traps.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/sched.h>
  26. #include <linux/smp.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/bootmem.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/kgdb.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kdb.h>
  37. #include <linux/irq.h>
  38. #include <linux/perf_event.h>
  39. #include <asm/bootinfo.h>
  40. #include <asm/branch.h>
  41. #include <asm/break.h>
  42. #include <asm/cop2.h>
  43. #include <asm/cpu.h>
  44. #include <asm/cpu-type.h>
  45. #include <asm/dsp.h>
  46. #include <asm/fpu.h>
  47. #include <asm/fpu_emulator.h>
  48. #include <asm/idle.h>
  49. #include <asm/mips-r2-to-r6-emul.h>
  50. #include <asm/mipsregs.h>
  51. #include <asm/mipsmtregs.h>
  52. #include <asm/module.h>
  53. #include <asm/msa.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/ptrace.h>
  56. #include <asm/sections.h>
  57. #include <asm/tlbdebug.h>
  58. #include <asm/traps.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/watch.h>
  61. #include <asm/mmu_context.h>
  62. #include <asm/types.h>
  63. #include <asm/stacktrace.h>
  64. #include <asm/uasm.h>
  65. extern void check_wait(void);
  66. extern asmlinkage void rollback_handle_int(void);
  67. extern asmlinkage void handle_int(void);
  68. extern u32 handle_tlbl[];
  69. extern u32 handle_tlbs[];
  70. extern u32 handle_tlbm[];
  71. extern asmlinkage void handle_adel(void);
  72. extern asmlinkage void handle_ades(void);
  73. extern asmlinkage void handle_ibe(void);
  74. extern asmlinkage void handle_dbe(void);
  75. extern asmlinkage void handle_sys(void);
  76. extern asmlinkage void handle_bp(void);
  77. extern asmlinkage void handle_ri(void);
  78. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  79. extern asmlinkage void handle_ri_rdhwr(void);
  80. extern asmlinkage void handle_cpu(void);
  81. extern asmlinkage void handle_ov(void);
  82. extern asmlinkage void handle_tr(void);
  83. extern asmlinkage void handle_msa_fpe(void);
  84. extern asmlinkage void handle_fpe(void);
  85. extern asmlinkage void handle_ftlb(void);
  86. extern asmlinkage void handle_msa(void);
  87. extern asmlinkage void handle_mdmx(void);
  88. extern asmlinkage void handle_watch(void);
  89. extern asmlinkage void handle_mt(void);
  90. extern asmlinkage void handle_dsp(void);
  91. extern asmlinkage void handle_mcheck(void);
  92. extern asmlinkage void handle_reserved(void);
  93. extern void tlb_do_page_fault_0(void);
  94. void (*board_be_init)(void);
  95. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  96. void (*board_nmi_handler_setup)(void);
  97. void (*board_ejtag_handler_setup)(void);
  98. void (*board_bind_eic_interrupt)(int irq, int regset);
  99. void (*board_ebase_setup)(void);
  100. void(*board_cache_error_setup)(void);
  101. static void show_raw_backtrace(unsigned long reg29)
  102. {
  103. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  104. unsigned long addr;
  105. printk("Call Trace:");
  106. #ifdef CONFIG_KALLSYMS
  107. printk("\n");
  108. #endif
  109. while (!kstack_end(sp)) {
  110. unsigned long __user *p =
  111. (unsigned long __user *)(unsigned long)sp++;
  112. if (__get_user(addr, p)) {
  113. printk(" (Bad stack address)");
  114. break;
  115. }
  116. if (__kernel_text_address(addr))
  117. print_ip_sym(addr);
  118. }
  119. printk("\n");
  120. }
  121. #ifdef CONFIG_KALLSYMS
  122. int raw_show_trace;
  123. static int __init set_raw_show_trace(char *str)
  124. {
  125. raw_show_trace = 1;
  126. return 1;
  127. }
  128. __setup("raw_show_trace", set_raw_show_trace);
  129. #endif
  130. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  131. {
  132. unsigned long sp = regs->regs[29];
  133. unsigned long ra = regs->regs[31];
  134. unsigned long pc = regs->cp0_epc;
  135. if (!task)
  136. task = current;
  137. if (raw_show_trace || !__kernel_text_address(pc)) {
  138. show_raw_backtrace(sp);
  139. return;
  140. }
  141. printk("Call Trace:\n");
  142. do {
  143. print_ip_sym(pc);
  144. pc = unwind_stack(task, &sp, pc, &ra);
  145. } while (pc);
  146. printk("\n");
  147. }
  148. /*
  149. * This routine abuses get_user()/put_user() to reference pointers
  150. * with at least a bit of error checking ...
  151. */
  152. static void show_stacktrace(struct task_struct *task,
  153. const struct pt_regs *regs)
  154. {
  155. const int field = 2 * sizeof(unsigned long);
  156. long stackdata;
  157. int i;
  158. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  159. printk("Stack :");
  160. i = 0;
  161. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  162. if (i && ((i % (64 / field)) == 0))
  163. printk("\n ");
  164. if (i > 39) {
  165. printk(" ...");
  166. break;
  167. }
  168. if (__get_user(stackdata, sp++)) {
  169. printk(" (Bad stack address)");
  170. break;
  171. }
  172. printk(" %0*lx", field, stackdata);
  173. i++;
  174. }
  175. printk("\n");
  176. show_backtrace(task, regs);
  177. }
  178. void show_stack(struct task_struct *task, unsigned long *sp)
  179. {
  180. struct pt_regs regs;
  181. if (sp) {
  182. regs.regs[29] = (unsigned long)sp;
  183. regs.regs[31] = 0;
  184. regs.cp0_epc = 0;
  185. } else {
  186. if (task && task != current) {
  187. regs.regs[29] = task->thread.reg29;
  188. regs.regs[31] = 0;
  189. regs.cp0_epc = task->thread.reg31;
  190. #ifdef CONFIG_KGDB_KDB
  191. } else if (atomic_read(&kgdb_active) != -1 &&
  192. kdb_current_regs) {
  193. memcpy(&regs, kdb_current_regs, sizeof(regs));
  194. #endif /* CONFIG_KGDB_KDB */
  195. } else {
  196. prepare_frametrace(&regs);
  197. }
  198. }
  199. show_stacktrace(task, &regs);
  200. }
  201. static void show_code(unsigned int __user *pc)
  202. {
  203. long i;
  204. unsigned short __user *pc16 = NULL;
  205. printk("\nCode:");
  206. if ((unsigned long)pc & 1)
  207. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  208. for(i = -3 ; i < 6 ; i++) {
  209. unsigned int insn;
  210. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  211. printk(" (Bad address in epc)\n");
  212. break;
  213. }
  214. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  215. }
  216. }
  217. static void __show_regs(const struct pt_regs *regs)
  218. {
  219. const int field = 2 * sizeof(unsigned long);
  220. unsigned int cause = regs->cp0_cause;
  221. unsigned int exccode;
  222. int i;
  223. show_regs_print_info(KERN_DEFAULT);
  224. /*
  225. * Saved main processor registers
  226. */
  227. for (i = 0; i < 32; ) {
  228. if ((i % 4) == 0)
  229. printk("$%2d :", i);
  230. if (i == 0)
  231. printk(" %0*lx", field, 0UL);
  232. else if (i == 26 || i == 27)
  233. printk(" %*s", field, "");
  234. else
  235. printk(" %0*lx", field, regs->regs[i]);
  236. i++;
  237. if ((i % 4) == 0)
  238. printk("\n");
  239. }
  240. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  241. printk("Acx : %0*lx\n", field, regs->acx);
  242. #endif
  243. printk("Hi : %0*lx\n", field, regs->hi);
  244. printk("Lo : %0*lx\n", field, regs->lo);
  245. /*
  246. * Saved cp0 registers
  247. */
  248. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  249. (void *) regs->cp0_epc);
  250. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  251. (void *) regs->regs[31]);
  252. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  253. if (cpu_has_3kex) {
  254. if (regs->cp0_status & ST0_KUO)
  255. printk("KUo ");
  256. if (regs->cp0_status & ST0_IEO)
  257. printk("IEo ");
  258. if (regs->cp0_status & ST0_KUP)
  259. printk("KUp ");
  260. if (regs->cp0_status & ST0_IEP)
  261. printk("IEp ");
  262. if (regs->cp0_status & ST0_KUC)
  263. printk("KUc ");
  264. if (regs->cp0_status & ST0_IEC)
  265. printk("IEc ");
  266. } else if (cpu_has_4kex) {
  267. if (regs->cp0_status & ST0_KX)
  268. printk("KX ");
  269. if (regs->cp0_status & ST0_SX)
  270. printk("SX ");
  271. if (regs->cp0_status & ST0_UX)
  272. printk("UX ");
  273. switch (regs->cp0_status & ST0_KSU) {
  274. case KSU_USER:
  275. printk("USER ");
  276. break;
  277. case KSU_SUPERVISOR:
  278. printk("SUPERVISOR ");
  279. break;
  280. case KSU_KERNEL:
  281. printk("KERNEL ");
  282. break;
  283. default:
  284. printk("BAD_MODE ");
  285. break;
  286. }
  287. if (regs->cp0_status & ST0_ERL)
  288. printk("ERL ");
  289. if (regs->cp0_status & ST0_EXL)
  290. printk("EXL ");
  291. if (regs->cp0_status & ST0_IE)
  292. printk("IE ");
  293. }
  294. printk("\n");
  295. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  296. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  297. if (1 <= exccode && exccode <= 5)
  298. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  299. printk("PrId : %08x (%s)\n", read_c0_prid(),
  300. cpu_name_string());
  301. }
  302. /*
  303. * FIXME: really the generic show_regs should take a const pointer argument.
