/mm.h>
  18. #include <linux/platform_device.h>
  19. #include <asm/time.h>
  20. #include <asm/pgtable.h>
  21. #include <asm/sgialib.h>
  22. #include <asm/sn/ioc3.h>
  23. #include <asm/sn/klconfig.h>
  24. #include <asm/sn/arch.h>
  25. #include <asm/sn/addrs.h>
  26. #include <asm/sn/sn_private.h>
  27. #include <asm/sn/sn0/ip27.h>
  28. #include <asm/sn/sn0/hub.h>
  29. #define TICK_SIZE (tick_nsec / 1000)
  30. /* Includes for ioc3_init(). */
  31. #include <asm/sn/types.h>
  32. #include <asm/sn/sn0/addrs.h>
  33. #include <asm/sn/sn0/hubni.h>
  34. #include <asm/sn/sn0/hubio.h>
  35. #include <asm/pci/bridge.h>
  36. static void enable_rt_irq(struct irq_data *d)
  37. {
  38. }
  39. static void disable_rt_irq(struct irq_data *d)
  40. {
  41. }
  42. static struct irq_chip rt_irq_type = {
  43. .name = "SN HUB RT timer",
  44. .irq_mask = disable_rt_irq,
  45. .irq_unmask = enable_rt_irq,
  46. };
  47. static int rt_next_event(unsigned long delta, struct clock_event_device *evt)
  48. {
  49. unsigned int cpu = smp_processor_id();
  50. int slice = cputoslice(cpu);
  51. unsigned long cnt;
  52. cnt = LOCAL_HUB_L(PI_RT_COUNT);
  53. cnt += delta;
  54. LOCAL_HUB_S(PI_RT_COMPARE_A + PI_COUNT_OFFSET * slice, cnt);
  55. return LOCAL_HUB_L(PI_RT_COUNT) >= cnt ? -ETIME : 0;
  56. }
  57. static void rt_set_mode(enum clock_event_mode mode,
  58. struct clock_event_device *evt)
  59. {
  60. /* Nothing to do ... */
  61. }
  62. unsigned int rt_timer_irq;
  63. static DEFINE_PER_CPU(struct clock_event_device, hub_rt_clockevent);
  64. static DEFINE_PER_CPU(char [11], hub_rt_name);
  65. static irqreturn_t hub_rt_counter_handler(int irq, void *dev_id)
  66. {
  67. unsigned int cpu = smp_processor_id();
  68. struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
  69. int slice = cputoslice(cpu);
  70. /*
  71. * Ack
  72. */
  73. LOCAL_HUB_S(PI_RT_PEND_A + PI_COUNT_OFFSET * slice, 0);
  74. cd->event_handler(cd);
  75. return IRQ_HANDLED;
  76. }
  77. struct irqaction hub_rt_irqaction = {
  78. .handler = hub_rt_counter_handler,
  79. .flags = IRQF_PERCPU | IRQF_TIMER,
  80. .name = "hub-rt",
  81. };
  82. /*
  83. * This is a hack; we really need to figure these values out dynamically
  84. *
  85. * Since 800 ns works very well with various HUB frequencies, such as
  86. * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time.
  87. *
  88. * Ralf: which clock rate is used to feed the counter?