  304. */
  305. void show_regs(struct pt_regs *regs)
  306. {
  307. __show_regs((struct pt_regs *)regs);
  308. }
  309. void show_registers(struct pt_regs *regs)
  310. {
  311. const int field = 2 * sizeof(unsigned long);
  312. mm_segment_t old_fs = get_fs();
  313. __show_regs(regs);
  314. print_modules();
  315. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  316. current->comm, current->pid, current_thread_info(), current,
  317. field, current_thread_info()->tp_value);
  318. if (cpu_has_userlocal) {
  319. unsigned long tls;
  320. tls = read_c0_userlocal();
  321. if (tls != current_thread_info()->tp_value)
  322. printk("*HwTLS: %0*lx\n", field, tls);
  323. }
  324. if (!user_mode(regs))
  325. /* Necessary for getting the correct stack content */
  326. set_fs(KERNEL_DS);
  327. show_stacktrace(current, regs);
  328. show_code((unsigned int __user *) regs->cp0_epc);
  329. printk("\n");
  330. set_fs(old_fs);
  331. }
  332. static int regs_to_trapnr(struct pt_regs *regs)
  333. {
  334. return (regs->cp0_cause >> 2) & 0x1f;
  335. }
  336. static DEFINE_RAW_SPINLOCK(die_lock);
  337. void __noreturn die(const char *str, struct pt_regs *regs)
  338. {
  339. static int die_counter;
  340. int sig = SIGSEGV;
  341. oops_enter();
  342. if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
  343. SIGSEGV) == NOTIFY_STOP)
  344. sig = 0;
  345. console_verbose();
  346. raw_spin_lock_irq(&die_lock);
  347. bust_spinlocks(1);
  348. printk("%s[#%d]:\n", str, ++die_counter);
  349. show_registers(regs);
  350. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  351. raw_spin_unlock_irq(&die_lock);
  352. oops_exit();
  353. if (in_interrupt())
  354. panic("Fatal exception in interrupt");
  355. if (panic_on_oops) {
  356. printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
  357. ssleep(5);
  358. panic("Fatal exception");
  359. }
  360. if (regs && kexec_should_crash(current))
  361. crash_kexec(regs);
  362. do_exit(sig);
  363. }
  364. extern struct exception_table_entry __start___dbe_table[];
  365. extern struct exception_table_entry __stop___dbe_table[];
  366. __asm__(
  367. " .section __dbe_table, \"a\"\n"
  368. " .previous \n");
  369. /* Given an address, look for it in the exception tables. */
  370. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  371. {
  372. const struct exception_table_entry *e;
  373. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  374. if (!e)
  375. e = search_module_dbetables(addr);
  376. return e;
  377. }
  378. asmlinkage void do_be(struct pt_regs *regs)
  379. {
  380. const int field = 2 * sizeof(unsigned long);
  381. const struct exception_table_entry *fixup = NULL;
  382. int data = regs->cp0_cause & 4;
  383. int action = MIPS_BE_FATAL;
  384. enum ctx_state prev_state;
  385. prev_state = exception_enter();
  386. /* XXX For now. Fixme, this searches the wrong table ... */
  387. if (data && !user_mode(regs))
  388. fixup = search_dbe_tables(exception_epc(regs));
  389. if (fixup)
  390. action = MIPS_BE_FIXUP;
  391. if (board_be_handler)
  392. action = board_be_handler(regs, fixup != NULL);
  393. switch (action) {
  394. case MIPS_BE_DISCARD:
  395. goto out;
  396. case MIPS_BE_FIXUP:
  397. if (fixup) {
  398. regs->cp0_epc = fixup->nextinsn;
  399. goto out;
  400. }
  401. break;
  402. default:
  403. break;
  404. }
  405. /*
  406. * Assume it would be too dangerous to continue ...
  407. */
  408. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  409. data ? "Data" : "Instruction",
  410. field, regs->cp0_epc, field, regs->regs[31]);
  411. if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
  412. SIGBUS) == NOTIFY_STOP)
  413. goto out;
  414. die_if_kernel("Oops", regs);
  415. force_sig(SIGBUS, current);
  416. out:
  417. exception_exit(prev_state);
  418. }
  419. /*
  420. * ll/sc, rdhwr, sync emulation
  421. */
  422. #define OPCODE 0xfc000000
  423. #define BASE 0x03e00000
  424. #define RT 0x001f0000
  425. #define OFFSET 0x0000ffff
  426. #define LL 0xc0000000
  427. #define SC 0xe0000000
  428. #define SPEC0 0x00000000
  429. #define SPEC3 0x7c000000
  430. #define RD 0x0000f800
  431. #define FUNC 0x0000003f
  432. #define SYNC 0x0000000f
  433. #define RDHWR 0x0000003b
  434. /* microMIPS definitions */
  435. #define MM_POOL32A_FUNC 0xfc00ffff
  436. #define MM_RDHWR 0x00006b3c
  437. #define MM_RS 0x001f0000
  438. #define MM_RT 0x03e00000
  439. /*
  440. * The ll_bit is cleared by r*_switch.S
  441. */
  442. unsigned int ll_bit;
  443. struct task_struct *ll_task;
  444. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  445. {
  446. unsigned long value, __user *vaddr;
  447. long offset;
  448. /*
  449. * analyse the ll instruction that just caused a ri exception
  450. * and put the referenced address to addr.
  451. */
  452. /* sign extend offset */
  453. offset = opcode & OFFSET;
  454. offset <<= 16;
  455. offset >>= 16;
  456. vaddr = (unsigned long __user *)
  457. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  458. if ((unsigned long)vaddr & 3)
  459. return SIGBUS;
  460. if (get_user(value, vaddr))
  461. return SIGSEGV;
  462. preempt_disable();
  463. if (ll_task == NULL || ll_task == current) {
  464. ll_bit = 1;
  465. } else {
  466. ll_bit = 0;
  467. }
  468. ll_task = current;
  469. preempt_enable();
  470. regs->regs[(opcode & RT) >> 16] = value;
  471. return 0;
  472. }
  473. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  474. {
  475. unsigned long __user *vaddr;
  476. unsigned long reg;
  477. long offset;
  478. /*
  479. * analyse the sc instruction that just caused a ri exception
  480. * and put the referenced address to addr.
  481. */
  482. /* sign extend offset */
  483. offset = opcode & OFFSET;
  484. offset <<= 16;
  485. offset >>= 16;
  486. vaddr = (unsigned long __user *)
  487. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  488. reg = (opcode & RT) >> 16;
  489. if ((unsigned long)vaddr & 3)
  490. return SIGBUS;
  491. preempt_disable();
  492. if (ll_bit == 0 || ll_task != current) {
  493. regs->regs[reg] = 0;
  494. preempt_enable();
  495. return 0;
  496. }
  497. preempt_enable();
  498. if (put_user(regs->regs[reg], vaddr))
  499. return SIGSEGV;
  500. regs->regs[reg] = 1;
  501. return 0;
  502. }
  503. /*
  504. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  505. * opcodes are supposed to result in coprocessor unusable exceptions if
  506. * executed on ll/sc-less processors. That's the theory. In practice a
  507. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  508. * instead, so we're doing the emulation thing in both exception handlers.
  509. */
  510. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  511. {
  512. if ((opcode & OPCODE) == LL) {
  513. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  514. 1, regs, 0);
  515. return simulate_ll(regs, opcode);
  516. }
  517. if ((opcode & OPCODE) == SC) {
  518. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  519. 1, regs, 0);
  520. return simulate_sc(regs, opcode);
  521. }
  522. return -1; /* Must be something else ... */
  523. }
  524. /*
  525. * Simulate trapping 'rdhwr' instructions to provide user accessible
  526. * registers not implemented in hardware.
  527. */
  528. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  529. {
  530. struct thread_info *ti = task_thread_info(current);
  531. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  532. 1, regs, 0);
  533. switch (rd) {
  534. case 0: /* CPU number */
  535. regs->regs[rt] = smp_processor_id();
  536. return 0;
  537. case 1: /* SYNCI length */
  538. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  539. current_cpu_data.icache.linesz);
  540. return 0;
  541. case 2: /* Read count register */
  542. regs->regs[rt] = read_c0_count();
  543. return 0;
  544. case 3: /* Count register resolution */
  545. switch (current_cpu_type()) {
  546. case CPU_20KC:
  547. case CPU_25KF:
  548. regs->regs[rt] = 1;
  549. break;
  550. default:
  551. regs->regs[rt] = 2;
  552. }
  553. return 0;
  554. case 29:
  555. regs->regs[rt] = ti->tp_value;
  556. return 0;
  557. default:
  558. return -1;
  559. }
  560. }
  561. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  562. {
  563. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  564. int rd = (opcode & RD) >> 11;
  565. int rt = (opcode & RT) >> 16;
  566. simulate_rdhwr(regs, rd, rt);
  567. return 0;
  568. }
  569. /* Not ours. */
  570. return -1;
  571. }
  572. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
  573. {
  574. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  575. int rd = (opcode & MM_RS) >> 16;
  576. int rt = (opcode & MM_RT) >> 21;
  577. simulate_rdhwr(regs, rd, rt);
  578. return 0;
  579. }
  580. /* Not ours. */
  581. return -1;
  582. }
  583. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  584. {
  585. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  586. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  587. 1, regs, 0);
  588. return 0;
  589. }
  590. return -1; /* Must be something else ... */
  591. }
  592. asmlinkage void do_ov(struct pt_regs *regs)
  593. {
  594. enum ctx_state prev_state;
  595. siginfo_t info;
  596. prev_state = exception_enter();
  597. die_if_kernel("Integer overflow", regs);
  598. info.si_code = FPE_INTOVF;
  599. info.si_signo = SIGFPE;
  600. info.si_errno = 0;
  601. info.si_addr = (void __user *) regs->cp0_epc;
  602. force_sig_info(SIGFPE, &info, current);
  603. exception_exit(prev_state);
  604. }
  605. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  606. {
  607. struct siginfo si = { 0 };
  608. switch (sig) {
  609. case 0:
  610. return 0;
  611. case SIGFPE:
  612. si.si_addr = fault_addr;
  613. si.si_signo = sig;
  614. /*
  615. * Inexact can happen together with Overflow or Underflow.
  616. * Respect the mask to deliver the correct exception.
  617. */
  618. fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
  619. (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
  620. if (fcr31 & FPU_CSR_INV_X)
  621. si.si_code = FPE_FLTINV;
  622. else if (fcr31 & FPU_CSR_DIV_X)
  623. si.si_code = FPE_FLTDIV;
  624. else if (fcr31 & FPU_CSR_OVF_X)
  625. si.si_code = FPE_FLTOVF;
  626. else if (fcr31 & FPU_CSR_UDF_X)
  627. si.si_code = FPE_FLTUND;
  628. else if (fcr31 & FPU_CSR_INE_X)
  629. si.si_code = FPE_FLTRES;
  630. else
  631. si.si_code = __SI_FAULT;
  632. force_sig_info(sig, &si, current);
  633. return 1;
  634. case SIGBUS:
  635. si.si_addr = fault_addr;
  636. si.si_signo = sig;
  637. si.si_code = BUS_ADRERR;
  638. force_sig_info(sig, &si, current);
  639. return 1;
  640. case SIGSEGV:
  641. si.si_addr = fault_addr;
  642. si.si_signo = sig;
  643. down_read(&current->mm->mmap_sem);
  644. if (find_vma(current->mm, (unsigned long)fault_addr))
  645. si.si_code = SEGV_ACCERR;
  646. else
  647. si.si_code = SEGV_MAPERR;
  648. up_read(&current->mm->mmap_sem);
  649. force_sig_info(sig, &si, current);
  650. return 1;
  651. default:
  652. force_sig(sig, current);
  653. return 1;
  654. }
  655. }
  656. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  657. unsigned long old_epc, unsigned long old_ra)
  658. {
  659. union mips_instruction inst = { .word = opcode };
  660. void __user *fault_addr;
  661. unsigned long fcr31;
  662. int sig;
  663. /* If it's obviously not an FP instruction, skip it */
  664. switch (inst.i_format.opcode) {
  665. case cop1_op:
  666. case cop1x_op:
  667. case lwc1_op:
  668. case ldc1_op:
  669. case swc1_op:
  670. case sdc1_op:
  671. break;
  672. default:
  673. return -1;
  674. }
  675. /*
  676. * do_ri skipped over the instruction via compute_return_epc, undo
  677. * that for the FPU emulator.
  678. */
  679. regs->cp0_epc = old_epc;
  680. regs->regs[31] = old_ra;
  681. /* Save the FP context to struct thread_struct */
  682. lose_fpu(1);
  683. /* Run the emulator */
  684. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  685. &fault_addr);
  686. fcr31 = current->thread.fpu.fcr31;
  687. /*
  688. * We can't allow the emulated instruction to leave any of
  689. * the cause bits set in $fcr31.
  690. */
  691. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  692. /* Restore the hardware register state */
  693. own_fpu(1);
  694. /* Send a signal if required. */
  695. process_fpemu_return(sig, fault_addr, fcr31);
  696. return 0;
  697. }
  698. /*
  699. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  700. */
  701. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  702. {
  703. enum ctx_state prev_state;
  704. void __user *fault_addr;
  705. int sig;
  706. prev_state = exception_enter();
  707. if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
  708. SIGFPE) == NOTIFY_STOP)
  709. goto out;
  710. /* Clear FCSR.Cause before enabling interrupts */
  711. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
  712. local_irq_enable();
  713. die_if_kernel("FP exception in kernel code", regs);
  714. if (fcr31 & FPU_CSR_UNI_X) {
  715. /*
  716. * Unimplemented operation exception. If we've got the full
  717. * software emulator on-board, let's use it...
  718. *
  719. * Force FPU to dump state into task/thread context. We're
  720. * moving a lot of data here for what is probably a single
  721. * instruction, but the alternative is to pre-decode the FP
  722. * register operands before invoking the emulator, which seems
  723. * a bit extreme for what should be an infrequent event.
  724. */
  725. /* Ensure 'resume' not overwrite saved fp context again. */
  726. lose_fpu(1);
  727. /* Run the emulator */
  728. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  729. &fault_addr);
  730. fcr31 = current->thread.fpu.fcr31;
  731. /*
  732. * We can't allow the emulated instruction to leave any of
  733. * the cause bits set in $fcr31.
  734. */
  735. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  736. /* Restore the hardware register state */
  737. own_fpu(1); /* Using the FPU again. */
  738. } else {
  739. sig = SIGFPE;
  740. fault_addr = (void __user *) regs->cp0_epc;
  741. }
  742. /* Send a signal if required. */
  743. process_fpemu_return(sig, fault_addr, fcr31);
  744. out:
  745. exception_exit(prev_state);
  746. }
  747. void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
  748. const char *str)
  749. {
  750. siginfo_t info;
  751. char b[40];
  752. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  753. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  754. return;
  755. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  756. if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
  757. SIGTRAP) == NOTIFY_STOP)
  758. return;
  759. /*
  760. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  761. * insns, even for trap and break codes that indicate arithmetic
  762. * failures. Weird ...
  763. * But should we continue the brokenness??? --macro
  764. */
  765. switch (code) {
  766. case BRK_OVERFLOW:
  767. case BRK_DIVZERO:
  768. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  769. die_if_kernel(b, regs);
  770. if (code == BRK_DIVZERO)
  771. info.si_code = FPE_INTDIV;
  772. else
  773. info.si_code = FPE_INTOVF;
  774. info.si_signo = SIGFPE;
  775. info.si_errno = 0;
  776. info.si_addr = (void __user *) regs->cp0_epc;
  777. force_sig_info(SIGFPE, &info, current);
  778. break;
  779. case BRK_BUG:
  780. die_if_kernel("Kernel bug detected", regs);
  781. force_sig(SIGTRAP, current);
  782. break;
  783. case BRK_MEMU:
  784. /*
  785. * This breakpoint code is used by the FPU emulator to retake
  786. * control of the CPU after executing the instruction from the
  787. * delay slot of an emulated branch.
  788. *
  789. * Terminate if exception was recognized as a delay slot return
  790. * otherwise handle as normal.