  89. */
  90. #define NSEC_PER_CYCLE 800
  91. #define CYCLES_PER_SEC (NSEC_PER_SEC / NSEC_PER_CYCLE)
  92. void hub_rt_clock_event_init(void)
  93. {
  94. unsigned int cpu = smp_processor_id();
  95. struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
  96. unsigned char *name = per_cpu(hub_rt_name, cpu);
  97. int irq = rt_timer_irq;
  98. sprintf(name, "hub-rt %d", cpu);
  99. cd->name = name;
  100. cd->features = CLOCK_EVT_FEAT_ONESHOT;
  101. clockevent_set_clock(cd, CYCLES_PER_SEC);
  102. cd->max_delta_ns = clockevent_delta2ns(0xfffffffffffff, cd);
  103. cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
  104. cd->rating = 200;
  105. cd->irq = irq;
  106. cd->cpumask = cpumask_of(cpu);
  107. cd->set_next_event = rt_next_event;
  108. cd->set_mode = rt_set_mode;
  109. clockevents_register_device(cd);
  110. }
  111. static void __init hub_rt_clock_event_global_init(void)
  112. {
  113. int irq;
  114. do {
  115. smp_wmb();
  116. irq = rt_timer_irq;
  117. if (irq)
  118. break;
  119. irq = allocate_irqno();
  120. if (irq < 0)
  121. panic("Allocation of irq number for timer failed");
  122. } while (xchg(&rt_timer_irq, irq));
  123. irq_set_chip_and_handler(irq, &rt_irq_type, handle_percpu_irq);
  124. setup_irq(irq, &hub_rt_irqaction);
  125. }
  126. static cycle_t hub_rt_read(struct clocksource *cs)
  127. {
  128. return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT);
  129. }
  130. struct clocksource hub_rt_clocksource = {
  131. .name = "HUB-RT",
  132. .rating = 200,
  133. .read = hub_rt_read,
  134. .mask = CLOCKSOURCE_MASK(52),
  135. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  136. };
  137. static u64 notrace hub_rt_read_sched_clock(void)
  138. {
  139. return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT);
  140. }
  141. static void __init hub_rt_clocksource_init(void)
  142. {
  143. struct clocksource *cs = &hub_rt_clocksource;
  144. clocksource_register_hz(cs, CYCLES_PER_SEC);
  145. sched_clock_register(hub_rt_read_sched_clock, 52, CYCLES_PER_SEC);
  146. }
  147. void __init plat_time_init(void)
  148. {
  149. hub_rt_clocksource_init();
  150. hub_rt_clock_event_global_init();
  151. hub_rt_clock_event_init();
  152. }
  153. void cpu_time_init(void)
  154. {
  155. lboard_t *board;
  156. klcpu_t *cpu;
  157. int cpuid;
  158. /* Don't use ARCS. ARCS is fragile. Klconfig is simple and sane. */
  159. board = find_lboard(KL_CONFIG_INFO(get_nasid()), KLTYPE_IP27);
  160. if (!board)
  161. panic("Can't find board info for myself.");
  162. cpuid = LOCAL_HUB_L(PI_CPU_NUM) ? IP27_CPU0_INDEX : IP27_CPU1_INDEX;
  163. cpu = (klcpu_t *) KLCF_COMP(board, cpuid);
  164. if (!cpu)
  165. panic("No information about myself?");
  166. printk("CPU %d clock is %dMHz.\n", smp_processor_id(), cpu->cpu_speed);
  167. set_c0_status(SRB_TIMOCLK);
  168. }
  169. void hub_rtc_init(cnodeid_t cnode)
  170. {
  171. /*
  172. * We only need to initialize the current node.
  173. * If this is not the current node then it is a cpuless
  174. * node and timeouts will not happen there.
  175. */
  176. if (get_compact_nodeid() == cnode) {
  177. LOCAL_HUB_S(PI_RT_EN_A, 1);
  178. LOCAL_HUB_S(PI_RT_EN_B, 1);
  179. LOCAL_HUB_S(PI_PROF_EN_A, 0);
  180. LOCAL_HUB_S(PI_PROF_EN_B, 0);
  181. LOCAL_HUB_S(PI_RT_COUNT, 0);
  182. LOCAL_HUB_S(PI_RT_PEND_A, 0);
  183. LOCAL_HUB_S(PI_RT_PEND_B, 0);
  184. }
  185. }
  186. static int __init sgi_ip27_rtc_devinit(void)
  187. {
  188. struct resource res;
  189. memset(&res, 0, sizeof(res));
  190. res.start = XPHYSADDR(KL_CONFIG_CH_CONS_INFO(master_nasid)->memory_base +
  191. IOC3_BYTEBUS_DEV0);
  192. res.end = res.start + 32767;
  193. res.flags = IORESOURCE_MEM;
  194. return IS_ERR(platform_device_register_simple("rtc-m48t35", -1,
  195. &res, 1));
  196. }
  197. /*
  198. * kludge make this a device_initcall after ioc3 resource conflicts
  199. * are resolved
  200. */
  201. late_initcall(sgi_ip27_rtc_devinit);