  791. */
  792. if (do_dsemulret(regs))
  793. return;
  794. die_if_kernel("Math emu break/trap", regs);
  795. force_sig(SIGTRAP, current);
  796. break;
  797. default:
  798. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  799. die_if_kernel(b, regs);
  800. force_sig(SIGTRAP, current);
  801. }
  802. }
  803. asmlinkage void do_bp(struct pt_regs *regs)
  804. {
  805. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  806. unsigned int opcode, bcode;
  807. enum ctx_state prev_state;
  808. mm_segment_t seg;
  809. seg = get_fs();
  810. if (!user_mode(regs))
  811. set_fs(KERNEL_DS);
  812. prev_state = exception_enter();
  813. if (get_isa16_mode(regs->cp0_epc)) {
  814. u16 instr[2];
  815. if (__get_user(instr[0], (u16 __user *)epc))
  816. goto out_sigsegv;
  817. if (!cpu_has_mmips) {
  818. /* MIPS16e mode */
  819. bcode = (instr[0] >> 5) & 0x3f;
  820. } else if (mm_insn_16bit(instr[0])) {
  821. /* 16-bit microMIPS BREAK */
  822. bcode = instr[0] & 0xf;
  823. } else {
  824. /* 32-bit microMIPS BREAK */
  825. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  826. goto out_sigsegv;
  827. opcode = (instr[0] << 16) | instr[1];
  828. bcode = (opcode >> 6) & ((1 << 20) - 1);
  829. }
  830. } else {
  831. if (__get_user(opcode, (unsigned int __user *)epc))
  832. goto out_sigsegv;
  833. bcode = (opcode >> 6) & ((1 << 20) - 1);
  834. }
  835. /*
  836. * There is the ancient bug in the MIPS assemblers that the break
  837. * code starts left to bit 16 instead to bit 6 in the opcode.
  838. * Gas is bug-compatible, but not always, grrr...
  839. * We handle both cases with a simple heuristics. --macro
  840. */
  841. if (bcode >= (1 << 10))
  842. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  843. /*
  844. * notify the kprobe handlers, if instruction is likely to
  845. * pertain to them.
  846. */
  847. switch (bcode) {
  848. case BRK_KPROBE_BP:
  849. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  850. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  851. goto out;
  852. else
  853. break;
  854. case BRK_KPROBE_SSTEPBP:
  855. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  856. regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
  857. goto out;
  858. else
  859. break;
  860. default:
  861. break;
  862. }
  863. do_trap_or_bp(regs, bcode, "Break");
  864. out:
  865. set_fs(seg);
  866. exception_exit(prev_state);
  867. return;
  868. out_sigsegv:
  869. force_sig(SIGSEGV, current);
  870. goto out;
  871. }
  872. asmlinkage void do_tr(struct pt_regs *regs)
  873. {
  874. u32 opcode, tcode = 0;
  875. enum ctx_state prev_state;
  876. u16 instr[2];
  877. mm_segment_t seg;
  878. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  879. seg = get_fs();
  880. if (!user_mode(regs))
  881. set_fs(get_ds());
  882. prev_state = exception_enter();
  883. if (get_isa16_mode(regs->cp0_epc)) {
  884. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  885. __get_user(instr[1], (u16 __user *)(epc + 2)))
  886. goto out_sigsegv;
  887. opcode = (instr[0] << 16) | instr[1];
  888. /* Immediate versions don't provide a code. */
  889. if (!(opcode & OPCODE))
  890. tcode = (opcode >> 12) & ((1 << 4) - 1);
  891. } else {
  892. if (__get_user(opcode, (u32 __user *)epc))
  893. goto out_sigsegv;
  894. /* Immediate versions don't provide a code. */
  895. if (!(opcode & OPCODE))
  896. tcode = (opcode >> 6) & ((1 << 10) - 1);
  897. }
  898. do_trap_or_bp(regs, tcode, "Trap");
  899. out:
  900. set_fs(seg);
  901. exception_exit(prev_state);
  902. return;
  903. out_sigsegv:
  904. force_sig(SIGSEGV, current);
  905. goto out;
  906. }
  907. asmlinkage void do_ri(struct pt_regs *regs)
  908. {
  909. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  910. unsigned long old_epc = regs->cp0_epc;
  911. unsigned long old31 = regs->regs[31];
  912. enum ctx_state prev_state;
  913. unsigned int opcode = 0;
  914. int status = -1;
  915. /*
  916. * Avoid any kernel code. Just emulate the R2 instruction
  917. * as quickly as possible.
  918. */
  919. if (mipsr2_emulation && cpu_has_mips_r6 &&
  920. likely(user_mode(regs)) &&
  921. likely(get_user(opcode, epc) >= 0)) {
  922. unsigned long fcr31 = 0;
  923. status = mipsr2_decoder(regs, opcode, &fcr31);
  924. switch (status) {
  925. case 0:
  926. case SIGEMT:
  927. task_thread_info(current)->r2_emul_return = 1;
  928. return;
  929. case SIGILL:
  930. goto no_r2_instr;
  931. default:
  932. process_fpemu_return(status,
  933. &current->thread.cp0_baduaddr,
  934. fcr31);
  935. task_thread_info(current)->r2_emul_return = 1;
  936. return;
  937. }
  938. }
  939. no_r2_instr:
  940. prev_state = exception_enter();
  941. if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
  942. SIGILL) == NOTIFY_STOP)
  943. goto out;
  944. die_if_kernel("Reserved instruction in kernel code", regs);
  945. if (unlikely(compute_return_epc(regs) < 0))
  946. goto out;
  947. if (get_isa16_mode(regs->cp0_epc)) {
  948. unsigned short mmop[2] = { 0 };
  949. if (unlikely(get_user(mmop[0], epc) < 0))
  950. status = SIGSEGV;
  951. if (unlikely(get_user(mmop[1], epc) < 0))
  952. status = SIGSEGV;
  953. opcode = (mmop[0] << 16) | mmop[1];
  954. if (status < 0)
  955. status = simulate_rdhwr_mm(regs, opcode);
  956. } else {
  957. if (unlikely(get_user(opcode, epc) < 0))
  958. status = SIGSEGV;
  959. if (!cpu_has_llsc && status < 0)
  960. status = simulate_llsc(regs, opcode);
  961. if (status < 0)
  962. status = simulate_rdhwr_normal(regs, opcode);
  963. if (status < 0)
  964. status = simulate_sync(regs, opcode);
  965. if (status < 0)
  966. status = simulate_fp(regs, opcode, old_epc, old31);
  967. }
  968. if (status < 0)
  969. status = SIGILL;
  970. if (unlikely(status > 0)) {
  971. regs->cp0_epc = old_epc; /* Undo skip-over. */
  972. regs->regs[31] = old31;
  973. force_sig(status, current);
  974. }
  975. out:
  976. exception_exit(prev_state);
  977. }
  978. /*
  979. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  980. * emulated more than some threshold number of instructions, force migration to
  981. * a "CPU" that has FP support.
  982. */
  983. static void mt_ase_fp_affinity(void)
  984. {
  985. #ifdef CONFIG_MIPS_MT_FPAFF
  986. if (mt_fpemul_threshold > 0 &&
  987. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  988. /*
  989. * If there's no FPU present, or if the application has already
  990. * restricted the allowed set to exclude any CPUs with FPUs,
  991. * we'll skip the procedure.
  992. */
  993. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  994. cpumask_t tmask;
  995. current->thread.user_cpus_allowed
  996. = current->cpus_allowed;
  997. cpumask_and(&tmask, &current->cpus_allowed,
  998. &mt_fpu_cpumask);
  999. set_cpus_allowed_ptr(current, &tmask);
  1000. set_thread_flag(TIF_FPUBOUND);
  1001. }
  1002. }
  1003. #endif /* CONFIG_MIPS_MT_FPAFF */
  1004. }
  1005. /*
  1006. * No lock; only written during early bootup by CPU 0.
  1007. */
  1008. static RAW_NOTIFIER_HEAD(cu2_chain);
  1009. int __ref register_cu2_notifier(struct notifier_block *nb)
  1010. {
  1011. return raw_notifier_chain_register(&cu2_chain, nb);
  1012. }
  1013. int cu2_notifier_call_chain(unsigned long val, void *v)
  1014. {
  1015. return raw_notifier_call_chain(&cu2_chain, val, v);
  1016. }
  1017. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1018. void *data)
  1019. {
  1020. struct pt_regs *regs = data;
  1021. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1022. "instruction", regs);
  1023. force_sig(SIGILL, current);
  1024. return NOTIFY_OK;
  1025. }
  1026. static int wait_on_fp_mode_switch(atomic_t *p)
  1027. {
  1028. /*
  1029. * The FP mode for this task is currently being switched. That may
  1030. * involve modifications to the format of this tasks FP context which
  1031. * make it unsafe to proceed with execution for the moment. Instead,
  1032. * schedule some other task.
  1033. */
  1034. schedule();
  1035. return 0;
  1036. }
  1037. static int enable_restore_fp_context(int msa)
  1038. {
  1039. int err, was_fpu_owner, prior_msa;
  1040. /*
  1041. * If an FP mode switch is currently underway, wait for it to
  1042. * complete before proceeding.
  1043. */
  1044. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1045. wait_on_fp_mode_switch, TASK_KILLABLE);
  1046. if (!used_math()) {
  1047. /* First time FP context user. */
  1048. preempt_disable();
  1049. err = init_fpu();
  1050. if (msa && !err) {
  1051. enable_msa();
  1052. _init_msa_upper();
  1053. set_thread_flag(TIF_USEDMSA);
  1054. set_thread_flag(TIF_MSA_CTX_LIVE);
  1055. }
  1056. preempt_enable();
  1057. if (!err)
  1058. set_used_math();
  1059. return err;
  1060. }
  1061. /*
  1062. * This task has formerly used the FP context.
  1063. *
  1064. * If this thread has no live MSA vector context then we can simply
  1065. * restore the scalar FP context. If it has live MSA vector context
  1066. * (that is, it has or may have used MSA since last performing a
  1067. * function call) then we'll need to restore the vector context. This
  1068. * applies even if we're currently only executing a scalar FP
  1069. * instruction. This is because if we were to later execute an MSA
  1070. * instruction then we'd either have to:
  1071. *
  1072. * - Restore the vector context & clobber any registers modified by
  1073. * scalar FP instructions between now & then.
  1074. *
  1075. * or
  1076. *
  1077. * - Not restore the vector context & lose the most significant bits
  1078. * of all vector registers.
  1079. *
  1080. * Neither of those options is acceptable. We cannot restore the least
  1081. * significant bits of the registers now & only restore the most
  1082. * significant bits later because the most significant bits of any
  1083. * vector registers whose aliased FP register is modified now will have
  1084. * been zeroed. We'd have no way to know that when restoring the vector
  1085. * context & thus may load an outdated value for the most significant
  1086. * bits of a vector register.
  1087. */
  1088. if (!msa && !thread_msa_context_live())
  1089. return own_fpu(1);
  1090. /*
  1091. * This task is using or has previously used MSA. Thus we require
  1092. * that Status.FR == 1.
  1093. */
  1094. preempt_disable();
  1095. was_fpu_owner = is_fpu_owner();
  1096. err = own_fpu_inatomic(0);
  1097. if (err)
  1098. goto out;
  1099. enable_msa();
  1100. write_msa_csr(current->thread.fpu.msacsr);
  1101. set_thread_flag(TIF_USEDMSA);
  1102. /*
  1103. * If this is the first time that the task is using MSA and it has
  1104. * previously used scalar FP in this time slice then we already nave
  1105. * FP context which we shouldn't clobber. We do however need to clear
  1106. * the upper 64b of each vector register so that this task has no
  1107. * opportunity to see data left behind by another.
  1108. */
  1109. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1110. if (!prior_msa && was_fpu_owner) {
  1111. _init_msa_upper();
  1112. goto out;
  1113. }
  1114. if (!prior_msa) {
  1115. /*
  1116. * Restore the least significant 64b of each vector register
  1117. * from the existing scalar FP context.
  1118. */
  1119. _restore_fp(current);
  1120. /*
  1121. * The task has not formerly used MSA, so clear the upper 64b
  1122. * of each vector register such that it cannot see data left
  1123. * behind by another task.
  1124. */
  1125. _init_msa_upper();
  1126. } else {
  1127. /* We need to restore the vector context. */
  1128. restore_msa(current);
  1129. /* Restore the scalar FP control & status register */
  1130. if (!was_fpu_owner)
  1131. write_32bit_cp1_register(CP1_STATUS,
  1132. current->thread.fpu.fcr31);
  1133. }
  1134. out:
  1135. preempt_enable();
  1136. return 0;
  1137. }
  1138. asmlinkage void do_cpu(struct pt_regs *regs)
  1139. {
  1140. enum ctx_state prev_state;
  1141. unsigned int __user *epc;
  1142. unsigned long old_epc, old31;
  1143. void __user *fault_addr;
  1144. unsigned int opcode;
  1145. unsigned long fcr31;
  1146. unsigned int cpid;
  1147. int status, err;
  1148. unsigned long __maybe_unused flags;
  1149. int sig;
  1150. prev_state = exception_enter();
  1151. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1152. if (cpid != 2)
  1153. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1154. switch (cpid) {
  1155. case 0:
  1156. epc = (unsigned int __user *)exception_epc(regs);
  1157. old_epc = regs->cp0_epc;
  1158. old31 = regs->regs[31];
  1159. opcode = 0;
  1160. status = -1;
  1161. if (unlikely(compute_return_epc(regs) < 0))
  1162. break;
  1163. if (get_isa16_mode(regs->cp0_epc)) {
  1164. unsigned short mmop[2] = { 0 };
  1165. if (unlikely(get_user(mmop[0], epc) < 0))
  1166. status = SIGSEGV;
  1167. if (unlikely(get_user(mmop[1], epc) < 0))
  1168. status = SIGSEGV;
  1169. opcode = (mmop[0] << 16) | mmop[1];
  1170. if (status < 0)
  1171. status = simulate_rdhwr_mm(regs, opcode);
  1172. } else {
  1173. if (unlikely(get_user(opcode, epc) < 0))
  1174. status = SIGSEGV;
  1175. if (!cpu_has_llsc && status < 0)
  1176. status = simulate_llsc(regs, opcode);
  1177. if (status < 0)
  1178. status = simulate_rdhwr_normal(regs, opcode);
  1179. }
  1180. if (status < 0)
  1181. status = SIGILL;
  1182. if (unlikely(status > 0)) {
  1183. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1184. regs->regs[31] = old31;
  1185. force_sig(status, current);
  1186. }
  1187. break;
  1188. case 3:
  1189. /*
  1190. * The COP3 opcode space and consequently the CP0.Status.CU3
  1191. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1192. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1193. * up the space has been reused for COP1X instructions, that
  1194. * are enabled by the CP0.Status.CU1 bit and consequently
  1195. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1196. * exceptions. Some FPU-less processors that implement one
  1197. * of these ISAs however use this code erroneously for COP1X
  1198. * instructions. Therefore we redirect this trap to the FP
  1199. * emulator too.
  1200. */
  1201. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1202. force_sig(SIGILL, current);
  1203. break;
  1204. }
  1205. /* Fall through. */
  1206. case 1:
  1207. err = enable_restore_fp_context(0);
  1208. if (raw_cpu_has_fpu && !err)
  1209. break;
  1210. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1211. &fault_addr);
  1212. fcr31 = current->thread.fpu.fcr31;
  1213. /*
  1214. * We can't allow the emulated instruction to leave
  1215. * any of the cause bits set in $fcr31.
  1216. */
  1217. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  1218. /* Send a signal if required. */
  1219. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1220. mt_ase_fp_affinity();
  1221. break;
  1222. case 2:
  1223. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1224. break;
  1225. }
  1226. exception_exit(prev_state);
  1227. }
  1228. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1229. {
  1230. enum ctx_state prev_state;
  1231. prev_state = exception_enter();
  1232. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1233. regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
  1234. goto out;
  1235. /* Clear MSACSR.Cause before enabling interrupts */
  1236. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1237. local_irq_enable();
  1238. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1239. force_sig(SIGFPE, current);
  1240. out:
  1241. exception_exit(prev_state);
  1242. }
  1243. asmlinkage void do_msa(struct pt_regs *regs)
  1244. {
  1245. enum ctx_state prev_state;
  1246. int err;
  1247. prev_state = exception_enter();
  1248. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1249. force_sig(SIGILL, current);
  1250. goto out;
  1251. }
  1252. die_if_kernel("do_msa invoked from kernel context!", regs);
  1253. err = enable_restore_fp_context(1);
  1254. if (err)
  1255. force_sig(SIGILL, current);
  1256. out:
  1257. exception_exit(prev_state);
  1258. }
  1259. asmlinkage void do_mdmx(struct pt_regs *regs)
  1260. {
  1261. enum ctx_state prev_state;
  1262. prev_state = exception_enter();
  1263. force_sig(SIGILL, current);
  1264. exception_exit(prev_state);
  1265. }
  1266. /*
  1267. * Called with interrupts disabled.
  1268. */
  1269. asmlinkage void do_watch(struct pt_regs *regs)
  1270. {
  1271. enum ctx_state prev_state;
  1272. u32 cause;
  1273. prev_state = exception_enter();
  1274. /*
  1275. * Clear WP (bit 22) bit of cause register so we don't loop
  1276. * forever.
  1277. */
  1278. cause = read_c0_cause();
  1279. cause &= ~(1 << 22);
  1280. write_c0_cause(cause);
  1281. /*
  1282. * If the current thread has the watch registers loaded, save
  1283. * their values and send SIGTRAP. Otherwise another thread
  1284. * left the registers set, clear them and continue.
  1285. */
  1286. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1287. mips_read_watch_registers();
  1288. local_irq_enable();
  1289. force_sig(SIGTRAP, current);
  1290. } else {
  1291. mips_clear_watch_registers();
  1292. local_irq_enable();
  1293. }
  1294. exception_exit(prev_state);
  1295. }
  1296. asmlinkage void do_mcheck(struct pt_regs *regs)
  1297. {
  1298. const int field = 2 * sizeof(unsigned long);
  1299. int multi_match = regs->cp0_status & ST0_TS;
  1300. enum ctx_state prev_state;
  1301. prev_state = exception_enter();
  1302. show_regs(regs);
  1303. if (multi_match) {
  1304. pr_err("Index : %0x\n", read_c0_index());
  1305. pr_err("Pagemask: %0x\n", read_c0_pagemask());
  1306. pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
  1307. pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
  1308. pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
  1309. pr_err("Wired : %0x\n", read_c0_wired());
  1310. pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
  1311. if (cpu_has_htw) {
  1312. pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
  1313. pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
  1314. pr_err("PWCtl : %0x\n", read_c0_pwctl());
  1315. }
  1316. pr_err("\n");
  1317. dump_tlb_all();
  1318. }
  1319. show_code((unsigned int __user *) regs->cp0_epc);
  1320. /*
  1321. * Some chips may have other causes of machine check (e.g. SB1
  1322. * graduation timer)
  1323. */
  1324. panic("Caught Machine Check exception - %scaused by multiple "
  1325. "matching entries in the TLB.",
  1326. (multi_match) ? "" : "not ");
  1327. }
  1328. asmlinkage void do_mt(struct pt_regs *regs)
  1329. {
  1330. int subcode;
  1331. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1332. >> VPECONTROL_EXCPT_SHIFT;
  1333. switch (subcode) {
  1334. case 0:
  1335. printk(KERN_DEBUG "Thread Underflow\n");
  1336. break;
  1337. case 1:
  1338. printk(KERN_DEBUG "Thread Overflow\n");
  1339. break;
  1340. case 2:
  1341. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1342. break;
  1343. case 3:
  1344. printk(KERN_DEBUG "Gating Storage Exception\n");
  1345. break;
  1346. case 4:
  1347. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1348. break;
  1349. case 5:
  1350. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1351. break;
  1352. default:
  1353. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1354. subcode);
  1355. break;
  1356. }
  1357. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1358. force_sig(SIGILL, current);
  1359. }
  1360. asmlinkage void do_dsp(struct pt_regs *regs)
  1361. {
  1362. if (cpu_has_dsp)
  1363. panic("Unexpected DSP exception");
  1364. force_sig(SIGILL, current);
  1365. }
  1366. asmlinkage void do_reserved(struct pt_regs *regs)
  1367. {
  1368. /*
  1369. * Game over - no way to handle this if it ever occurs. Most probably
  1370. * caused by a new unknown cpu type or after another deadly
  1371. * hard/software error.
  1372. */
  1373. show_regs(regs);
  1374. panic("Caught reserved exception %ld - should not happen.",
  1375. (regs->cp0_cause & 0x7f) >> 2);
  1376. }
  1377. static int __initdata l1parity = 1;
  1378. static int __init nol1parity(char *s)
  1379. {
  1380. l1parity = 0;
  1381. return 1;
  1382. }
  1383. __setup("nol1par", nol1parity);
  1384. static int __initdata l2parity = 1;
  1385. static int __init nol2parity(char *s)
  1386. {
  1387. l2parity = 0;
  1388. return 1;
  1389. }
  1390. __setup("nol2par", nol2parity);
  1391. /*
  1392. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1393. * it different ways.
  1394. */
  1395. static inline void parity_protection_init(void)
  1396. {
  1397. switch (current_cpu_type()) {
  1398. case CPU_24K:
  1399. case CPU_34K:
  1400. case CPU_74K:
  1401. case CPU_1004K:
  1402. case CPU_1074K:
  1403. case CPU_INTERAPTIV:
  1404. case CPU_PROAPTIV:
  1405. case CPU_P5600:
  1406. case CPU_QEMU_GENERIC:
  1407. {
  1408. #define ERRCTL_PE 0x80000000
  1409. #define ERRCTL_L2P 0x00800000
  1410. unsigned long errctl;
  1411. unsigned int l1parity_present, l2parity_present;
  1412. errctl = read_c0_ecc();
  1413. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1414. /* probe L1 parity support */
  1415. write_c0_ecc(errctl | ERRCTL_PE);
  1416. back_to_back_c0_hazard();
  1417. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1418. /* probe L2 parity support */
  1419. write_c0_ecc(errctl|ERRCTL_L2P);
  1420. back_to_back_c0_hazard();
  1421. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1422. if (l1parity_present && l2parity_present) {
  1423. if (l1parity)
  1424. errctl |= ERRCTL_PE;
  1425. if (l1parity ^ l2parity)
  1426. errctl |= ERRCTL_L2P;
  1427. } else if (l1parity_present) {
  1428. if (l1parity)
  1429. errctl |= ERRCTL_PE;
  1430. } else if (l2parity_present) {
  1431. if (l2parity)
  1432. errctl |= ERRCTL_L2P;
  1433. } else {
  1434. /* No parity available */
  1435. }
  1436. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1437. write_c0_ecc(errctl);
  1438. back_to_back_c0_hazard();
  1439. errctl = read_c0_ecc();
  1440. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1441. if (l1parity_present)
  1442. printk(KERN_INFO "Cache parity protection %sabled\n",
  1443. (errctl & ERRCTL_PE) ? "en" : "dis");
  1444. if (l2parity_present) {
  1445. if (l1parity_present && l1parity)
  1446. errctl ^= ERRCTL_L2P;
  1447. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1448. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1449. }
  1450. }
  1451. break;
  1452. case CPU_5KC:
  1453. case CPU_5KE:
  1454. case CPU_LOONGSON1:
  1455. write_c0_ecc(0x80000000);
  1456. back_to_back_c0_hazard();
  1457. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1458. printk(KERN_INFO "Cache parity protection %sabled\n",
  1459. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1460. break;
  1461. case CPU_20KC:
  1462. case CPU_25KF:
  1463. /* Clear the DE bit (bit 16) in the c0_status register. */
  1464. printk(KERN_INFO "Enable cache parity protection for "
  1465. "MIPS 20KC/25KF CPUs.\n");
  1466. clear_c0_status(ST0_DE);
  1467. break;
  1468. default:
  1469. break;
  1470. }
  1471. }
  1472. asmlinkage void cache_parity_error(void)
  1473. {
  1474. const int field = 2 * sizeof(unsigned long);
  1475. unsigned int reg_val;
  1476. /* For the moment, report the problem and hang. */
  1477. printk("Cache error exception:\n");
  1478. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1479. reg_val = read_c0_cacheerr();
  1480. printk("c0_cacheerr == %08x\n", reg_val);
  1481. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1482. reg_val & (1<<30) ? "secondary" : "primary",
  1483. reg_val & (1<<31) ? "data" : "insn");
  1484. if ((cpu_has_mips_r2_r6) &&
  1485. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1486. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1487. reg_val & (1<<29) ? "ED " : "",
  1488. reg_val & (1<<28) ? "ET " : "",
  1489. reg_val & (1<<27) ? "ES " : "",
  1490. reg_val & (1<<26) ? "EE " : "",
  1491. reg_val & (1<<25) ? "EB " : "",
  1492. reg_val & (1<<24) ? "EI " : "",
  1493. reg_val & (1<<23) ? "E1 " : "",
  1494. reg_val & (1<<22) ? "E0 " : "");
  1495. } else {
  1496. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1497. reg_val & (1<<29) ? "ED " : "",
  1498. reg_val & (1<<28) ? "ET " : "",
  1499. reg_val & (1<<26) ? "EE " : "",
  1500. reg_val & (1<<25) ? "EB " : "",
  1501. reg_val & (1<<24) ? "EI " : "",
  1502. reg_val & (1<<23) ? "E1 " : "",
  1503. reg_val & (1<<22) ? "E0 " : "");
  1504. }
  1505. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1506. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1507. if (reg_val & (1<<22))
  1508. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1509. if (reg_val & (1<<23))
  1510. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1511. #endif
  1512. panic("Can't handle the cache error!");
  1513. }
  1514. asmlinkage void do_ftlb(void)
  1515. {
  1516. const int field = 2 * sizeof(unsigned long);
  1517. unsigned int reg_val;
  1518. /* For the moment, report the problem and hang. */
  1519. if ((cpu_has_mips_r2_r6) &&
  1520. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1521. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1522. read_c0_ecc());
  1523. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1524. reg_val = read_c0_cacheerr();
  1525. pr_err("c0_cacheerr == %08x\n", reg_val);
  1526. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1527. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1528. } else {
  1529. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1530. reg_val & (1<<30) ? "secondary" : "primary",
  1531. reg_val & (1<<31) ? "data" : "insn");
  1532. }
  1533. } else {
  1534. pr_err("FTLB error exception\n");
  1535. }
  1536. /* Just print the cacheerr bits for now */
  1537. cache_parity_error();
  1538. }
  1539. /*
  1540. * SDBBP EJTAG debug exception handler.
  1541. * We skip the instruction and return to the next instruction.
  1542. */
  1543. void ejtag_exception_handler(struct pt_regs *regs)
  1544. {
  1545. const int field = 2 * sizeof(unsigned long);
  1546. unsigned long depc, old_epc, old_ra;
  1547. unsigned int debug;
  1548. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1549. depc = read_c0_depc();
  1550. debug = read_c0_debug();
  1551. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1552. if (debug & 0x80000000) {
  1553. /*
  1554. * In branch delay slot.
  1555. * We cheat a little bit here and use EPC to calculate the
  1556. * debug return address (DEPC). EPC is restored after the
  1557. * calculation.
  1558. */
  1559. old_epc = regs->cp0_epc;
  1560. old_ra = regs->regs[31];
  1561. regs->cp0_epc = depc;
  1562. compute_return_epc(regs);
  1563. depc = regs->cp0_epc;
  1564. regs->cp0_epc = old_epc;
  1565. regs->regs[31] = old_ra;
  1566. } else
  1567. depc += 4;
  1568. write_c0_depc(depc);
  1569. #if 0
  1570. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1571. write_c0_debug(debug | 0x100);
  1572. #endif
  1573. }
  1574. /*
  1575. * NMI exception handler.
  1576. * No lock; only written during early bootup by CPU 0.
  1577. */
  1578. static RAW_NOTIFIER_HEAD(nmi_chain);
  1579. int register_nmi_notifier(struct notifier_block *nb)
  1580. {
  1581. return raw_notifier_chain_register(&nmi_chain, nb);
  1582. }
  1583. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1584. {
  1585. char str[100];
  1586. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1587. bust_spinlocks(1);
  1588. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1589. smp_processor_id(), regs->cp0_epc);
  1590. regs->cp0_epc = read_c0_errorepc();
  1591. die(str, regs);
  1592. }
  1593. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1594. unsigned long ebase;
  1595. unsigned long exception_handlers[32];
  1596. unsigned long vi_handlers[64];
  1597. void __init *set_except_vector(int n, void *addr)
  1598. {
  1599. unsigned long handler = (unsigned long) addr;
  1600. unsigned long old_handler;
  1601. #ifdef CONFIG_CPU_MICROMIPS
  1602. /*
  1603. * Only the TLB handlers are cache aligned with an even
  1604. * address. All other handlers are on an odd address and
  1605. * require no modification. Otherwise, MIPS32 mode will
  1606. * be entered when handling any TLB exceptions. That
  1607. * would be bad...since we must stay in microMIPS mode.
  1608. */
  1609. if (!(handler & 0x1))
  1610. handler |= 1;
  1611. #endif
  1612. old_handler = xchg(&exception_handlers[n], handler);
  1613. if (n == 0 && cpu_has_divec) {
  1614. #ifdef CONFIG_CPU_MICROMIPS
  1615. unsigned long jump_mask = ~((1 << 27) - 1);
  1616. #else
  1617. unsigned long jump_mask = ~((1 << 28) - 1);
  1618. #endif
  1619. u32 *buf = (u32 *)(ebase + 0x200);
  1620. unsigned int k0 = 26;
  1621. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1622. uasm_i_j(&buf, handler & ~jump_mask);
  1623. uasm_i_nop(&buf);
  1624. } else {
  1625. UASM_i_LA(&buf, k0, handler);
  1626. uasm_i_jr(&buf, k0);
  1627. uasm_i_nop(&buf);
  1628. }
  1629. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1630. }
  1631. return (void *)old_handler;
  1632. }
  1633. static void do_default_vi(void)
  1634. {
  1635. show_regs(get_irq_regs());
  1636. panic("Caught unexpected vectored interrupt.");
  1637. }
  1638. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1639. {
  1640. unsigned long handler;
  1641. unsigned long old_handler = vi_handlers[n];
  1642. int srssets = current_cpu_data.srsets;
  1643. u16 *h;
  1644. unsigned char *b;
  1645. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1646. if (addr == NULL) {
  1647. handler = (unsigned long) do_default_vi;
  1648. srs = 0;
  1649. } else
  1650. handler = (unsigned long) addr;
  1651. vi_handlers[n] = handler;
  1652. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1653. if (srs >= srssets)
  1654. panic("Shadow register set %d not supported", srs);
  1655. if (cpu_has_veic) {
  1656. if (board_bind_eic_interrupt)
  1657. board_bind_eic_interrupt(n, srs);
  1658. } else if (cpu_has_vint) {
  1659. /* SRSMap is only defined if shadow sets are implemented */
  1660. if (srssets > 1)
  1661. change_c0_srsmap(0xf << n*4, srs << n*4);
  1662. }
  1663. if (srs == 0) {
  1664. /*
  1665. * If no shadow set is selected then use the default handler
  1666. * that does normal register saving and standard interrupt exit
  1667. */
  1668. extern char except_vec_vi, except_vec_vi_lui;
  1669. extern char except_vec_vi_ori, except_vec_vi_end;
  1670. extern char rollback_except_vec_vi;
  1671. char *vec_start = using_rollback_handler() ?
  1672. &rollback_except_vec_vi : &except_vec_vi;
  1673. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1674. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1675. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1676. #else
  1677. const int lui_offset = &except_vec_vi_lui - vec_start;
  1678. const int ori_offset = &except_vec_vi_ori - vec_start;
  1679. #endif
  1680. const int handler_len = &except_vec_vi_end - vec_start;
  1681. if (handler_len > VECTORSPACING) {
  1682. /*
  1683. * Sigh... panicing won't help as the console
  1684. * is probably not configured :(
  1685. */
  1686. panic("VECTORSPACING too small");
  1687. }
  1688. set_handler(((unsigned long)b - ebase), vec_start,
  1689. #ifdef CONFIG_CPU_MICROMIPS
  1690. (handler_len - 1));
  1691. #else
  1692. handler_len);
  1693. #endif
  1694. h = (u16 *)(b + lui_offset);
  1695. *h = (handler >> 16) & 0xffff;
  1696. h = (u16 *)(b + ori_offset);
  1697. *h = (handler & 0xffff);
  1698. local_flush_icache_range((unsigned long)b,
  1699. (unsigned long)(b+handler_len));
  1700. }
  1701. else {
  1702. /*
  1703. * In other cases jump directly to the interrupt handler. It
  1704. * is the handler's responsibility to save registers if required
  1705. * (eg hi/lo) and return from the exception using "eret".
  1706. */
  1707. u32 insn;
  1708. h = (u16 *)b;
  1709. /* j handler */
  1710. #ifdef CONFIG_CPU_MICROMIPS
  1711. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1712. #else
  1713. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1714. #endif
  1715. h[0] = (insn >> 16) & 0xffff;
  1716. h[1] = insn & 0xffff;
  1717. h[2] = 0;
  1718. h[3] = 0;
  1719. local_flush_icache_range((unsigned long)b,
  1720. (unsigned long)(b+8));
  1721. }
  1722. return (void *)old_handler;
  1723. }
  1724. void *set_vi_handler(int n, vi_handler_t addr)
  1725. {
  1726. return set_vi_srs_handler(n, addr, 0);
  1727. }
  1728. extern void tlb_init(void);
  1729. /*
  1730. * Timer interrupt
  1731. */
  1732. int cp0_compare_irq;
  1733. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1734. int cp0_compare_irq_shift;
  1735. /*
  1736. * Performance counter IRQ or -1 if shared with timer
  1737. */
  1738. int cp0_perfcount_irq;
  1739. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1740. /*
  1741. * Fast debug channel IRQ or -1 if not present
  1742. */
  1743. int cp0_fdc_irq;
  1744. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1745. static int noulri;
  1746. static int __init ulri_disable(char *s)
  1747. {
  1748. pr_info("Disabling ulri\n");
  1749. noulri = 1;
  1750. return 1;
  1751. }
  1752. __setup("noulri", ulri_disable);
  1753. /* configure STATUS register */
  1754. static void configure_status(void)
  1755. {
  1756. /*
  1757. * Disable coprocessors and select 32-bit or 64-bit addressing
  1758. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1759. * flag that some firmware may have left set and the TS bit (for
  1760. * IP27). Set XX for ISA IV code to work.
  1761. */
  1762. unsigned int status_set = ST0_CU0;
  1763. #ifdef CONFIG_64BIT
  1764. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1765. #endif
  1766. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1767. status_set |= ST0_XX;
  1768. if (cpu_has_dsp)
  1769. status_set |= ST0_MX;
  1770. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1771. status_set);
  1772. }
  1773. /* configure HWRENA register */
  1774. static void configure_hwrena(void)
  1775. {
  1776. unsigned int hwrena = cpu_hwrena_impl_bits;
  1777. if (cpu_has_mips_r2_r6)
  1778. hwrena |= 0x0000000f;
  1779. if (!noulri && cpu_has_userlocal)
  1780. hwrena |= (1 << 29);
  1781. if (hwrena)
  1782. write_c0_hwrena(hwrena);
  1783. }
  1784. static void configure_exception_vector(void)
  1785. {
  1786. if (cpu_has_veic || cpu_has_vint) {
  1787. unsigned long sr = set_c0_status(ST0_BEV);
  1788. write_c0_ebase(ebase);
  1789. write_c0_status(sr);
  1790. /* Setting vector spacing enables EI/VI mode */
  1791. change_c0_intctl(0x3e0, VECTORSPACING);
  1792. }
  1793. if (cpu_has_divec) {
  1794. if (cpu_has_mipsmt) {
  1795. unsigned int vpflags = dvpe();
  1796. set_c0_cause(CAUSEF_IV);
  1797. evpe(vpflags);
  1798. } else
  1799. set_c0_cause(CAUSEF_IV);
  1800. }
  1801. }
  1802. void per_cpu_trap_init(bool is_boot_cpu)
  1803. {
  1804. unsigned int cpu = smp_processor_id();
  1805. configure_status();
  1806. configure_hwrena();
  1807. configure_exception_vector();
  1808. /*
  1809. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1810. *
  1811. * o read IntCtl.IPTI to determine the timer interrupt
  1812. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1813. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1814. */
  1815. if (cpu_has_mips_r2_r6) {
  1816. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1817. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1818. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1819. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1820. if (!cp0_fdc_irq)
  1821. cp0_fdc_irq = -1;
  1822. } else {
  1823. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1824. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1825. cp0_perfcount_irq = -1;
  1826. cp0_fdc_irq = -1;
  1827. }
  1828. if (!cpu_data[cpu].asid_cache)
  1829. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1830. atomic_inc(&init_mm.mm_count);
  1831. current->active_mm = &init_mm;
  1832. BUG_ON(current->mm);
  1833. enter_lazy_tlb(&init_mm, current);
  1834. /* Boot CPU's cache setup in setup_arch(). */
  1835. if (!is_boot_cpu)
  1836. cpu_cache_init();
  1837. tlb_init();
  1838. TLBMISS_HANDLER_SETUP();
  1839. }
  1840. /* Install CPU exception handler */
  1841. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1842. {
  1843. #ifdef CONFIG_CPU_MICROMIPS
  1844. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1845. #else
  1846. memcpy((void *)(ebase + offset), addr, size);
  1847. #endif
  1848. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1849. }
  1850. static char panic_null_cerr[] =
  1851. "Trying to set NULL cache error exception handler";
  1852. /*
  1853. * Install uncached CPU exception handler.
  1854. * This is suitable only for the cache error exception which is the only
  1855. * exception handler that is being run uncached.
  1856. */
  1857. void set_uncached_handler(unsigned long offset, void *addr,
  1858. unsigned long size)
  1859. {
  1860. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1861. if (!addr)
  1862. panic(panic_null_cerr);
  1863. memcpy((void *)(uncached_ebase + offset), addr, size);
  1864. }
  1865. static int __initdata rdhwr_noopt;
  1866. static int __init set_rdhwr_noopt(char *str)
  1867. {
  1868. rdhwr_noopt = 1;
  1869. return 1;
  1870. }
  1871. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1872. void __init trap_init(void)
  1873. {
  1874. extern char except_vec3_generic;
  1875. extern char except_vec4;
  1876. extern char except_vec3_r4000;
  1877. unsigned long i;
  1878. check_wait();
  1879. if (cpu_has_veic || cpu_has_vint) {
  1880. unsigned long size = 0x200 + VECTORSPACING*64;
  1881. ebase = (unsigned long)
  1882. __alloc_bootmem(size, 1 << fls(size), 0);
  1883. } else {
  1884. #ifdef CONFIG_KVM_GUEST
  1885. #define KVM_GUEST_KSEG0 0x40000000
  1886. ebase = KVM_GUEST_KSEG0;
  1887. #else
  1888. ebase = CKSEG0;
  1889. #endif
  1890. if (cpu_has_mips_r2_r6)
  1891. ebase += (read_c0_ebase() & 0x3ffff000);
  1892. }
  1893. if (cpu_has_mmips) {
  1894. unsigned int config3 = read_c0_config3();
  1895. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1896. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1897. else
  1898. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1899. }
  1900. if (board_ebase_setup)
  1901. board_ebase_setup();
  1902. per_cpu_trap_init(true);
  1903. /*
  1904. * Copy the generic exception handlers to their final destination.
  1905. * This will be overriden later as suitable for a particular
  1906. * configuration.
  1907. */
  1908. set_handler(0x180, &except_vec3_generic, 0x80);
  1909. /*
  1910. * Setup default vectors
  1911. */
  1912. for (i = 0; i <= 31; i++)
  1913. set_except_vector(i, handle_reserved);
  1914. /*
  1915. * Copy the EJTAG debug exception vector handler code to it's final
  1916. * destination.
  1917. */
  1918. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1919. board_ejtag_handler_setup();
  1920. /*
  1921. * Only some CPUs have the watch exceptions.
  1922. */
  1923. if (cpu_has_watch)
  1924. set_except_vector(23, handle_watch);
  1925. /*
  1926. * Initialise interrupt handlers
  1927. */
  1928. if (cpu_has_veic || cpu_has_vint) {
  1929. int nvec = cpu_has_veic ? 64 : 8;
  1930. for (i = 0; i < nvec; i++)
  1931. set_vi_handler(i, NULL);
  1932. }
  1933. else if (cpu_has_divec)
  1934. set_handler(0x200, &except_vec4, 0x8);
  1935. /*
  1936. * Some CPUs can enable/disable for cache parity detection, but does
  1937. * it different ways.
  1938. */
  1939. parity_protection_init();
  1940. /*
  1941. * The Data Bus Errors / Instruction Bus Errors are signaled
  1942. * by external hardware. Therefore these two exceptions
  1943. * may have board specific handlers.
  1944. */
  1945. if (board_be_init)
  1946. board_be_init();
  1947. set_except_vector(0, using_rollback_handler() ? rollback_handle_int
  1948. : handle_int);
  1949. set_except_vector(1, handle_tlbm);
  1950. set_except_vector(2, handle_tlbl);
  1951. set_except_vector(3, handle_tlbs);
  1952. set_except_vector(4, handle_adel);
  1953. set_except_vector(5, handle_ades);
  1954. set_except_vector(6, handle_ibe);
  1955. set_except_vector(7, handle_dbe);
  1956. set_except_vector(8, handle_sys);
  1957. set_except_vector(9, handle_bp);
  1958. set_except_vector(10, rdhwr_noopt ? handle_ri :
  1959. (cpu_has_vtag_icache ?
  1960. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1961. set_except_vector(11, handle_cpu);
  1962. set_except_vector(12, handle_ov);
  1963. set_except_vector(13, handle_tr);
  1964. set_except_vector(14, handle_msa_fpe);
  1965. if (current_cpu_type() == CPU_R6000 ||
  1966. current_cpu_type() == CPU_R6000A) {
  1967. /*
  1968. * The R6000 is the only R-series CPU that features a machine
  1969. * check exception (similar to the R4000 cache error) and
  1970. * unaligned ldc1/sdc1 exception. The handlers have not been
  1971. * written yet. Well, anyway there is no R6000 machine on the
  1972. * current list of targets for Linux/MIPS.
  1973. * (Duh, crap, there is someone with a triple R6k machine)
  1974. */
  1975. //set_except_vector(14, handle_mc);
  1976. //set_except_vector(15, handle_ndc);
  1977. }
  1978. if (board_nmi_handler_setup)
  1979. board_nmi_handler_setup();
  1980. if (cpu_has_fpu && !cpu_has_nofpuex)
  1981. set_except_vector(15, handle_fpe);
  1982. set_except_vector(16, handle_ftlb);
  1983. if (cpu_has_rixiex) {
  1984. set_except_vector(19, tlb_do_page_fault_0);
  1985. set_except_vector(20, tlb_do_page_fault_0);
  1986. }
  1987. set_except_vector(21, handle_msa);
  1988. set_except_vector(22, handle_mdmx);
  1989. if (cpu_has_mcheck)
  1990. set_except_vector(24, handle_mcheck);
  1991. if (cpu_has_mipsmt)
  1992. set_except_vector(25, handle_mt);
  1993. set_except_vector(26, handle_dsp);
  1994. if (board_cache_error_setup)
  1995. board_cache_error_setup();
  1996. if (cpu_has_vce)
  1997. /* Special exception: R4[04]00 uses also the divec space. */
  1998. set_handler(0x180, &except_vec3_r4000, 0x100);
  1999. else if (cpu_has_4kex)
  2000. set_handler(0x180, &except_vec3_generic, 0x80);
  2001. else
  2002. set_handler(0x080, &except_vec3_generic, 0x80);
  2003. local_flush_icache_range(ebase, ebase + 0x400);
  2004. sort_extable(__start___dbe_table, __stop___dbe_table);
  2005. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2006. }
  2007. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2008. void *v)
  2009. {
  2010. switch (cmd) {
  2011. case CPU_PM_ENTER_FAILED:
  2012. case CPU_PM_EXIT:
  2013. configure_status();
  2014. configure_hwrena();
  2015. configure_exception_vector();
  2016. /* Restore register with CPU number for TLB handlers */
  2017. TLBMISS_HANDLER_RESTORE();
  2018. break;
  2019. }
  2020. return NOTIFY_OK;
  2021. }
  2022. static struct notifier_block trap_pm_notifier_block = {
  2023. .notifier_call = trap_pm_notifier,
  2024. };
  2025. static int __init trap_pm_init(void)
  2026. {
  2027. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2028. }
  2029. arch_initcall(trap_pm_init);